A well-balanced Runge–Kutta discontinuous Galerkin method for the shallow water equations with flooding and drying

Pablo Tassi Alexandre Ern Serge Piperno

CERMICS - Ecole Nationale des Ponts et Chaussés Université Paris-Est

> FVCA05 - Aussois, France June 08-13 2008

Motivation I

Salado river (Argentina) before flooding (January 25, 2000)

After flooding (May 3, 2003)

Motivation I

Salado river flood, Santa Fe, Argentina, April-May 2003

Motivation II

- **Stratigraphy:** the study of rock strata, especially the distribution, deposition, and age of sedimentary rocks
- Interactions between processes over a large range of spatial and temporal scales (petrol industry, geophysics, etc)

Outline

Mathematical model: shallow water equations

Numerical solution: discontinuous Galerkin method

Applications

Conclusions and outlook

Mathematical model

Shallow water equations (SWE)

Leading order model for hydrodynamics in river, ocean, and coastal flows, among other cases of engineering and scientific interest

Conservative form

Let the bounded domain $\Omega \subset \mathbb{R}^2$, and let T > 0 be the simulation time

$$\frac{\partial \mathbf{U}}{\partial t} + \nabla \cdot F(\mathbf{U}) = \mathbf{S} \text{ in } \Omega \times]0, T[, \\ \mathbf{U}(\mathbf{x}, 0) = \mathbf{U}_0(\mathbf{x}) \text{ in } \Omega,$$

- completed with suitable boundary conditions on $\partial \Omega \times]0, T[$
- $\mathbf{U} = (h \ hu \ hv)^T$ is the vector of state variables, *h* water depth, $h\mathbf{u} = (hu, hv)^T$ discharge of the flow; $\mathbf{u} = (u, v)^T$ flow velocity field

Mathematical model

Flux

$${f F}({f U})=\left(egin{array}{cc} uh & vh\ u^2h+gh^2/2 & vuh\ uvh & v^2h+gh^2/2 \end{array}
ight)$$

Source

$$\mathcal{S}(\mathbf{U},b) = \left(egin{array}{c} 0 \ -gh\partial_x b - S_{b_x} \ -gh\partial_y b - S_{b_y} \end{array}
ight)$$

- b topography (measured from a reference altitude)
- g gravity acceleration
- $\mathbf{S}_{b} = (S_{b_x}, S_{b_y})^T$ closure for friction.

Numerical schemes for SWE

- Finite differences (FD)
- Finite volumes (FV) [Audusse *et al.*, 2004; Brufau *et al.*, 2004, Benkhaldoun *et al.*, 2007]
- Finite elements (FEM)
 - Stabilized continuous FE methods [Hervouet, 2007; TELEMAC Modelling System, 1998]
- Discontinuous Galerkin methods (DG) [Dawson and Proft, 2004; Bokhove, 2005; Kubatko *et al.*, 2006; Tassi *et al.*, 2007; Ern *et al.*, 2008]

Discontinuous Galerkin methods

 DG combine ideas high-resolution FD/FV methods within a FEM framework

- DG captures shocks or sharp fronts more efficiently than FEM
- General solution spaces:
 - freedom in the choice of the base
 - freedom in building the mesh
 - hp-adaptivity easily implemented
- Locally conservative: conservation of a transported quantity is satisfied on a local or elemental level

Discontinuous Galerkin methods

- Approximated functions are discontinuous across the finite element boundaries
- We consider the following approximation space made up of polynomial functions:

$$\mathcal{V}_{\mathsf{h}} = \left\{ \mathsf{v}_{\mathsf{h}} \in \mathsf{L}^2; \mathsf{v}_{\mathsf{h}}|_{\mathsf{K}} \in \mathbb{P}_{p}(\mathsf{K}), p \in \mathbb{N}
ight\}$$

Space discretization

For all $K \in T_h$, we multiply $\partial_t \mathbf{U} + \nabla \cdot \mathbf{F} = \mathbf{S}$ by $v_h \in \mathcal{V}_h$, integrate over K, and apply Green's formula:

