## FVCA5, Aussois, June 09-13, 2008

## A Finite-Volume Approach to Fluids with Phase Transitions

Christian Rohde Universität Stuttgart



## **Plan of the Talk**

- 1) Compressible Fluids with Phase Change
- 2) The Sharp-Interface Approach I
- 3) The Diffuse-Interface Approach
- 4) The Sharp-Interface Approach II
- 5) Outlook

**DFG-CNRS Research Group:** *Micro-Macro Modelling of Liquid-Vapor Flow* 

# 1) Compressible Fluids with Phase Change

## **Compressible Fluids**

#### **Compressible Effects in Liquid-Vapour Flow**



(Source: F. D'Annibale, ENEA C.R. Casaccia, Institute of Thermal Fluid Dynamics,)

## **Compressible Fluids**

#### More Compressible Effects in Liquid-Vapour Flow



Cavitating

(Source: Tom Fink Cavitation Tunnel)

Deformation of drop by shock wave



(Source: Multiphase Flow and Spray Systems Laboratory, University of Toronto)

## **Compressible Fluids**

#### **Requirements for the Mathematical Model**

- Modelling on a macroscopic/continuum-mechanical level
- Correct description of phase transitions **and** fluid flow
- Consistency with laws of thermodynamics
- Compressibility in both phases
- Flexible numerical treatment possible

2) The Sharp-Interface Approach I: ....doesn't seem to be a good idea...

#### A Sharp-Interface Model: Isothermal Euler Equations

$$\begin{aligned} \rho_t + \operatorname{div}(\rho \mathbf{v}) &= 0\\ (\rho \mathbf{v})_t + \operatorname{div}(\rho \mathbf{v} \mathbf{v}^T + p(\rho)\mathcal{I}) &= 0 \end{aligned} \quad \text{in } D_{\text{vap/liq}}(t) \end{aligned}$$

and trace conditions at free phase boundary  $\Gamma(t)$ 

$$egin{aligned} \mathbf{u} &:= (
ho, 
ho \mathbf{v}), & & 
ho &= 
ho(\mathbf{x}, t) > 0 &: ext{Density} \ \mathbf{v} &= \mathbf{v}(\mathbf{x}, t) \in \mathbb{R}^d &: ext{Velocity} \end{aligned}$$



**Definition:** The families  $\{\Gamma(t)\}_{t\in[0,T]}$  and  $\{\mathbf{u}_{\mathsf{vap/liq}}(.,t)\in L^{\infty}(D_{\mathsf{vap/liq}}(t)\}_{t\in[0,T]}$  are called an **admissible solution of the SI-model** iff

- $\mathbf{u}_{vap/liq}$  is an entropy solution in  $\{(D_{vap/liq}(t), t) \mid t \in [0, T]\}$ ,
- $\rho_{\rm Vap/liq}$  is in the vapour/liquid phase,
- and the trace conditions are satisfied for  $t \in [0, T]$ .

#### Van-der-Waals Pressure Isotherm:

$$p = p(\rho, T_*) = \frac{RT_*\rho}{1 - d\rho} - a\rho^2$$



#### **Definition: (phases)**

A density state  $\rho$  is in the **vapour** (liquid) phase iff we have

$$\rho \in (0, \alpha_1) \quad (\rho \in (\alpha_2, b)).$$

It is called **elliptic** for  $\rho \in (\alpha_1, \alpha_2)$ .

#### SI-Model as a Conservation Law:

$$\mathbf{u}_{t} + \sum_{i=1}^{d} [\mathbf{f}^{i}(\mathbf{u})]_{x_{i}} = 0,$$
  

$$A(\mathbf{u}, \boldsymbol{\mu}) := \sum_{i=1}^{d} \mu_{i} D \mathbf{f}^{i}(\mathbf{u}), |\boldsymbol{\mu}| = 1$$
  

$$\lambda_{1}(\mathbf{u}, \boldsymbol{\mu}) = \mathbf{v} \cdot \boldsymbol{\mu} - \sqrt{p'(\rho)},$$
  

$$\lambda_{2}(\mathbf{u}, \boldsymbol{\mu}) = \mathbf{v} \cdot \boldsymbol{\mu},$$
  

$$\vdots$$
  

$$\lambda_{d}(\mathbf{v}, \boldsymbol{\mu}) = \mathbf{v} \cdot \boldsymbol{\mu},$$
  

$$\lambda_{d+1}(\mathbf{u}, \boldsymbol{\mu}) = \mathbf{v} \cdot \boldsymbol{\mu} + \sqrt{p'(\rho)},$$

