
A well-balanced Runge–Kutta discontinuous
Galerkin method for the shallow water

equations with flooding and drying

Pablo Tassi
Alexandre Ern Serge Piperno

CERMICS - Ecole Nationale des Ponts et Chaussés
Université Paris–Est

FVCA05 - Aussois, France
June 08-13 2008



Motivation I

Salado river (Argentina) before flooding
(January 25, 2000)

After flooding (May 3, 2003)



Motivation I

Salado river flood, Santa Fe, Argentina, April-May 2003



Motivation II

• Stratigraphy: the study of rock strata, especially the distribution,
deposition, and age of sedimentary rocks

• Interactions between processes over a large range of spatial and
temporal scales (petrol industry, geophysics, etc)
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Mathematical model

Shallow water equations (SWE)
Leading order model for hydrodynamics in river, ocean, and coastal
flows, among other cases of engineering and scientific interest

Conservative form
Let the bounded domain Ω ⊂ IR2, and let T > 0 be the simulation time

∂U
∂t

+ ∇ · F (U) = S in Ω×]0,T [,

U(x, 0) = U0(x) in Ω,

• completed with suitable boundary conditions on ∂Ω×]0,T [

• U = (h hu hv )
T is the vector of state variables, h water depth,

hu = (hu, hv )T discharge of the flow; u = (u, v )T flow velocity
field



Mathematical model

Flux

F (U) =




uh vh

u2h + gh2/2 vuh
uvh v 2h + gh2/2





Source

S(U, b) =




0

−gh∂x b − Sbx

−gh∂y b − Sby





• b topography (measured from a
reference altitude)

• g gravity acceleration

• Sb = (Sbx ,Sby )
T closure for friction.



Numerical schemes for SWE

• Finite differences (FD)

• Finite volumes (FV) [Audusse et al., 2004; Brufau et al., 2004,
Benkhaldoun et al., 2007]

• Finite elements (FEM)
• Stabilized continuous FE methods [Hervouet, 2007; TELEMAC

Modelling System, 1998]

• Discontinuous Galerkin methods (DG) [Dawson and Proft, 2004;
Bokhove, 2005; Kubatko et al., 2006; Tassi et al., 2007; Ern et
al., 2008]



Discontinuous Galerkin methods

• DG combine ideas high-resolution FD/FV methods within a
FEM framework

• DG captures shocks or sharp fronts more efficiently than FEM
• General solution spaces:

• freedom in the choice of the base
• freedom in building the mesh
• hp−adaptivity easily implemented

• Locally conservative : conservation of a transported quantity is
satisfied on a local or elemental level



Discontinuous Galerkin methods

• Approximated functions are discontinuous across the finite
element boundaries

• We consider the following approximation space made up of
polynomial functions :

Vh =
{

vh ∈ L2; vh|K ∈ IPp(K ), p ∈ IN
}



Space discretization

For all K ∈ Th, we multiply ∂t U + ∇ · F = S by vh ∈ Vh, integrate over
K , and apply Green’s formula:

Find Uh ∈ C1([0,T ],Vh) such that ∀t ∈]0,T [, ∀K ∈ Th, ∀vh ∈ Vh,

d
dt

∫

K
Uhvh dK +

∫

∂K
F̂ (Ul

h,U
r
h, nK )vh dσ−

∫

K
∇vh·F (Uh) dK =

∫

K
Svh dK ,

where:

• Ul
h and Ur

h values of Uh at left (l ) and right (r ) of face σ

• Weak inter-element links established by introducing the
numerical flux F̂ (Ul

h,U
r
h)

• HLLC, Roe, kinetic flux, etc. [Tassi et al., 2007; Ern et al., 2008]



Time discretization

Flow field approximation (equal order) and choice of test
functions

Uh|K =

Nb∑

j=1

Ûj ,kψj , and vh|K = ψi ,

Time discretization
• The DG space discretized equations can be written as:

M
dÛ
dt

= L(Û),

M block diagonal mass matrix, L : IRN → IRN

• Time integration: schemes TVD Runge–Kutta (explicit).