Find $\mathbf{U}_h \in C^1([0, T], \mathcal{V}_h)$ such that $\forall t \in]0, T[, \forall K \in \mathcal{T}_h, \forall v_h \in \mathcal{V}_h,$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathcal{K}}\mathbf{U}_{\mathsf{h}}\mathbf{v}_{\mathsf{h}}\,\mathrm{d}\mathcal{K} + \int_{\partial\mathcal{K}}\widehat{\mathcal{F}}(\mathbf{U}_{\mathsf{h}}^{\prime},\mathbf{U}_{\mathsf{h}}^{\prime},\mathbf{n}_{\mathcal{K}})\mathbf{v}_{\mathsf{h}}\,\mathrm{d}\sigma - \int_{\mathcal{K}}\nabla\mathbf{v}_{\mathsf{h}}\cdot\mathcal{F}(\mathbf{U}_{\mathsf{h}})\,\mathrm{d}\mathcal{K} = \int_{\mathcal{K}}\mathbf{S}\mathbf{v}_{\mathsf{h}}\,\mathrm{d}\mathcal{K},$$

where:

- ${f U}_{f h}^{\prime}$ and ${f U}_{f h}^{\prime}$ values of ${f U}_{f h}$ at left (/) and right (r) of face σ
- HLLC, Roe, kinetic flux, etc. [Tassi et al., 2007; Ern et al., 2008]

Time discretization

Flow field approximation (equal order) and choice of test functions

$$\mathbf{U}_{\mathbf{h}}|_{\mathcal{K}} = \sum_{j=1}^{N_b} \widehat{U}_{j,\kappa} \psi_j, \text{ and } v_{\mathbf{h}}|_{\mathcal{K}} = \psi_i,$$

Time discretization

The DG space discretized equations can be written as:

$$\mathcal{M} \, \frac{\mathrm{d}\widehat{\mathbf{U}}}{\mathrm{d}t} = \mathcal{L}(\widehat{\mathbf{U}})$$

 \mathcal{M} block diagonal mass matrix, $\mathcal{L}: \mathbb{R}^N \to \mathbb{R}^N$

• Time integration: schemes TVD Runge–Kutta (explicit).

Well-balanced DG scheme

Flow-at-rest

- *h* + *b* = C and *h***u** = 0
- The DG scheme proposed is not well-balanced: it does not preserve steady-states at rest

DG scheme with flux modification [Ern et al., 2008]

$$\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathcal{K}} \mathbf{U}_{\mathsf{h}} v_{\mathsf{h}} \, \mathrm{d}\mathcal{K} + \int_{\partial \mathcal{K}} \widehat{\mathcal{F}}(\check{\mathbf{U}}_{\mathsf{h}}^{\prime}, \check{\mathbf{U}}_{\mathsf{h}}^{\prime}, \mathbf{n}_{\mathcal{K}}) v_{\mathsf{h}} \, \mathrm{d}\sigma - \int_{\mathcal{K}} \nabla v_{\mathsf{h}} \cdot \mathcal{F}(\mathbf{U}_{\mathsf{h}}) \, \mathrm{d}\mathcal{K} = \int_{\mathcal{K}} \mathbf{S} v_{\mathsf{h}} \, \mathrm{d}\mathcal{K} + \int_{\partial \mathcal{K}} v_{\mathsf{h}} \delta_{\mathcal{K}\mathsf{h}} \, \mathrm{d}\sigma,$$

- Modified state Ŭ^l_h, Ŭ^r_h, Å_h (hydrostatic reconstruction water height, see [Audusse et al., 2004])
- Flux modification: $\delta_{Kh} = (0, g/2(\check{h}_{h}^{2}|_{\kappa} h_{h}^{2}|_{\kappa})\mathbf{n}_{\kappa})$

Flooding and drying

- Flooding and drying: prevent the discrete water height from taking negative values
- We propose a *slope modification* technique based on the idea of *threshold* value
- For each K ∈ T_h with non-admissible fields, water height h and discharges hu replaced by corrected ĥ and ĥu
- Steps:
 - 1 Detection based on mean water height
 - 2 If $p \ge 2$: fields *h*, *h***u** restricted to \mathbb{P}_1 by L^2 orthogonal projections
 - 3 Slope modification of *h* and *hu* which preserves mass
 - 4 Restriction on maximal velocity also enforced