#### **Difficulties of the SI-Model:**

Modelling/Analysis:

- Choice of interface conditions not obvious
- Breakdown of notion of solution in case of topological changes of phases Numerics:
  - Numerical averaging might lead to elliptic density values
  - Pointwise trace conditions but volume-oriented schemes

# 3) A Phase-Field Model or Diffuse-Interface Model

### A Diffuse-Interface Model: Navier-Stokes-Korteweg Equations

$$\begin{aligned} \rho_t &+ \operatorname{div}(\rho \mathbf{v}) &= 0\\ (\rho \mathbf{v})_t &+ \operatorname{div}(\rho \mathbf{v} \mathbf{v}^T + p(\rho) \mathcal{I}) &= \operatorname{div}(\mathbf{T}^{\varepsilon}) + \varepsilon^2 \rho \nabla \Delta \rho \end{aligned}$$

$$ho = 
ho(x,t) > 0$$
 : Density  $\mathbf{v} = \mathbf{v}(\mathbf{x},t) \in \mathbb{R}^d$  : Velocity

$$\mathbf{T}^{\varepsilon} = (T_{ij}^{\varepsilon}), \qquad T_{ij}^{\varepsilon} := \varepsilon \lambda \operatorname{div}(\mathbf{v}) \delta_{ij} + \varepsilon \mu (v_{j,x_i} + v_{i,x_j}).$$

#### A Diffuse-Interface Model: Navier-Stokes-Korteweg Equations

$$\begin{split} \rho_t &+ \operatorname{div}(\rho \mathbf{v}) &= 0\\ (\rho \mathbf{v})_t &+ \operatorname{div}(\rho \mathbf{v} \mathbf{v}^T + p(\rho) \mathcal{I}) &= \operatorname{div}(\mathbf{T}^{\varepsilon}) + \varepsilon^2 \rho \nabla \Delta \rho\\ \rho &= \rho(x, t) > 0 \quad : \operatorname{Density}\\ \mathbf{v} &= \mathbf{v}(\mathbf{x}, t) \in \mathbb{R}^d : \operatorname{Velocity}\\ \mathbf{T}^{\varepsilon} &= (T_{ij}^{\varepsilon}), \quad T_{ij}^{\varepsilon} := \varepsilon \lambda \operatorname{div}(\mathbf{v}) \delta_{ij} + \varepsilon \mu(v_{j,x_i} + v_{i,x_j}). \\ \end{split}$$

Energy inequality for the DI-model:

$$\frac{d}{dt} \Big( \int_{\mathbb{R}^d} \frac{1}{2} \rho(\mathbf{x}, t) |\mathbf{v}(\mathbf{x}, t)|^2 + W(\rho(\mathbf{x}, t)) + \frac{\varepsilon^2}{2} |\nabla \rho(\mathbf{x}, t)|^2 \, d\mathbf{x} \Big) \le 0$$

A Simulation Example: (Phase separation)



Initial density field with random bubble distribution.

#### **Computations:**

Local Discontinuous-Galerkin Code (PhD-thesis, D. Diehl '07).

A Simulation Example: (Phase separation)



Initial density field with random bubble distribution.

#### **Computations:**

Local Discontinuous-Galerkin Code (PhD-thesis, D. Diehl '07).

#### **Major Problems:**

Interfacial width not realistic Density variation not realistic 4) The Sharp-Interface Approach II: ...not such a bad idea...

D<sub>lig</sub>(t)

n(x,t)

 $\Gamma(t)$ 

 $D_{vap}(t)$ 

#### **Isothermal Euler Equations:**

$$\rho_{t} + \operatorname{div}(\rho \mathbf{v}) = 0 \quad \text{in } D_{\text{vap/liq}}(t)$$
$$(\rho \mathbf{v})_{t} + \operatorname{div}(\rho \mathbf{v} \mathbf{v}^{T} + p(\rho)\mathcal{I}) = 0 \quad \text{in } D_{\text{vap/liq}}(t)$$
$$[[\rho(\mathbf{v} \cdot \mathbf{n} - s)]] = 0$$
$$[[\rho(\mathbf{v} \cdot \mathbf{n} - s)\mathbf{v} + p\mathbf{n}]] = (d - 1)\sigma\kappa\mathbf{n} \quad \text{in } \Gamma(t)$$
$$+ \text{additional trace condition}$$

