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What is an a posteriori error estimate

A posteriori error estimate

@ Let p be a weak solution of a PDE.
@ Let py, be its approximate numerical solution.

@ A priori error estimate: ||p — pplla < f(p)h9.
Useful in theory.

@ A posteriori error estimate: ||p — pnlla < f(ph)-
Great in practice.
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What is an a posteriori error estimate

A posteriori error estimate

@ Let p be a weak solution of a PDE.
@ Let py, be its approximate numerical solution.

@ A priori error estimate: ||p — pplla < f(p)h9.
Useful in theory.

@ A posteriori error estimate: ||p — pnlla < f(ph)-
Great in practice.

Usual form
© f(pn)? = Y ker, mk(Pn)?, Where 1k (py) is an

@ Can be used to determine mesh elements with large error.
@ We can then refine these elements:
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global upper bound)
® [p—pnllg < Y ker, mx(Pn)?
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global upper bound)

® |lp—pnll < X ker, mk(Pn)?
) undetermined
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® |lp—pnll < X ker, mk(Pn)?
) undetermined

o remark (reliability): [|o — psll5 < C > ke 1k (Pn)?
Local efficiency (local lower bound)

° nK(ph)z < Ce2ff,K ZLclosetoK Hp_ ph”%

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C Classical estimates

What an a posteriori error estimate should fulfill

Guaranteed upper bound (global upper bound)

® |lp—pnll < X ker, mk(Pn)?
) undetermined

o remark (reliability): [|o — psll5 < C > ke 1k (Pn)?
Local efficiency (local lower bound)

° nK(ph)z < Ce2ff,K ZLclosetoK Hp - ph”%
Asymptotic exactness

® Y ker, nk(Pn)?/ P — pallg — 1
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global upper bound)

® |lp—pnll < X ker, mk(Pn)?
) undetermined

o remark (reliability): [|o — psll5 < C > ke 1k (Pn)?
Local efficiency (local lower bound)

° nK(ph)z < Ce2ff,K ZLclosetoK Hp - ph”%
Asymptotic exactness

® > ke, mk(Pn)?/llp — pnl — 1
Robustness
@ C. k does not depend on data, mesh, or solution
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What an a posteriori error estimate should fulfill

Guaranteed upper bound (global upper bound)

® [Ip = prlly < Xker, 1k(Pn)?

° undetermined

o remark (reliability): [|o — psll5 < C > ke 1k (Pn)?
Local efficiency (local lower bound)

° nK(ph)z < Cgff,K ZLclosetoK Hp - ph”%
Asymptotic exactness

® Y xer, Mk(Pn)?/llp — pnli§ — 1
Robustness

@ C. k does not depend on data, mesh, or solution
Negligible evaluation cost

@ estimators can be evaluated locally
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Residual estimates for —Ap = f

Corollary (Classical residual error estimate in FEs)
There holds (cf. Verfiirth 96)

1/2
IV(p—pn)ll < G ZhillerAPhH%}
KeTy

1/2
+Cz{ > holl[Ven- n]||§} :

oc€&p

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C Classical estimates

Residual estimates for —Ap = f

Corollary (Classical residual error estimate in FEs)
There holds (cf. Verfiirth 96)

1/2
IV(p—pn)ll < G ZhillerAPhH%}
KeTy

1/2
+Cz{ > holl[Ven- n]||§} :

oc€&p

Drawbacks
) are and C>?
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Residual estimates for —Ap = f

Corollary (Classical residual error estimate in FEs)
There holds (cf. Verfiirth 96)

1/2
IV(p=pn)l < Ci ZhillerAth%}
KeTp

1/2
+Cz{ > holl[Ven- n]||§} :

oc€&p
Drawbacks
° are C; and C>?
@ If C; and C, evaluated: a factor of

(uniform refinement) and 60 (adaptive refinement).
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Corollary (Classical residual error estimate in FEs)
There holds (cf. Verfiirth 96)
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@ If C; and C, evaluated: a factor of
(uniform refinement) and 60 (adaptive refinement).
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FEs residual constants Cy and C»

Constants C; and C,, Carstensen and Funken 00

1
Cy C§,thfv Ve
Ci g 00, V EVEY,
2
. 2 ; 2
O pE & R
Vk
C: = 3C ?axmax{hK/h h2J|K|}
€7}
+= 3202}rpaxmax{h,</h h2/|K|(3 + hz/|K|)}.
€7}

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C Classical estimates

Zienkiewicz—Zhu averaging estimate for —Ap = f

Corollary (Zienkiewicz—Zhu averaging error estimate in FEs)
There holds (cf. Zienkiewicz—Zhu 87)

V(P — pn)ll S [IVPh + tall,

where t;, is an averaged smooth flux.
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Zienkiewicz—Zhu averaging estimate for —Ap = f

Corollary (Zienkiewicz—Zhu averaging error estimate in FEs)
There holds (cf. Zienkiewicz—Zhu 87)

V(P = Pa)ll S IVPn + tall,

where t;, is an averaged smooth flux.

Drawbacks

° (neither guaranteed, nor reliable).
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Zienkiewicz—Zhu averaging estimate for —Ap = f

Corollary (Zienkiewicz—Zhu averaging error estimate in FEs)
There holds (cf. Zienkiewicz—Zhu 87)

V(P = Pa)ll S IVPn + tall,

where t;, is an averaged smooth flux.

Drawbacks

° (neither guaranteed, nor reliable).
° for
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Equilibrated residuals estimate for -V - (SVp) = f

Corollary (Equilibrated residuals error estimate in FEs)

Let i € H'(K), ¢k = 0 0n 99, K € Ty, be the solutions of the
local problems

Bk (oK, Vi) = (f, vik)k — Bk(Pn, Vk) + (9K, Vk)ok
Yvk € H'(K), vk = 0 on 9.

Then there holds (cf. Ainsworth and Oden 00

1)/2
[l = Palll < {Z HIWIII%} :

KeTp
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Drawbacks
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to get a guaranteed upper bound.
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Equilibrated residuals estimate for -V - (SVp) = f

Corollary (Equilibrated residuals error estimate in FEs)

Let i € H'(K), ¢k = 0 0n 99, K € Ty, be the solutions of the
local problems

Bk (oK, Vi) = (f, vik)k — Bk(Pn, Vk) + (9K, Vk)ok
Yvk € H'(K), vk = 0 on 9.