Well-balanced DG scheme
Flow-at-rest

• h + b = C and hu = 0

• The DG scheme proposed is not well-balanced: it does not
preserve steady-states at rest

DG scheme with flux modification [Ern et al., 2008]

d
dt

∫

K
Uhvh dK +

∫

∂K
F̂ (Ǔl

h, Ǔ
r
h, nK )vh dσ −

∫

K
∇vh · F (Uh) dK =

∫

K
Svh dK +

∫

∂K
vhδK h dσ,

• Modified state Ǔl
h, Ǔ

r
h, ȟh (hydrostatic reconstruction water height,

see [Audusse et al., 2004])

• Flux modification: δK h = (0, g/2(ȟh
2|K − h2

h |K )nK )



Flooding and drying

• Flooding and drying: prevent the discrete water height from
taking negative values

• We propose a slope modification technique based on the idea of
threshold value

• For each K ∈ Th with non-admissible fields, water height h and
discharges hu replaced by corrected ĥ and ĥu

• Steps:
1 Detection based on mean water height
2 If p > 2: fields h, hu restricted to IP1 by L2 orthogonal projections
3 Slope modification of h and hu which preserves mass
4 Restriction on maximal velocity also enforced



Parabolic bowl

• To assess the capacity of the method to treat flooding and drying
[Thacker, 1981; Ern et al., 2008]

• Consider a paraboloid of revolution b(x) = αr 2, r 2 = |x|, α > 0
and circular paraboloidic water volume initially at rest and subject
to gravity

• L2-norm error:
• First half period (flooding): 0.9 (p = 0); 1.4 (p = 1); 1.5 (p = 2)
• Second half period (drying): algorithm does not perform well



Parabolic bowl
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Parabolic bowl
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Malpasset dambreak

• Malpasset dambreak: topography and data provided by EDF
R&D [Hervouet, 2007]

• Closure for friction: Sb = − g|hu|
K 2h7/3 , with K = 30

• Fully explicit treatment of friction term can lead to
instabilities[Brufau et al., 2004]: semi-implicit treatment
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Malpasset dambreak
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Malpasset dambreak
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Malpasset dambreak
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Malpasset dambreak
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Malpasset dambreak
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Malpasset dambreak

t = 2500s; p = 1



Steady flow solutions for stratigraphy

• Work in cooperation with IFP (Roland Masson and Didier
Granjeon)

• Rectangular domain Ω = [200 × 200] km2

• Steady-state criterion:

||hn+1 − hn||2 ≤ εss ||hn ||2, εss ≈ O(10−5)



Steady flow solutions for stratigraphy
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Steady flow solutions for stratigraphy
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Steady flow solutions for stratigraphy



Steady flow solutions for stratigraphy
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Steady flow solutions for stratigraphy



Steady flow solutions for stratigraphy



Morphodynamic modelling

• Prediction of changes of the topography can be done by
integrating a mathematical model by modules.

• Multi–scale problem , different physical mechanisms acting
according to their time response.

• Relevant mechanisms: [Tassi P., 2007; Tassi et al., 2008]
• Hydrodynamics , conservation laws of mass and momentum.
• Sediment transport , predictors for river sediment carrying

capacity.
• Bed evolution , conservation law for sediment mass.



Morphodynamic modelling

Exner’ equation of conservation of bed sediment
Bed evolution model: conservation law for sediment mass and
closure relationship for sediment transport.

Scaled equation

∂b
∂t

+ ∇ · q(u, b) = 0,

Closure for sediment transport:

q = (qx , qy )T = |u|β
(

u
|u|

− κ∇b
)
,

β and κ coefficients, and downhill rolling sediment.



Morphodynamic modelling
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Morphodynamic modelling
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Morphodynamic modelling
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Morphodynamic modelling
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Conclusions and outlook

• We have designed and implemented a well-balanced, robust and
efficient DG scheme for the shallow water equations;

• Our scheme is able to simulate the flow over complex topography
and dry lands;

• A simple algorithm to deal with flooding and drying is proposed;

• We presented the evolution of a loose sediment bed in shallow
flows using DG methods;

• Subsequent work: topography evolution/sediment transport in
large domains.
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