 $ho = 
ho(\mathbf{x},t) > 0$  : Density  $\mathbf{v} = \mathbf{v}(\mathbf{x},t) \in \mathbb{R}^d$  : Velocity

Here  $\sigma>0$  is the constant surface tension and

$$\begin{split} s &= s(\mathbf{x},t) & \text{normal propagation speed of phase boundary } \Gamma(t) \\ \kappa &= \kappa(\mathbf{x},t) & \text{mean curvature of phase boundary } \Gamma(t) \end{split}$$

#### **Kinetic Relation as Trace Condition:**

Let  $G : \mathbb{R} \to \mathbb{R}$  with  $aG(a) \leq 0, a \in \mathbb{R}$ , be given. A phase boundary is called *G*-admissible iff we have

$$\underbrace{-s\left[\!\left[W(\rho) + \frac{1}{2}\rho|\mathbf{v}|^2\right]\!\right] + \left[\!\left[\left(W(\rho) + \frac{1}{2}\rho v^2 + p(\rho)\right)\mathbf{v}\cdot\mathbf{n}\right]\!\right]}_{= jG(j), \ j = \rho_{\pm}(\mathbf{v}_{\pm}\cdot\mathbf{n}-s)$$

entropy dissipation

#### **Examples:**

- (a)  $G(a) = -a \Rightarrow$  Phase boundary satisfies Clausius-Duhem inequality
- (b)  $G(a) = 0 \implies$  Phase boundary satisfies Clausius-Duhem inequality (dissipation free)

Theorem (Benzoni-Gavage&Freistühler 04)

For  $G \equiv 0$  there exists a local-in-time classical solution of the initial value problem for the SI-model.

#### Sharp-Interface Model for Planar Waves/Riemann Problem:

$$\begin{array}{rcl} \rho_t & + & \rho v_x & = & 0\\ (\rho v)_t & + & \left(\rho v^2 + p(\rho)\right)_x & = & 0 \end{array} \quad \text{in } \mathbb{R} \times (0, \infty)$$

$$\begin{aligned} u := (\rho, \rho v) & \qquad \rho = \rho(x, t) > 0 \ : \text{Density} \\ v = v(x, t) \in \mathbb{R} \ : \text{Velocity} \end{aligned}$$

#### **Subsonic Phase Boundary:**





#### Sharp-Interface Model for Planar Waves/Riemann Problem:

$$\begin{array}{rcl} \rho_t & + & \rho v_x & = & 0\\ (\rho v)_t & + & \left(\rho v^2 + p(\rho)\right)_x & = & 0 \end{array} \text{ in } \mathbb{R} \times (0,\infty), \qquad u(x,0) = \left\{ \begin{array}{l} u_l : x < 0\\ u_r : x > 0 \end{array} \right.$$

$$u:=(
ho,
ho v) \qquad egin{array}{ll} 
ho=
ho(x,t)>0 &: {
m Density} \ v=v(x,t)\in {\mathbb R} &: {
m Velocity} \end{array}$$

Theorem: (Merkle&R., M2AN 07) For  $G : \mathbb{R} \to \mathbb{R}$ ,  $aG(a) \leq 0$ , we have

- (i) The Riemann problem admits a weak solution  $u : \mathbb{R} \times [0, \infty) \to \mathcal{U}$  in the class of self-similar functions consisting of Laxian shock waves, *G*-admissible phase transitions, attached and rarefaction waves.
- (ii) It is unique in this class if it satisfies the following properties.
  - phase boundaries connecting states with the same pressure connect Maxwell–states,
  - 2. a one-phase solution is used whenever it exists.

#### Analysis: Wave Curves and Solution for a Two-Phase Case



Generalized one-forward and two-backward curves



Graphs for density and velocity.

#### Analysis: Wave Curves and Solution for a Nucleation Case



Generalized one-forward and two-backward curves



Graphs for density and velocity.

#### Some (Eulerian) Methods for Subsonic Waves/Mixed-Type Systems

- LeFloch: Glimm-type scheme
- Hou&Rosakis&LeFloch '99, Merkle&R.'06: level-set appoach for (trilinear) pressure function,
- LeFloch, Hayes, Mercier, R. '98-'01: artificial dissipation approach for scalar equations,
- Abgrall&Saurel '03, Le Metayer&Massoni& Saurel '05: discrete equations method for evaporation fronts,
- Chalons, Coquel, Goatin, LeFloch,.. '06-: random-choice methods, transport-equilibrium approach

• • •

- → Keep phase boundary sharp (whatever it costs)
- → Do not use (hidden) phase field coupling

#### **1D Finite-Volume Ghostfluid Approach** (Merkle&R. M2AN 07)

Note: ghostfluid idea by Fedkiw, Aslam, Merriman, Osher, JCP 99.