Then there holds (cf. Ainsworth and Oden 00

1)/2
[l = Palll < {Z HIWIII%} :

KeTp

Drawbacks

° would need to be
to get a guaranteed upper bound.
@ Their approximation may be quite
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Problem

-V -(8Vp) = f inQ,
p = g onlp,
—-SVp-n = u only
Assumptions
Q c RY, d = 2,3, is a polygonal domain

S|k is a constant SPD matrix, cs k its smallest, and Cs x
its largest eigenvalue on each K € 7,

Difficulties

S is a piecewise constant matrix,
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A model problem

Problem
-V -(SVp) = f inQ,
p = g onlp,
—-SVp-n = u only
Assumptions

@ Q Cc RY d=2,3,is a polygonal domain

@ S|k is a constant SPD matrix, cg k its smallest, and Cs x
its largest eigenvalue on each K € 7,
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A model problem

Problem
-V -(SVp) = f inQ,
p = g onlp,
—-SVp-n = u only
Assumptions

@ Q Cc RY d=2,3,is a polygonal domain

@ S|k is a constant SPD matrix, cg k its smallest, and Cs x
its largest eigenvalue on each K € 7,

Difficulties

@ Sis a piecewise constant matrix,
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Bilinear form, weak solution, and energy norm

Definition (Bilinear form B)

We define a bilinear form B for p, » € H'(7,) by

KeTn
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Bilinear form, weak solution, and energy norm

Definition (Bilinear form B)
We define a bilinear form B for p, » € H'(7,) by

KeTn

Definition (Weak solution)
Weak solution: p € H'(Q) with p|r, = g such that

B(p.p) = (f,0) = (U, o)ry Yy € Hp(Q).

N

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C Estimates and efficiency Numerical experiments

Bilinear form, weak solution, and energy norm

Definition (Bilinear form B)
We define a bilinear form B for p, » € H'(7,) by

KeTn

Definition (Weak solution)
Weak solution: p € H'(Q) with p|r, = g such that
(pa ) - ( 7‘)0) < 90>FN \V/(p € HI1)(Q)

N

Definition (Energy (semi-)norm)
We define the energy (semi-)norm for » € H'(7},) by

lill2 =3 Nl lellk = |82 Vell%-
KeTy

4
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General cell-centered finite volume scheme

Definition (FV scheme for —V - (SVp) = f)

Find px, K € 75, such that

> Sko=1IklKl  VKeT.

o€k
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General cell-centered finite volume scheme

Definition (FV scheme for —V - (SVp) = f)

Find px, K € 75, such that

> Sko=1IklKl  VKeT.

o€k

@ Sk, : diffusive flux

o fx :=(f,1)/|IK]
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General cell-centered finite volume scheme

Definition (FV scheme for —V - (SVp) = )
Find px, K € 75, such that
Z SK,U = fK|K|

o€k

VK € 7.

diffusive flux

(] SKJ :
o fx:=(f,1)/|K|
Example
® Sk, = _SK,legt‘ (bL — Pk)
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

- 1
-V (Svph) = W Z SK,U’

o€k
(1 = pi)(Pn, 1)k /IK] + pkcpn(Xk) Pk
—SV,E)MK'I'I = SK,U/’U| Vo € Ex .
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

- 1
-V (Svph) = W Z SK,U’

o€k
(1 = pi)(Pn, 1)k /IK] + pkcpn(Xk) Pk
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Properties of py,
@ Py and is
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k

(1 = k) (Brs 1)k /|1 K| + e Pn(Xk) Pk,
—SV,E)MK'I'I = SK’G/’U| Vo € Ex .

Properties of py,
@ Py and is
° of pn is given by Sk, by pk
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,
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(1 = k) (Brs 1)k /|1 K| + e Pn(Xk) Pk,
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Properties of py,

@ Py and is
° of pn is given by Sk, by pk
° , only € H'(7p) in general
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k

(1 = k) (Brs 1)k /|1 K| + e Pn(Xk) Pk,
—SV,E)MK'I'I = SK’G/’U| Vo € Ex .

Properties of py,

@ Py and is

° of pn is given by Sk, by pk
° , only € H'(7p) in general

°
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k

(1 = k) (Brs 1)k /|1 K| + e Pn(Xk) Pk,
—SV,E)MK'I'I = SK’G/’U| Vo € Ex .

Properties of py,
@ Py and is
° of pn is given by Sk, by pk
° , only € H'(7p) in general
°
@ given on 7p, for a
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

- 1
-V (Svph) = W Z SK,U’

o€k

(1 = pk)(Pns 1)k /|K| + 11k Pr(Xk) Pk
—SVpnlk-n = Sko/lo| Voeék.

Properties of py,

@ Dy and is

° of py is given by Sk, by pk

° , only € H'(7p) in general

°

@ given on 7p, for a

@ for or when S is
:prisa
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Optimal abstract estimate for —V - (SVp) = f

Theorem (Optimal abstract estimate, hom. Dir. BC)

Let p be the and let be
. Then

llp=Belll < _inf [lIBn—sll+  sup (f+V-(SVEr)¢)
sehy (Q) peH (), lllllI=1

< llp=pnlll+  sup (F+V-(SVpn), ).
PeH}(Q), llell=1

but
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Optimal abstract estimate for —V - (SVp) = f

Theorem (Optimal abstract estimate, hom. Dir. BC)

Let p be the and let be
. Then

llp=Belll < _inf [lIBn—sll+  sup (f+V-(SVEr)¢)
sehy (Q) peH (), lllllI=1

< llp=pnlll+  sup (F+V-(SVpn), ).
peH} (@), llell=1

but

Properties

° (no undetermined constant).
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Optimal abstract estimate for —V - (SVp) = f

Theorem (Optimal abstract estimate, hom. Dir. BC)

Let p be the and let be
. Then

llp=Belll < _inf [lIBn—sll+  sup (f+V-(SVEr)¢)
sehy (Q) peH (), lllllI=1

< llp=pnlll+  sup (F+V-(SVpn), ).
peH} (@), llell=1

but

Properties
° (no undetermined constant).
° and up to a higher-order term.
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Optimal abstract estimate for —V - (SVp) = f

Theorem (Optimal abstract estimate, hom. Dir. BC)

Let p be the and let be
. Then

llp=Belll < _inf [lIBn—sll+  sup (f+V-(SVEr)¢)
sehy (Q) peH (), lllllI=1

< llp=pnlll+  sup (F+V-(SVpn), ).
peH} (@), llell=1

but

Properties

° (no undetermined constant).

