< D > < 同 > < E > < E > < E > < 0 < 0</p>

2D/3D DDFV scheme for anisotropic-heterogeneous elliptic equations, application to a bio-mathematics problem: electrocardiogram simulation.

Charles PIERRE, Yves COUDIERE, Olivier ROUSSEAU and Rodolphe TURPAULT

June the 11th, 2008

Authors :

Laboratoire de mathématiques Jean Leray, Université de Nantes :

- Yves COUDIERE
- Rodolphe TURPAULT

Département de mathématiques et statistique, Université d'Ottawa :

• Olivier ROUSSEAU

Laboratoire de mathématiques et de leurs applications de Pau, Université de Pau et des Pays de l'Adour :

• Charles **PIERRE**

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

Outline :

- 1. Context, motivations.
- 2D/3D DDFV sxheme definition, for anisotropic/heterogeneous elliptic equations.
- 3. Numerical analysis.
- 4. ECG simulation.

ECG Simulation

⇒ \0 \0

Medical data analysis

• Medical images (CT Scan, 3D)

Heart Institute, University of Ottawa.

Résolution : 1 \times 1 \times 2 mm.

Pixels : 62 500 000

• Segmentation process (Level Set, Mumford-Shah functional)

ECG Simulation

Medical data analysis

• Medical images (CT Scan, 3D)

Heart Institute, University of Ottawa.

Résolution : 1 \times 1 \times 2 mm.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Pixels : 62 500 000

• Segmentation process (Level Set, Mumford-Shah functional)

Numerical analysis

ECG Simulation

Medical data analysis

• Medical images (CT Scan, 3D)

Heart Institute, University of Ottawa.

Résolution : 1 \times 1 \times 2 mm.

Pixels : 62 500 000

• Physiologically relevant mesh generation

ECG Simulation

▲日 → ▲圖 → ▲ 国 → ▲ 国 → 二 国 →

Available models

• Cardiac cells electrical activity \rightarrow EDO system

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Available models

- Cardiac cells electrical activity
 - \rightarrow EDO system
- Cardiac tissue electrical activity
 - \rightarrow Electrical potential waves propagation
 - \rightarrow Parabolic reaction diffusion equation
 - \rightarrow Description of a *membrane potential* $V_m(x, t)$ in the heart

Available models

- Cardiac cells electrical activity
 - \rightarrow EDO system
- Cardiac tissue electrical activity
 - \rightarrow Electrical potential waves propagation
 - \rightarrow Parabolic reaction diffusion equation
 - \rightarrow Description of a *membrane potential* $V_m(x, t)$ in the heart
- Torso model
 - \rightarrow Elliptic anisotropic and heterogeneous equation
 - \rightarrow Description of a potential $\phi_T(x,t)$ in the whole torso
 - \rightarrow Body surface potential measurement : ECG simulation

$$\operatorname{div}(G\nabla\phi_T) = F(V_m)$$

- G = G(x) discontinuous (organs heterogeneity).
- G anisotropic (muscles fibres directions).

DDFV Meshes

• Primal mesh :

one scalar unknown at every primal cell centre K, L, ...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

DDFV Meshes

• Primal mesh :

one scalar unknown at every primal cell centre K, L, ...

• Dual mesh :

one scalar unknown at every mesh vertex A (i.e. every dual cell).

< D > < 同 > < E > < E > < E > < 0 < 0</p>

DDFV Meshes

• Primal mesh :

one scalar unknown at every primal cell centre K, L, ...

• Dual mesh :

one scalar unknown at every mesh vertex A (i.e. every dual cell).

• Diamond mesh :

one flux vector associated to every interface σ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

DDFV Scheme principle

Construction of two discrete operators

- Discrete gradient : scalar data \longrightarrow vectorial data
- Discrete divergence : vectorial data scalar data

satisfying a duality property, mimiking the *Green formula* in the continuous context.

Property (DDFV scheme 2D-3D)

- By construction, the dicrete gradient and divergence operators fulfill a duality property : discrete Green Formula.
- Discretisation of elliptic equations
 well posed symmetric, positive definite system.
- Holds for general anisotropic, heterogeneous tensors both in dimension 2 and 3.

Discrete gradient

Scalar data $(\phi_C)_{C \in \mathcal{C}} \longrightarrow$ continuous piecewise affine function ϕ :

- \mathcal{C} primal and dual cells set.
- $(\phi_{\mathcal{C}})_{\mathcal{C} \in \mathcal{C}}$: one data per primal, dual cells
 - \implies function ϕ by P^1 interpolation on diamond cells halves.
- Discrete gradient : $(\nabla_h \phi_C)_\sigma$ on an interface σ .

$$(\nabla_h \phi_C)_\sigma = \frac{1}{|D(\sigma)|} \int_{D(\sigma)} \nabla \phi \, dx ,$$

 $D(\sigma)$ diamond cell associated to σ .