**Step 0:** (data initialization) For  $t^0 := 0$  we define

$$u_j^0 := (\rho_j^0, m_j^0) := \frac{1}{h} \int_{I_j} (\rho_0, \rho_0 v_0)(x) \, dx \qquad (j \in \mathbb{Z}).$$

Assume that for time  $t^n > 0$  the sequence

$$u_j^n := \{(\rho_j^n, m_j^n)\}_{j \in \mathbb{Z}}$$

with density values **not** in the elliptic region is given. Let pairwise distinct phase boundary positions  $\{p_k^n\}_{k=1,...,K} \in$  be given.

Step 1: (Construction of two preliminary one-phase data sets) For  $j \in \mathbb{Z}$  define the vapour data set  $\{u_{\text{Vap}}_{j}^{n}\}_{j \in \mathbb{Z}}$  at  $t = t^{n}$  by

$$u_{\mathsf{Vap}_{j}^{n}} := \begin{cases} u_{j}^{n} : u_{j}^{n} \text{ is vapour state,} \\ u_{k(j)}^{n} : u_{j}^{n} \text{ is liquid state.} \end{cases}$$

Here  $u_{k(j)}^n$  denotes the values of the vapour state in the cell  $I_{k(j)}$  which is most close to the cell  $I_j$ .

The liquid data set  $\{u_{ij}\}_{j\in\mathbb{Z}}^n$  at  $t = t^n$  is defined analogously.



#### Step 2: (Solution of Riemann problems)

For  $j \in \mathbb{Z}$  determine the unique weak solution  $u^{(j,n)} : \mathbb{R} \times [0,\infty) \to (0,\infty) \times \mathbb{R}$  of the Riemann problem with initial data

$$u^{(j,n)}(x,0) := \begin{cases} \begin{cases} u_{\mathrm{liq}_{j}^{n}} : x < 0 \\ u_{\mathrm{vap}_{j}^{n}} : x > 0 \\ u_{\mathrm{vap}_{j}^{n}} : x < 0 \\ u_{\mathrm{liq}_{j}^{n}} : x > 0 \end{cases} \quad (u_{\mathrm{vap}_{j}^{n}} = u_{j}^{n}),$$



 $w_{\text{liq}_{j}}^{n}$ : liquid state at phase boundary  $w_{\text{vap}_{j}}^{n}$ : vapour state at phase boundary  $s_{i}^{n}$ : speed of phase boundary

Step 3: (Construction of two final one-phase data sets) Define the final vapour data set  $\{u_{\mathsf{Vap}_{j}^{n}}\}_{j\in\mathbb{Z}}$  at  $t = t^{n}$  by

$$u \mathbf{vap}_{j}^{n} := \begin{cases} u_{j}^{n} : u_{j}^{n} \text{ is vapour state} \\ w_{\mathsf{vap}_{j}^{n}} : u_{j}^{n} \text{ is liquid state} \end{cases} (j \in \mathbb{Z})$$

The final liquid data set  $\{u_{ij}\}_{j\in\mathbb{Z}}^n$  is defined analogously.



Step 4: (Time evolution by finite-volume scheme) For  $j \in \mathbb{Z}$  define  $\{u_{\text{liq}}_{j}^{n+1}\}_{j \in \mathbb{Z}}$ 

$$u_{\mathsf{liq}_{j}^{n+1}} := u_{\mathsf{liq}_{j}^{n}} - \frac{\Delta t^{n}}{h} \left[ g(u_{\mathsf{liq}_{j}^{n}}, u_{\mathsf{liq}_{j+1}^{n}}) - g(u_{\mathsf{liq}_{j-1}^{n}}, u_{\mathsf{liq}_{j}^{n}}) \right]$$

Here g be a standard numerical flux function for the Euler equations. The data set  $\{u_{\text{Vap}}_{j}^{n+1}\}_{j\in\mathbb{Z}}$  is defined analogously.