° and up to a higher-order term.

° (infimum over an infinite-dimensional
space).
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A first computable estimate for -V - (SVp) = f

Theorem (A first computable estimate, hom. Dir. BC)

Let p be the and let be but
. Take . Then
1/2hQ
i = Ball < —=252 £+ 9 - (SVBR) + 15 — snll.
Cs.a |
Properties
® (Cr.q < 1, Friedrichs constant).
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A first computable estimate for -V - (SVp) = f

Theorem (A first computable estimate, hom. Dir. BC)

Let p be the and let be but
. Take . Then
y ;féhn " "
llp = Pulll < —57z=lIf + V- (SVPn)Il + l[[on — Shlll
Cs.0 )
Properties
o (Cr.q < 1, Friedrichs constant).
° penalizes
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A first computable estimate for -V - (SVp) = f

Theorem (A first computable estimate, hom. Dir. BC)

Let p be the and let be but
. Take . Then
1/2
~ F7/Q hQ ~ ~
llp = Pulll < —57z=lIf + V- (SVPn)Il + l[[on — Shlll
Cs.0 )
Properties
o (Cr.q < 1, Friedrichs constant).
° penalizes
Q is the
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A first computable estimate for -V - (SVp) = f

Theorem (A first computable estimate, hom. Dir. BC)

Let p be the and let be but
. Take . Then
. 11/5/79 . .
llp = Pulll < —57z=lIf + V- (SVPn)Il + l[[on — Shlll
Cs.0 )
Properties
o (Cr.q < 1, Friedrichs constant).
° penalizes
° is the
° : (not even a local conservativity

used).
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A first computable estimate for -V - (SVp) = f

Theorem (A first computable estimate, hom. Dir. BC)

Let p be the and let be but
. Take . Then
. 11/5/79 . .
llp = Pulll < —57z=lIf + V- (SVPn)Il + l[[on — Shlll
Cs.0 )
Properties
o (Cr.q < 1, Friedrichs constant).
° penalizes
° is the
° : (not even a local conservativity
used).
° : (no information from the
computation used), may be

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C Estimates and efficiency Numerical experiments

Optimal a posteriori error estimate for —V - (SVp) = f

Theorem (A posteriori error estimate)

Let p be the and let be but
and ; . Then 1
2 2
llp — Bnlll < { > Uﬁc,K} + { > ek + UrN,K)z} :
KeTy KeTy
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Optimal a posteriori error estimate for —V - (SVp) = f

Theorem (A posteriori error estimate)

Let p be the and let be but
and ; . Then 1
2 2
llp — Bnlll < { > ﬁﬁc,K} + { > ek + nrN,K)z} :
KeTy KeTy

@ nonconformity estimator
"]
o Z.>(Pn): Oswald int. operator (Burman and Ern *07)
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Optimal a posteriori error estimate for —V - (SVp) = f

Theorem (A posteriori error estimate)

Let p be the and let be but
and ; . Then 1
2 2
llp — Bnlll < { > 771%1C,K} + { > ek + 77rN7K)2} :
KeTy KeTy

@ nonconformity estimator

"]

o Z.>(Pn): Oswald int. operator (Burman and Ern *07)
@ residual estimator

"]

2 _ o~
o My = CPCS,K
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Optimal a posteriori error estimate for -V - (SVp) = f

Theorem (A posteriori error estimate)

Let p be the and let be but
and ; . Then 1
2 2
llp — Bnlll < { > 771%1C,K} + { > ek + ?7rN7K)2} :
KeTy KeTy

@ nonconformity estimator

"]

o Z.>(Pn): Oswald int. operator (Burman and Ern *07)
@ residual estimator

"]

(] mf( = Cp%
@ Neumann boundary estimator

"]
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Local efficiency for —V - (SVp) = f

Theorem (Local efficiency)
There holds

Csk . -
itk < Cyf =2 (o Ballz + P — Bl e
Cs,7x K

+[1Zos(Pn) — Zo2 (Pn)ll
where the constant only on the space dimension d,
on the shape reqgularity parameter ., and on the polynomial
degree I of f and where
o = Brlll% o = cs.zc D h5 " IKIp = Bul, Dolo| I3

0'65;?‘
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Local efficiency for —V - (SVp) = f

Theorem (Local efficiency)

There holds
Cs k " y
< — — - int
mktmek < Oy 2 (1l Pallm + o~ Bl ey
+||Zos(Br) — Z62 (Pn)ll
where the constant only on the space dimension d,

on the shape reqgularity parameter ., and on the polynomial
degree I of f and where

llp = Bl g = s S b 1KLR — Bel, Dholol "I

0'65;?1

@ nonconformity and residual estimators are
(lower bound for error on K and its neighbors) and
(Cefr,k depends on local inhomogeneities and
anisotropies)
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Discontinuous diffusion tensor and finite volumes

@ consider the pure diffusion equation
—V-(SVp)=0 in Q=(—1,1)x(-1,1)

@ discontinuous and inhomogeneous S, two cases:

1 1

s =1 s,=5 52=1 s‘=|00

$,=5 s,=1 53:100 s,=1

- 0 FR 0 1

@ analytical solution: singularity at the origin

p(r,0)|q, = r*(a;sin(ad) + b;cos(ab))

e (r,0) polar coordinates in Q
@ a;, b; constants depending on ©;
e « regularity of the solution
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Analytical solutions
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Error distribution on an adaptively refined mesh,
case 1

-0.5 0 0.5 1

Estimated error distribution Exact error distribution
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Approximate solution and the corresponding
adaptively refined mesh, case 2
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Estimates and efficiency Numerical experiments

Estimated and actual errors in uniformly/adaptively
refined meshes

Energy error

10 T T

—e— error uniform E
—=— estimate uniform C
-4 - error adapt. =
-4 - estimate adapt. r

Energy error
>

—e— error uniform A
—=— estimate uniform [|
-4 - error adapt.
-4 - estimate adapt. ||

107 . _
g *oa E
[ A ) ] ]
-2 | | ° | " il L
10 L L L 10 L
10° 10° 10* 10° 10° 10° 10! 10
Number of triangles Number of triangles
Case 1 Case 2
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Estimates and efficiency Numerical experiments