- To assess the capacity of the method to treat flooding and drying [Thacker, 1981; Ern *et al.*, 2008]
- Consider a paraboloid of revolution b(x) = αr², r² = |x|, α > 0 and circular paraboloidic water volume initially at rest and subject to gravity

- L²-norm error:
 - First half period (flooding): 0.9 (*p* = 0); 1.4 (*p* = 1); 1.5 (*p* = 2)
 - Second half period (drying): algorithm does not perform well

- Malpasset dambreak: topography and data provided by EDF R&D [Hervouet, 2007]
- Closure for friction: $\mathbf{S}_b = -\frac{g|h\mathbf{u}|}{K^2 h^{7/3}}$, with K = 30
- Fully explicit treatment of friction term can lead to instabilities[Brufau et al., 2004]: semi-implicit treatment

t = 0s

t = 100*s*

t = 150s

t = 200*s*

t = 500s

t = 2500s; *p* = 1

- Work in cooperation with IFP (Roland Masson and Didier Granjeon)
- Rectangular domain $\Omega = [200 \times 200] \text{ km}^2$
- Steady-state criterion:

$$||h^{n+1} - h^n||_2 \le \varepsilon_{ss}||h^n||_2, \quad \varepsilon_{ss} \approx \mathcal{O}(10^{-5})$$

р0

- Prediction of changes of the topography can be done by integrating a mathematical model by modules.
- **Multi–scale problem**, different physical mechanisms acting according to their time response.
- Relevant mechanisms: [Tassi P., 2007; Tassi et al., 2008]
 - Hydrodynamics, conservation laws of mass and momentum.
 - Sediment transport, predictors for river sediment carrying capacity.
 - Bed evolution, conservation law for sediment mass.

Exner' equation of conservation of bed sediment Bed evolution model: conservation law for sediment mass and closure relationship for sediment transport.

Scaled equation

$$rac{\partial m{b}}{\partial t} +
abla \cdot {f q}({f u},m{b}) = 0$$

Closure for sediment transport:

$$\mathbf{q} = (q_x, q_y)^T = |\mathbf{u}|^eta \left(rac{\mathbf{u}}{|\mathbf{u}|} - \kappa
abla b
ight),$$

 β and κ coefficients, and downhill rolling sediment.

Streamwise discharge $hu(\mathbf{x})$

Crosswise discharge $hv(\mathbf{x})$

Topography evolution $b(\mathbf{x})$

 $b(\mathbf{x})$

Conclusions and outlook

- We have designed and implemented a well-balanced, robust and efficient DG scheme for the shallow water equations;
- Our scheme is able to simulate the flow over complex topography and dry lands;
- A simple algorithm to deal with flooding and drying is proposed;
- We presented the evolution of a loose sediment bed in shallow flows using DG methods;
- Subsequent work: topography evolution/sediment transport in large domains.

Questions?

Ern A., Piperno S. and Djadel K.(2008)

A well-balanced Runge–Kutta Discontinuous Galerkin method for the Shallow-Water Equations with flooding and drying. International Journal for Numerical Methods in Fluids, Early View.

Tassi P., Bokhove O., and Vionnet C. (2007)

Space discontinuous Galerkin method for shallow water flows —kinetic and HLLC flux, and potential vorticity generation. Advances in Water Resources, 30(4).

Tassi P., Rhebergen S., Vionnet C., and Bokhove O. (2008)

A discontinuous Galerkin finite element model for morphological evolution under shallow flows. Computer Methods Applied Mechanics Engineering, Early View.

Tassi P. (2007

Numerical modelling of river processes: flow and river bed deformation Ph.D thesis. University of Twente, The Netherlands. isbn 978-90-365-2539-8

VVVVV

tassip@cermics.enpc.fr - google Pablo Tassi

Thank You