The phase boundary positions are updated using  $\{s_j^n\}_{j\in\mathbb{Z}}$ :  $\{p_k^{n+1}\}_{k=1,...,K}$ .



Step 5: (Finalization) Determine from  $\{u_j^n\}_{j\in\mathbb{Z}}$  and  $\{p_k^{n+1}\}_{k=1,...,K}$  a new phase distribution. For  $j\in\mathbb{Z}$  define  $\{u_j^{n+1}\}_{j\in\mathbb{Z}}$  by

$$u_j^{n+1} := \left\{ egin{array}{cc} u_{\mathsf{vap}}_j^{n+1} & : & ext{state in } I_j ext{ is vapour state} \ u_{\mathsf{liq}}_j^{n+1} & : & ext{state in } I_j ext{ is liquid state} \end{array} 
ight.$$





#### A 1D-Numerical Experiment:



#### A 1D-Numerical Experiment:

| grid size     | $L^1$ –error of $ ho$ | EOC  | $L^1$ –error of $v$ | EOC  |
|---------------|-----------------------|------|---------------------|------|
| 0.04          | 0.08953370            | 0.95 | 0.22612267          | 1.02 |
| 0.02          | 0.04975303            | 0.05 | 0.11056125          | 1.03 |
| 0.01          | 0.03562381            | 0.40 | 0.08429837          | 0.39 |
| 0.005         | 0.02126755            | 0.75 | 0.04722471          | 0.04 |
| 0.0025        | 0.01247926            | 0.77 | 0.02572075          | 0.00 |
| 0.00125       | 0.00721779            | 0.79 | 0.01378924          | 0.90 |
| 0.000625      | 0.00406572            | 0.83 | 0.00702086          | 0.97 |
| 0.0003125     | 0.00222163            | 0.87 | 0.00332194          | 1.08 |
| 0.00015625    | 0.00130720            | 0.77 | 0.00195002          | 0.77 |
| 0.000078125   | 0.00076604            | 0.77 | 0.00115614          | 0.75 |
| 0.0000390625  | 0.00045315            | 0.76 | 0.00071321          | 0.70 |
| 0.00001953125 | 0.00025183            | 0.85 | 0.00038543          | 0.89 |

 $L^1$ -error and EOC rate for subsequent refinement levels of the grid.

#### A Convergence Result:

#### Proposition: (Traveling phase boundary)

Assume that states  $u_{l/r}$  are given such that the phase boundary connecting  $u_l$  and  $u_r$  is *G*-admissible. Let u be the traveling wave solution for initial datum

$$u_0(x) := \begin{cases} u_l : x - h/2 < 0, \\ u_r : x - h/2 > 0, \end{cases}$$

and let  $u_h$  denote the numerical solution obtained by the ghostfluid algorithm. Then we have for all S, t > 0

$$||u(.,t) - u_h(.,t)||_{L^1([-S,S])} = \mathcal{O}(h), \qquad \int_{\mathbb{R}} u(x,t) - u_h(x,t) \, dx = \mathcal{O}(h).$$

#### **Remarks on the 2D-Algorithm:**

• Construct e.g. the preliminary liquid density data set by solving

$$u_t - \mathbf{n}(\mathbf{x}, t^n) \cdot \nabla u = 0, \quad u(\mathbf{x}, t^n) = \begin{cases} \rho(\mathbf{x}, t^n) & : \ \mathbf{x} \in D_{\mathsf{liq}}(t^n), \\ 0 & : \ \mathbf{x} \in D_{\mathsf{vap}}(t^n) \end{cases}$$

in  $D \times [t^n, t^{n+1}]$ .

• The evolution of the discrete phase boundary  $\Gamma_h$  is tracked by solving

$$\varphi_t + V_h(\mathbf{x}, t^n) |\nabla \varphi| = 0, \quad \varphi(\mathbf{x}, t^n) = \text{signed dist}(\mathbf{x}, \Gamma_h(t^n))$$

in  $D \times [t^n, t^{n+1}]$ . Here  $V_h(., t^n)$  is the speed of the phase boundary obtained by Riemann problem solutions at time  $t = t^n$ .

#### 2D Experiment without curvature: (PhD-thesis C. Merkle '06)



## 5) Conclusions and Outlook

- Development of approximate nonclassical Riemann solvers
- Extension to the curvature-dependent case (Generalized Riemann solution: Dressel&Rohde 08)
- Tests for realistic density regimes
- Multiscale coupling of Navier-Stokes equations with Euler equations