Effectivity indices in uniformly/adaptively refined

meshes

= T T
16 T == officiency uniform 41— —=— efficiency uniform
155 -4 - efficiency adapt. 3.8— -4 - efficiency adapt.
— —
La 3oy
5 7 34
145 — 32—
14 5
> 1.4 —
g \ So8- A
(o}
S135 - S26F A
& wo4l— A
1.3 *‘ — i A
v 22— A
1.25— N — [
2
A
1o | - 1.8
A _ 1.6—
1150 e Y ST -
1.4
11 | Ll Lo 1.2 Ll | L
10° ° 10 10° 10° ° 10° 10°
Number of triangles Number of triangles
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A model problem with discontinuous coefficients

Model problem with discontinuous coefficients

-V.-(avp) = f inQ,
p = 0 onodQ
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A model problem with discontinuous coefficients

Model problem with discontinuous coefficients

-V.-(avp) = f inQ,
p = 0 onodQ

Assumptions

@ Q CRY d=2,3,is apolygonal domain
@ ais a piecewise constant scalar,
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Bilinear form, energy norm, and a weak solution

Definition (Bilinear form B)

We define a bilinear form 3 for p, ¢ € HI () by
B(p, ¢) == (aVp, V).
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Bilinear form, energy norm, and a weak solution

Definition (Bilinear form B)

We define a bilinear form 3 for p, ¢ € HI () by
B(p, ¢) == (aVp, V).

N,

Definition (Energy norm)

The associated energy norm for ¢ € H} () is given by
1
llell? := By, p) = @2 Vel
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Bilinear form, energy norm, and a weak solution

Definition (Bilinear form B)

We define a bilinear form 3 for p, ¢ € HI () by
B(p, ¢) == (aVp, V).

N,

Definition (Energy norm)
The associated energy norm for ¢ € H} () is given by
1
llell? := By, p) = @2 Vel

A\

Definition (Weak solution)

Weak solution: p € H](€2) such that
B(p,p) = (f.9) Ve € Hy(Q).
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Optimal abstract estimate for —V - (aVp) = f

Theorem (Optimal abstract estimate, potential-based)

Let p be the and let be
Then
llp = pnlll < _inf sup {(f=V-t,9)—(aVpn+t,Vo)}
teH(dv.Q) e Hi (), [ll¢ll=1
< |llp - palll ]
Properties
° (no undetermined constant).
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Optimal abstract estimate for —V - (aVp) = f

Theorem (Optimal abstract estimate, potential-based)

Let p be the and let be
Then
llp = pnlll < _inf sup {(f=V-t,9)—(aVpn+t,Vo)}
teH(dv.Q) e Hi (), [ll¢ll=1
< |llp - palll ]

Properties

° (no undetermined constant).

o and
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Optimal abstract estimate for —V - (aVp) = f

Theorem (Optimal abstract estimate, potential-based)

Let p be the and let be
Then
Il —palll < inf sup {(f—=V-t9)—(avVpy+1t,Vp)}
LRV Doers (), lloll=1
< |llp - palll J
Properties
° (no undetermined constant).
° and
° (infimum over an infinite-dimensional
space).
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A first computable estimate for —V - (aVp) = f

Theorem (A first computable estimate, potential-based)

Let p be the and let be

Take . Then
1/2 -

1 1
llo = palll < =7 If =V -tal| + 2 Vpy + &2t

Can

Properties

° (Cr.q < 1, Friedrichs constant).
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A first computable estimate for —V - (aVp) = f

Theorem (A first computable estimate, potential-based)

Let p be the and let be
Take . Then
1/2 -
1 1
llp = palll < —572=If = V - tall + |2 Vipp + &~ 2t].
Can
Properties
° (Cr.q < 1, Friedrichs constant).
° , x Prager & Synge.
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A first computable estimate for —V - (aVp) = f

Theorem (A first computable estimate, potential-based)

Let p be the and let be
Take . Then
1/2 -
1 1
llp = palll < —572=If = V - tall + |2 Vipp + &~ 2t].
Can
Properties
° (Cr.q < 1, Friedrichs constant).
° , x Prager & Synge.

° penalizes
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A first computable estimate for —V - (aVp) = f

Theorem (A first computable estimate, potential-based)

Let p be the and let be
Take . Then
11/5 Q 1 1
llp = pulll < —57=If = V-t + |a2Vpn + a2ty
Can )
Properties
° (Cr.q < 1, Friedrichs constant).
° , x Prager & Synge.
° penalizes
o is a term, for
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A first computable estimate for —V - (aVp) = f

Theorem (A first computable estimate, potential-based)

Let p be the and let be
Take . Then
11/5 Q 1 1
llp = pulll < —57=If = V-t + |a2Vpn + a2ty
Can )
Properties
° (Cr.q < 1, Friedrichs constant).
° , x Prager & Synge.
° penalizes
) is a term, for t,,.
° (works for all schemes)

(promoted by Repin).
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A first computable estimate for —V - (aVp) = f

Theorem (A first computable estimate, potential-based)

Let p be the and let be
Take . Then
11/5 Q 1 1
llp = pulll < —57=If = V-t + |a2Vpn + a2ty
Can )
Properties
° (Cr.q < 1, Friedrichs constant).
° , x Prager & Synge.
° penalizes
) is a term, for t,,.
° (works for all schemes)

(promoted by Repin).
° : (no information from
the computation used), may be
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Optimal a posteriori error estimate for —V - (aVp) = f

Theorem (Optimal a posteriori error estimate)

Let p be the and let be . Let
Dy = Dpt UD be a partition of Q and let such
that for all D € D™ be given. 17;Igen
llp = palll < { Z (R0 + 77DF,D)2}
DeDy,
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Optimal a posteriori error estimate for —V - (aVp) = f

Theorem (Optimal a posteriori error estimate)

Let p be the and let be . Let
Dy = Dpt UD be a partition of Q and let such
that for all D € D™ be given. 17;Igen
llp = palll < { Z (R0 + nDF,D)Z}
DeDy,

o diffusive flux estimator
o
e penalizes the fact that
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Optimal a posteriori error estimate for —V - (aVp) = f

Theorem (Optimal a posteriori error estimate)

