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Outline of the talk

⊲ Asymptotic behaviors for hyperbolic systems with source te rm
⊲ Different asymptotic behaviors
⊲ Adapted numerical schemes

⊲ Asymptotic preserving schemes
⊲ The case of the telegrapher’s equations
⊲ Godunox-type schemes and approximate Riemann solvers
⊲ Euler equations with gravity and friction

⊲ Numerical experiments
⊲ Well-balanced property
⊲ Asymptotic preserving case
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Asymptotic behaviors

Hyperbolic systems with source term

{

∂tU + ∂x F(U, V) = 0

∂tV + ∂xG(U, V) = αR(U, V)

Stiff source term: α ≫ 1 (Friction, chemical reactions, external forces...)

Different asymptotic behaviors

⊲ Stationary solutions
∂t(U, V) = 0

⊲ Equilibrium solutions
R(U, V) = 0

⊲ Asymptotic solutions
1 ≪ α < ∞ → rescaling

How to reproduce these behaviors at the numerical level
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Asymptotic behaviors: stationary solutions

Hyperbolic systems with source term

{

∂tU + ∂x F(U, V) = 0

∂tV + ∂xG(U, V) = αR(U, V)

Stationary solutions
∂tU = ∂tV = 0

Well-balanced schemes
Verify at the numerical level

{

∂xF(U, V) = 0

∂xG(U, V) = αR(U, V)
for all α > 0
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Asymptotic behaviors: relaxation

Hyperbolic systems with source term

{

∂tU + ∂x F(U, V) = 0

∂tV + ∂xG(U, V) = αR(U, V)

Relaxation
R(U, V) = 0 ⇐⇒ V = Veq(U)

Relaxation schemes
Verify at the numerical level

∂tU + ∂xF(U, Veq(U)) = 0
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Asymptotic behaviors: rescaling

Hyperbolic systems with source term

{

∂tU + ∂x F(U, V) = 0

∂tV + ∂xG(U, V) = αR(U, V)

Rescaling −→ PDE system independent of α

(A )

{

V = V(U, ∂xU, ...)

∂tU + ∂xF(U, V(U, ∂xU, ...)) = 0

Asymptotic preserving schemes ([Jin], [Klar]...)
Same rescaling leads to a numerical scheme for system (A )
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The telegrapher’s equations and the asymptotic limit

Linear hyperbolic system

(S )

{

∂tτ − ∂xu = 0

∂tu − ∂xτ = −αu

Long time behavior: t = αs and v = αu

Drop high order terms in α−1

{

α−1∂sτ − α−1∂xv = 0

α−2∂sv − ∂xτ = −v
=⇒

{

∂sτ − ∂xv = 0

v = ∂xτ

We then obtain

(A )

{

∂sτ − ∂2
xxτ = 0

v = ∂xτ

Asymptotic preserving scheme: approximate (S ) and (A ) for all α (≫ 1)
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Numerical approximation of the telegrapher’s equations

Semi-discrete scheme: flux ∂x f ≈ ∆x f ∗ source term αu ≈ αũ

{

∂tτ − ∆xu∗ = 0

∂tu − ∆xτ∗ = −αũ

Long time behavior: t = αs

{

α−1∂sτ − ∆xu∗ = 0

αũ = ∆xτ∗+O(α−1)

Drop term O(α−1)
{

∂sτ − ∆x(αu∗) = 0

(αũ) = ∆xτ∗
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AP scheme for the telegrapher’s equations

{

∂sτ − ∆x(αu∗) = 0

(αũ) = ∆xτ∗

In general,

∆ũ = ∆u∗+O(∆x)

We then obtain (v = αu)

(A )

{

∂sτ − ∆
2
xxv∗+ α O(∆x) = 0

ṽ = ∆xτ

Convergent scheme but very diffusive when α ≫ 1...
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AP scheme for the telegrapher’s equations

{

∂sτ − ∆x(αu∗) = 0

(αũ) = ∆xτ∗

Choose ũ s. t.