• Discrete trace : $(\operatorname{Tr}_h \phi_C)_{\sigma}$ on boundary interfaces $\sigma \subset \partial \Omega$.

$$(\mathrm{Tr}_h\phi_C)_\sigma = \frac{1}{|\sigma|}\int_\sigma \phi\,dx\,,$$

Discrete divergence

- Vector data $(\mathbf{p}_{\sigma}) \longrightarrow$ piecewise constant vector field \mathbf{p} on the diamond cells.
 - Discrete divergence : $(\operatorname{div}_h \mathbf{p}_\sigma)_C$ on a cell $C \in C$ (primal or dual).

$$(\operatorname{div}_h \mathbf{p})_C = \frac{1}{|C|} \int_{\partial C} \mathbf{p} \cdot \mathbf{n} \, dx$$

Theorem (discrete Green formula)

Being given a vector data (\mathbf{p}_{σ}) and a scalar data (ϕ_{C}) :

$$\int_{\Omega} \nabla_h \phi \cdot \mathbf{p} \, d\mathbf{x} = - \langle \phi_C, \operatorname{div}_h \mathbf{p} \rangle + \int_{\partial \Omega} \operatorname{Tr}_h \phi \, \mathbf{p} \cdot \mathbf{n} \, d\mathbf{s},$$

$$\langle \phi_{\mathcal{C}}, \operatorname{div}_{h} \mathbf{p} \rangle = \frac{1}{2} \sum_{\mathcal{C} \in \mathcal{C}} (\operatorname{div}_{h} \mathbf{p})_{\mathcal{C}} \phi_{\mathcal{C}} |\mathcal{C}|.$$

with : C primal and dual cells set.

・ロット 本語 アス 中 マーマット

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Heterogeneous case

$$\operatorname{div}(G
abla\phi)=f$$
 , with :

G discontinuous when crossing some media-interface $\Gamma.$ The mesh is supposed to be adapted to Γ :

$$\Gamma \subset \bigcup_{\sigma \text{ mesh interface}} \sigma$$
 .

Adaptation. When $\sigma \subset \Gamma$:

- Two discrete tensors are associated to σ (one on each side).
- Two discrete gradient vectors are computed on σ (one on each side).
- One supplementary normal flux continuity condition is imposed on σ .
- Achieved by adding one auxiliary scalar unknown at the interface center, locally eliminated.

3D case : diamond cells

FIG.: 3D diamond cell

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

3D case : dual cells

FIG.: 3D dual cells construction

2D convergence analysis

$$\Delta u = f \quad \text{on } \Omega$$
$$u_{|\partial\Omega} = 0 \quad \text{on } \partial\Omega$$

- $\Omega = (-1, 1)^2$
- f trigonometric
- DDFV vs P¹ finite element,
- $177 \rightarrow 650\ 000\ \text{points}$ triangular meshes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

2D convergence analysis

2D DDFV vs P1 : comparative computational costs

3D convergence analysis

$$\Delta u = f \quad \text{on } \Omega$$
$$u_{|\partial\Omega} = 0 \quad \text{on } \partial\Omega$$

• $\Omega = (0,1)^3$

- f trigonometric
- DDFV vs P¹ finite element,
- $500 \rightarrow 500\ 000\ points$ tetrahadral meshes.

3D DDFV vs P1 : L²-norm convergence

◆□▶ ◆□▶ ◆三▶ ◆□▶ ◆□▶

3D convergence analysis

3D DDFV vs P1 : comparative computational costs

ECG Simulation

Numerical simulations : settings

• 2D mesh : from DistMesh code (P.-O. Persson, G. Strang).

 \rightarrow Heart mesh

 $\simeq~$ 500 000 vertices

→ Entire mesh (heart+torso)

 $\simeq~$ 600 000 vertices

 $\operatorname{div}(G\nabla\phi_T) = F(V_m)$, at each time step.

Ventricles :

G = G(x): anisotropic, depending on muscular finres directions Lungs, ventricle cavity, remaining tissues: $G = g_o Id$: homogeneous, heterogeneous g_o discontinuous at organs boundaries.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 = ∽ 9 Q @

ECG Simulation

ECG simulation : resultts

Simulation :

Membrane potential V_m lsochrones.

Body surface potential recordings (ECG) :

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Perspectives

- 1. Further numerical investigations of the DDFV scheme (behaviour in presence of strong anisotropy/heterogeneity).
- 2. Theoretical analysis (convergence analysis, discrete Poincaré inequality).
- 3. Behaviour on non conformal meshes, towards local mesh refinment.