Let p be the and let be . Let
Dy = Dpt UD be a partition of Q and let such
that for all D € D™ be given. 17;Igen
o — palll < { Z (nr,D + nDF,D)Z}
DeDy,

o diffusive flux estimator
o
e penalizes the fact that

@ residual estimator

]

o mj , = Cpphb/Cap for D € D', Cpp = 1/ if D convex
o m3 ,:= Crph%/Cap for D € D, Cgp = 1in general

@ C,p is the smallest value of aon D

° evaluated for
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Cell-centered finite volumes for —V - (aVp) = f

Cell-centered finite volume method
@ Find {pD}Dep};u such that
g .
_{a}w Z |dD,E|(pE _ pD) — (f’ 1)D vD € Dlﬁlt.
D
EeN(D)

@ {a}.: harmonic averaging of the diffusion tensor.
@ We immediately have t, € RTN(Sy) which verifies
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Interpretation of {pp} Depin AS Ph € Vi

Interpretation of {pp} Depin @S Ph € Vi

Pp piecewise constant on Dy, Pn piecewise linear on 7,
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Local efficiency of the estimates for —V - (aVp) = f

Theorem (Local efficiency)

Let , for all sides o of S,
Then

R0 + 1oF,0 < Cll|p = palll73,
where only on the space dimension c, on the shape
regularity parameter 1+, and on the polynomial degree m of f.
Moreover, when a = 1, one actually has
nr,0 + 1Mor,0 < Cll[p — pall|o-
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Local efficiency of the estimates for —V - (aVp) = f

Robustness when a # 1.

o the have to be with the
- has to be used in the
o has to be used in the

‘th-n, = —{Vpp-ny}
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Local efficiency of the estimates for —V - (aVp) = f

Robustness when a # 1.

o the have to be with the
- has to be used in the
o has to be used in the

‘th-n, = —{Vpp-ny}

Properties
°
@ local efficiency
o
@ negligible evaluation cost
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Local efficiency of the estimates for —V - (aVp) = f

Robustness when a # 1.

o the have to be with the
- has to be used in the
o has to be used in the

‘th-n, = —{Vpp-ny}

Properties
°
@ local efficiency
o
@ negligible evaluation cost
° , our estimator is a for the classical
residual one, with
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@ Cell-centered convection—diffusion—reaction estimates
@ Vertex-centered reaction—diffusion estimates
@ Estimates including the algebraic error
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Discontinuous diffusion tensor and vertex-centered
finite volumes

@ consider the pure diffusion equation
-V-(avp)=0 in Q=(-1,1)x(-1,1)

@ discontinuous and inhomogeneous a, two cases:

1 1

s =1 s,=5 s =1 SW=1OO

53:5 s,=1 53:1 00 54=1

- 0 i 0 1

@ analytical solution: singularity at the origin

p(r,0)|q, = r*(a;sin(ad) + b;cos(ad))

e (r,0) polarcoordinates in Q
e a;, b constants depending on Q;
e o regularity of the solution
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Analytical solutions
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A vertex-centered FV scheme on nonmatching grids
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A vertex-centered FV scheme on nonmatching grids

A vertex-centered FV scheme on nonmatching grids
@ Suppose that a (nonmatching) grid Dy, is given.
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A vertex-centered FV scheme on nonmatching grids

A vertex-centered FV scheme on nonmatching grids
@ Suppose that a (nonmatching) grid Dy, is given.
@ Construct a conforming simplicial mesh 7, given by the
“centers” of Dy,.
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A vertex-centered FV scheme on nonmatching grids

A vertex-centered FV scheme on nonmatching grids
@ Suppose that a (nonmatching) grid Dy, is given.
@ Construct a conforming simplicial mesh 7, given by the
“centers” of Dy,.
@ Find py, € V}, such that

—({a}uVpn-n,op = (f,1)p VD e DM
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Error distribution on a uniformly refined mesh, case 1

06719 03400

0.6047

03068

0.5375

02728

0.4703 02387

0.4031 02047
0.3350 0.1708
0.2687 0.1366

02016 0.1025

01344 006847

0.06719 003441

1.011E-16 00003574

Estimated error distribution Exact error distribution
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Error distribution on an adaptively refined mesh,
case 2

1.265

1.518E-16

Estimated error distribution Exact error distribution
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Approximate solutions on adaptively refined meshes
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C

Estimates and efficiency Numerical experiments

Estimated and actual errors in uniformly/adaptively
refined meshes

Energy error

107

—e— error uniform
—a— estimate uniform
- 4 -error adapt.

- A -estimate adapt.

3

1
Number of dual volumes

Case 1

4

10°

M. Vohralik

Energy error

10 T —— e
L —e—error uniform i
r —a— estimate uniform |y
[ - 4 -error adapt. i
[ - A -estimate adapt. |]
' |
AA‘A
L BN i
1L‘o\.\.
*- 9
* "‘
10" e .
C AIA S T
107 10° 10* 10°

Number of dual volumes

Case 2

Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C Estimates and efficiency Numerical experiments

Original effectivity indices in uniformly/adaptively
refined meshes

T e —__ e T " e
2.8 —a— effectivity ind. uniform 2.6 —a— effectivity ind. uniform
- A - effectivity ind. adapt. - A - effectivity ind. adapt.
2.7+ A . — 2.5+ ) A —
3 2.6 / - Boa- LA s
2 ‘ 2 ;
2251 A 1 223 axt -
= g 2 | oat
8 241 / A |
= P = !
[im] ’ w 1
2.3 & — 2.1 —
- 1
22 -4 : P :
- o
27 —— Tl 1.9 Ll | L
10° 10° 10 10° 10° 10° 10* 10°
Number of dual volumes Number of dual volumes
Case 1 Case 2

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C Estimates and efficiency Numerical experiments

Effectivity indices in uniformly/adaptively refined
meshes using a simple (no linear system solution)
local minimization

1.5 N B e e 1.44 T B e e S T
—&— effectivity ind. uniform p —— effectivity ind. uniform
- A - effectivity ind. adapt. 1.42 - A - effectivity ind. adapt.
1.454 = N
S 14l * —
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> ~ S \
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1.3+ "N - ‘A
N 1.32— 2 —
1.5 Ll T .. S 13 Lol ALl L
10° 10° 10 10° 10° 10° 10* 10°
Number of dual volumes Number of dual volumes
Case 1 Case 2
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Outline