∆ũ = ∆u∗ + α−1
O(∆x)

We then obtain (v = αu)

(A )

{

∂sτ − ∆
2
xxv∗+ 1 O(∆x) = 0

ṽ = ∆xτ

Addition of numerical diffusion, but independent of α !
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AP scheme for the telegrapher’s equations

{

∂sτ − ∆x(αu∗) = 0

(αũ) = ∆xτ∗

Choose

ũ = u∗

We then obtain (v = αu)

(A )

{

∂sτ − ∆
2
xxv∗+ 0 O(∆x) = 0

v∗ = ∆xτ

Asymptotic scheme independent of α !!
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Euler equations with gravity and friction

Linear friction (also works with non linear friction)











∂tρ + ∂x(ρu) = 0

∂t(ρu) + ∂x(ρu2 + p) = ρg − αρu

∂t(ρE) + ∂x(u(ρE + p)) = ρgu − αρu2

with E = ε + u2/2

Long time behavior:

t = αs and v = αu

Asymptotic system











∂sρ + ∂x(ρg − ∂x p]) = 0

∂s(ρε) + ∂x(v(ρε + p)) = ρgv − ρv2

v = g − ρ−1∂x p
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Numerical methods

Conservative hyperbolic system

∂tU + ∂x F(U) = 0

Godunov-type schemes by Harten-Lax-Van Leer

Un+1
i =

1

∆x

(

∫

∆x/2

0
U (x/∆t; Un

i−1, Un
i ) dx +

∫ 0

−∆x/2
U (x/∆t; Un

i , Un
i+1) dx

)

where U (x/t; Ul , Ur) is an approximate Riemann solver:
Self-similar function satisfying the consistency property

∫

∆x/2

−∆x/2
U (x/∆t; Ul , Ur) dx =

∆x

2
(Ul + Ur) + ∆t

(

F(Ur) − F(Ul)
)

(integration over the staggered cell [−∆x/2, ∆x/2] × [0, T] of the PDE)
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Numerical methods

Hyperbolic system with source term

∂tU + ∂xF(U) = S(U)

Godunov-type schemes by Harten-Lax-Van Leer (see also Gallice)

Un+1
i =

1

∆x

(

∫

∆x/2

0
U (x/∆t; Un

i−1, Un
i ) dx +

∫ 0

−∆x/2
U (x/∆t; Un

i , Un
i+1) dx

)

where U (x/t; Ul , Ur) is an approximate Riemann solver:
Self-similar function satisfying the consistency property

∫

∆x/2

−∆x/2
U (x/∆t; Ul , Ur) dx =

∆x

2
(Ul + Ur)+ ∆t

(

F(Ur)− F(Ul)
)

+ ∆x∆tS̃(∆x, Ul , Ur)

where S̃(0, U, U) = S(U).
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Construction of the asymptotic preserving scheme

The construction of the numerical scheme follows the following steps:

⊲ The approximate Riemann solver:
⊲ Write the PDE system with source term in Lagrangian coordinates

⊲ Construct an approximate Riemann solver, with ũ = u∗

⊲ Go back to Eulerian coordinates

⊲ Define the associated Godunov-type scheme by the previous formula

NB

⊲ The scheme can be re-written as a finite volume scheme

⊲ The scheme is asymptotic preserving

⊲ The numerical scheme is entropy satisfying

⊲ Also works with non linear friction terms
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Numerical experiments

Comparison with the splitting method:

⊲ HLLC scheme for the PDE part

⊲ implicit scheme for the source term

First test: Convergence toward a stationary solution
(α = 104s−1, g = 9.81m/s−2)

Second test: Asymtotic behavior and mesh sensibility
(α = 106s−1, g = 9.81m/s−2)
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Convergence towards a stationary solution

Riemann problem with wall BC’s (long time): (ρ, u, p)
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Asymtotic behavior and mesh sensibility: splitting method

Centered step with periodic BC (long time): (u, p)
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Asymtotic behavior and mesh sensibility: AP scheme

Centered step with periodic BC (long time): (u, p)
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Conclusion

Asymptotic preserving scheme for Euler equations with grav ity and friction

⊲ Godunov-type scheme

⊲ Numerical diffusion independent of α

⊲ Explicit scheme: hyperbolic CFL condition (positivity, entropy)

Work in progress and perspectives

⊲ Large spatial variations of α
−→ model coupling (see E. Godlewski, FVCA5, Thursday)

⊲ Two-phase flows with drag force (see A. Ambroso, FVCA5, Tuesday)

⊲ Deeper analysis (non uniform mesh, multi-D)
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