@ Extensions
@ Cell-centered convection—diffusion—reaction estimates
@ Vertex-centered reaction—diffusion estimates
@ Estimates including the algebraic error
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A convection—diffusion—reaction problem with general
boundary conditions

Problem
~V-(SVp)+V-(pw)+rp = f inQ,
p = g onlp,
—-SVp-n = u only
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A convection—diffusion—reaction problem with general
boundary conditions

Problem
~V-(SVp)+V-(pw)+rp = f inQ,
p = g onlp,
—-SVp-n = u only
Assumptions
@ Q CRY d=2,3,is a polygonal domain
@ S|k is a constant SPD matrix, cg k its smallest, and Cs x
its largest eigenvalue on each K € 7

® (3V-w+r)|k > cwrk >0oneach K € Tp (from pure
diffusion to convection—diffusion—reaction cases)
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A convection—diffusion—reaction problem with general
boundary conditions

Problem
~V-(SVp)+V-(pw)+rp = f inQ,
p = g onlp,
—-SVp-n = u only
Assumptions
@ Q CRY d=2,3,is a polygonal domain
@ S|k is a constant SPD matrix, cg k its smallest, and Cs x
its largest eigenvalue on each K € 7
® (3V-w+r)|k > cwrk >0oneach K € Tp (from pure
diffusion to convection—diffusion—reaction cases)
Difficulties

@ S is a piecewise constant matrix,

@ wWis
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Bilinear form, weak solution, and energy norm

Definition (Bilinear form B)

We define a bilinear form B for p, ¢ € H'(7,) by

B(p,¢) =Y _ {(SVP,Vo)k + (V- (WP), ©)k + (1P, ©)k } -
KeTy
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Bilinear form, weak solution, and energy norm

Definition (Bilinear form B)

We define a bilinear form B for p, ¢ € H'(7,) by

B(p,¢) =Y _ {(SVP,Vo)k + (V- (WP), ©)k + (1P, ©)k } -
KeTy

A

Definition (Weak solution)

Weak solution: p € H'(Q2) with p|r, = g such that
B(pa QD) = (fv (P) - <Ua LP>FN V(p € H]13(Q)

A\
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Bilinear form, weak solution, and energy norm

Definition (Bilinear form B)

We define a bilinear form B for p, ¢ € H'(7,) by

B(p,o) = > _ {(SVP,Vo)k + (V- (Wp), ©)k + (10, 0)k } -
KeTy,

Definition (Weak solution)

Weak solution: p € H'(Q2) with p|r, = g such that
B(p, o) = (f,0) — (U, @)y Vo € HH(Q).

Definition (Energy (semi-)norm)

We define the energy (semi-)norm for ¢ € H'(7p,) by

1
ellZ = S el Nollz = |S2Ve||2+ || (3V-w+r)2p|[ .
KeT,
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General finite volume scheme

Definition (FV scheme for —V - (SVp) + V - (pW) + rp = )

Find px, K € 75, such that

Z Sk.o + Z Wk - + rkpx|K| = fk|K| VK € Tp.

oc&k o€k
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General finite volume scheme

Definition (FV scheme for —V - (SVp) + V - (pW) + rp = )

Find px, K € 75, such that

Z Sk.o + Z Wk - + rkpx|K| = fk|K| VK € Tp.

oc&k o€k

Sk, : diffusive flux ,
Wk - convective flux

o ric == (r,1)/|K|
o fx :=(f,1)/|IK]
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General finite volume scheme

Definition (FV scheme for —V - (SVp) + V - (pw) + rp = f)

Find px, K € 75, such that

> Skot+ D Wko + kpklKl = kK| VK €T
oclk o€k

o Sk, : diffusive flux ,

Wk, : convective flux
° rx:=(r,1)/IK|
o fx :=(f,1)/IK]|
Example
® Sk, =Sk der l(pL — k)
@ Wk, = ps(w-n,1),: weighted-upwind L

dk,rL,

XL

M. Vohralik Two types of a posteriori estimates for finite volume methods
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k
(1 = pi)(Pn, 1)k /IK] + pkcpn(Xk) Pk
—SV,E)MK'I'I = SK,U/’U| Vo € Ex .
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k
(1 = pi)(Pn, 1)k /IK] + pkcpn(Xk) Pk
—SV,E)MK'I'I = SK,U/’U| Vo € Ex .

Properties of py,
@ Py and is
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k

(1 = k) (Brs 1)k /|1 K| + e Pn(Xk) Pk,
—SV,E)MK'I'I = SK’G/’U| Vo € Ex .

Properties of py,
@ Py and is
° of pn is given by Sk, by pk
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k

(1 = k) (Brs 1)k /|1 K| + e Pn(Xk) Pk,
—SV,E)MK'I'I = SK’G/’U| Vo € Ex .

Properties of py,

@ Py and is
° of pn is given by Sk, by pk
° , only € H'(7p) in general

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C CC CDR estimates VC RD estimates Algebraic error

A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k

(1 = k) (Brs 1)k /|1 K| + e Pn(Xk) Pk,
—SV,E)MK'I'I = SK’G/’U| Vo € Ex .

Properties of py,

@ Py and is

° of pn is given by Sk, by pk
° , only € H'(7p) in general

°
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k

(1 = k) (Brs 1)k /|1 K| + e Pn(Xk) Pk,
—SV,E)MK'I'I = SK’G/’U| Vo € Ex .

Properties of py,
@ Py and is
° of pn is given by Sk, by pk
° , only € H'(7p) in general
°
@ given on 7p, for a
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A locally postprocessed scalar variable py,

Definition (Postprocessed scalar variable pp)

We define pj such that, separately on each K € 7p,

iy 1
V- (8VE) = 1 > Sk

o€k

(1 = pk)(Pns 1)k /|K| + 11k Pr(Xk) Pk
—SVpnlk-n = Sko/lo| Voeék.

Properties of py,

@ Py and is

° of py is given by Sk, by pk

° , only € H'(7p) in general

°

@ given on 7p, for a

@ for or when S is
:prisa

M. Vohralik Two types of a posteriori estimates for finite volume methods
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A post. estimate for -V - (SVp)+V - (pw) +rp=f

Theorem (A posteriori error estimate)

There holds .
2 2
[[|p—DPnll| S{ Zm%c,/(} +{ Z(nR,K-HIC,K+77U,K+77RQ,K+77rN,K)2} :

KeT, KeTn
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A post. estimate for -V - (SVp) + V- (pw) +rp=f

Theorem (A posteriori error estimate)

There holds .
2 2
[llp—Pnlll S{ ZUI%C,K} "‘{ Z(ﬁR,K+TIC,K+77U,K+77RQ,K+77FN,K)2} :

KeT, KeTn

@ nonconformity estimator
]
o Z.°(Pn): Oswald int. operator (Burman and Ern '07)
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A post. estimate for -V - (SVp) +V - (pw) +rp=f

Theorem (A posteriori error estimate)

There holds .
2 2
[llp—Pnlll S{ ZUI%C,K} "‘{ Z(ﬁR,KHIC,K+77U,K+77RQ,K+77FN,K)2} :

KeT, KeTy

@ nonconformity estimator

]

o Z.°(Pn): Oswald int. operator (Burman and Ern '07)
@ residual estimator

]

2 A
® mi :=min {Cp ot Cwm}
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A post. estimate for -V - (SVp) +V - (pw) +rp=f

Theorem (A posteriori error estimate)

There holds .
2 2
[llp—Pnlll S{ ZUI%C,K} "‘{ Z(ﬁR,KHIC,K+77U,K+77RQ,K+77FN,K)2} :

KeT, KeTy

@ nonconformity estimator

]

o Z.°(Pn): Oswald int. operator (Burman and Ern '07)
@ residual estimator

2 o A
@ My :=min {CPcs,w Cw,r,K}

@ convection estimator

® V= Pn— Zos(Pn)

M. Vohralik Two types of a posteriori estimates for finite volume methods
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A post. estimate for -V - (SVp) +V - (pw) +rp=f

@ upwinding estimator

Wk » = p,(W - n, 1), weighted-upwind
m,: function of cs k, Cw.rk = (3V-W+r)|x, d, hg, |o], |K]|
all dependencies evaluated explicitly

M. Vohralik Two types of a posteriori estimates for finite volume methods
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A post. estimate for -V - (SVp) +V - (pw) +rp=f

@ upwinding estimator

]
o Wk, = p,(W-n,1),: weighted-upwind
e m,: function of ¢s k, Cw,rk = (3V W+ T1)|k, d, hk, ||, |K|
e all dependencies evaluated explicitly
@ reaction quadrature estimator

("]
e disappears when r pw constant and py, fixed by mean

M. Vohralik Two types of a posteriori estimates for finite volume methods
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A post. estimate for -V - (SVp) +V - (pw) +rp=f

@ upwinding estimator

]

o Wk, = p,(w-n,1),: weighted-upwind

e m,: function of ¢s k, Cw,rk = (3V W+ T1)|k, d, hk, ||, |K|
e all dependencies evaluated explicitly

@ reaction quadrature estimator

("]
e disappears when r pw constant and py, fixed by mean

@ Neumann boundary estimator

M. Vohralik Two types of a posteriori estimates for finite volume methods
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Convection-dominated problem

@ consider the convection—diffusion—reaction equation
—eAp+V-(p(0,1))+p=Ff in Q=(0,1)x(0,1)

@ analytical solution: layer of width a

p(x,y)=0.5 <1 - tanh(O‘Sa_ X))

@ consider

ec=1,a=05
e c=10"2, a=0.05
e c=10"*%a=0.02

@ unstructured grid of 46 elements given,
uniformly/adaptively refined

M. Vohralik Two types of a posteriori estimates for finite volume methods
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Analytical solutions

0.4 S
0.2 - 0.2
y 00 X y 00 X

Casec=1,a=05 Caseec=10"% a=0.02
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Error distribution on a uniformly refined mesh, ¢ = 1,
a=>0.>5

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1

00 0.1 02 03 04 05 06 07 08 09 1 G0 01 02 03 04 05 06 07 08 09 1

Estimated error distribution Exact error distribution
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Estimated and actual errors and the effectivity index,
e=1,a=05

T T e 20 g
10° & —e— error uniform H —=— efficiency uniform
E —=— est. uniform H L |
F est. res. uniform 19
= —4— est. nonc. uniform ||
10 = —4— est. upw. uniform § 1.8 =
E est. react. uniform
N r est. conv. uniform H 17— -
2107 \ g
@ E . <
& F S16 7
o B 7 =
c .3 | w
G107 ERY ,
" 1 14 -
107 E
£ 3 1.3 —
L Y Y R VY ENE - B A YT EA O A WYY R R A WYY Miaran. SUPY
10’ 10° 10° 10* 10° 10" 10° 10° 10 10°
Number of triangles Number of triangles
The different estimators Effectivity index
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Error distribution on a uniformly refined mesh,
e=10"2,a=0.05
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Flux-based estimates Potential-based estimates Ext.

Approximate solution and the corresponding
adaptively refined mesh, e = 104, a = 0.02

VANV,
AVAV;
Jav
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/

A,
\/

A
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%
A
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2
v XX va
Zal

/]

x5
ava)

\/

\

Adaptively refined mesh

y

Approximate solution
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Estimated and actual errors in uniformly/adaptively
refined meshes

10 g T n T T
E —e— error uniform i 4 —e— error uniform
E —=— estimate uniform { 10 = —=— estimate uniform f
L -4 - error adapt. Il E -4 - error adapt. B
o -4 - estimate adapt. - -4 - estimate adapt. ||
vE E L b, . ]
E E| ~ B e B
s [ 1 510" =
s | 18 E E
g0 =35 ° ]
r 1 10 .
107 E E
-3 | | [ -2 AR NET] BRI R RTT] B AT R NTT] R W
10 Lo Lo Lo 10
10’ 10° 10° 10° 10° 10" 10° 10° 10" 10°
Number of triangles Number of triangles

Cases=10"2,a=0.05 Cases=10"% a=0.02
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Effectivity indices in uniformly/adaptively refined
meshes

12— 00—
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3 — 20—
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Cases=10"2,a=0.05 Cases=10"% a=0.02
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A reaction—diffusion problem

Problem

—Ap+rm = f inQ,
p = 0 on0Q

Assumptions

@ Q CRY d=2,3,is apolygonal domain

@ r € L*>(Q) such that for each D € Dp, 0 < ¢, p < r < C; p,

a.e.inD

M. Vohralik Two types of a posteriori estimates for finite volume methods
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Bilinear form, energy norm, and weak solution

Definition (Bilinear form B)

We define a bilinear form B for p, ¢ € HI () by
B(p,¢) == (Vp,Ve)a + (r'/2p,r'2p)q .

M. Vohralik Two types of a posteriori estimates for finite volume methods
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Bilinear form, energy norm, and weak solution

Definition (Bilinear form B)

We define a bilinear form B for p, ¢ € HI () by
B(p,¢) == (Vp,Ve)a + (r'/2p,r'2p)q .

A\

Definition (Energy norm)

The associated energy norm for ¢ € HS(Q) is given by

llellif = Bleo, ).

\
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Bilinear form, energy norm, and weak solution

Definition (Bilinear form B)

We define a bilinear form B for p, ¢ € HI () by
B(p,¢) == (Vp,Ve)a + (r'/2p,r'2p)q .

Definition (Energy norm)

The associated energy norm for ¢ € HS(Q) is given by

llellif = Bleo, ).

Definition (Weak solution)
Weak solution: p € H}(£2) such that

Bp,p) = (f.9)a Vo€ H(Q).

A

M. Vohralik Two types of a posteriori estimates for finite volume methods
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Residual and diffusive flux estimators

Define:
@ residual estimator

nr,0 = Mp||[f =V -ty — rppllp

@ diffusive flux estimator

: 1 2
"IDF,D ‘= min {U(D[):7D777([),)E,D} )

where
"Ipg,D = VPn + tallo
2\2
1 1
2 5= S Ml Apn+ V- tllk+mg S CEI(Vpr+ 1) -nll,

Kesp TEEKNG
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Robust a posteriori error estimates for —Ap+rp=f

Theorem (A posteriori error estimate)

There holds
lle = pallle < { > (rp+ nDF,D)z}

DeDy,

1
2
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Robust a posteriori error estimates for —Ap+rp=f

Theorem (A posteriori error estimate)
There holds

llp = pallla < { > (o +77DF,D)2}

DEDh

1
2

N

Theorem (Local efficiency)
There holds

mR,0 + nor,0 < Cll[p = prlllp
where only , ki, M, and

M. Vohralik Two types of a posteriori estimates for finite volume methods
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Robust a posteriori error estimates for —Ap+rp=f

Theorem (A posteriori error estimate)
There holds

llp = pallla < { > (o +77DF,D)2}

DEDh

1
2

N

Theorem (Local efficiency)

There holds
nr,0 + 1or,0 < Clllp — palllo,

where only , ki, M, and
Properties

)

°

o

° evaluation
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Problem and exact solution

50007€-01 1+ S000E400
—r—

— —=
Q0800E-05 TO00E-00 Zoo0en

Problem

—Ap+rp =0, in Q
P = Po, on 99

Solution

po(x,y) =e V™" +e VY

M. Vohralik Two types of a posteriori estimates for finite volume methods
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Effectivity indices for the original estimate and for the
minimization estimate in dependence on r

CC CDR estimates VC RD estimates Algebraic error

effectivity index

uniform grid, 32 triangles

uniform grid, 131072 triangles

jump. est.
= © =min. est. ||

jump. est.
= © =min.est. ||

reaction term r

Mesh with 32 triangles

M. Vohralik
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reaction term r

Mesh with 131072 triangles
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Estimated and actual errors in uniformly/adaptively
refined meshes and effectivity indices

= = = exact error, uniform
exact error, adaptive |

= © = min. est., uniform = © = min. est., uniform
—©— min. est., adaptive 18 —©— min. est., adaptive | ]

energy norm
=
S

10 ‘~°
107 < = S " = | e = S N S 3
10 10 10 10 10 10 10 10 10 10 10 10
number of triangles number of triangles
Est. and act. errors, r = 1 Effectivity indices, r = 1
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C

CC CDR estimates VC RD estimates Algebraic error

Estimated and actual errors in uniformly/adaptively
refined meshes and effectivity indices

10° . . 2.8
= © =min. est,, uniform
—©— min. est., adaptive
= = = exact error, uniform 2.6F
exact error, adaptive
2
10°F B
£ ﬁ 2.4
S -0 £
< ~ < z
. e £
g 1 % 22
10 ¢ el
2L
= © = min. est., uniform
—©— min. est., adaptive
10° . . . . 18 — — = - X
10* 10° 10° 10* 10° 100 10 10 10 10 10 10

number of triangles

Est. and act. errors, r = 10°
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number of triangles

Effectivity indices, r = 108
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Error distribution on an adaptively refined mesh,
r=108

,,,,,,,,,,,,,,,,,,,,,,

Exact error distribution
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A model pure diffusion problem

A model pure diffusion problem

-V-(8Vp) = f inQ,
p = 0 onoQ

Algebraic problem

@ at some point, we shall solve AX = B
@ we only it :
@ we know the ,
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Estimate including inexact linear systems error

Theorem (A posteriori error estimate including inexact linear

systems solution error, cell-centered FVs or MFEs)

There holds

1 1 1
2 2 2
mp—rom|\s{2n§c,,<} +{Zn§,x} +{ZniE,K}-

KeTy KeT, KeT,
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Estimate including inexact linear systems error

Theorem (A posteriori error estimate including inexact linear

systems solution error, cell-centered FVs or MFEs)

There holds

1 1 1
2 2 2
b — Bl < { 5 77} " { 5 nﬁ,K} " { 5 n;iE,K} |

KeTy KeT, KeT,

@ nonconformity estimator
("]

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C CC CDR estimates VC RD estimates Algebraic error

Estimate including inexact linear systems error

Theorem (A posteriori error estimate including inexact linear

systems solution error, cell-centered FVs or MFEs)

There holds

1 1 1
2 2 2
b — Bl < { 5 77} " { 5 m%,K} " { 5 n;iE,K} |

KeTy KeT, KeT,

@ nonconformity estimator

o
@ residual estimator
o
h2
[*] mf( = Cpﬁ
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Estimate including inexact linear systems error

Theorem (A posteriori error estimate including inexact linear

systems solution error, cell-centered FVs or MFEs)

There holds

1 1 1
2 2 2
b — Bl < { 5 77} " { 5 nﬁ,K} " { 5 niE,K} |

KeTy KeT, KeT,

@ nonconformity estimator

("]
@ residual estimator
"]
° mf( = Cpcis%
@ algebraic error estimator
("]
° is such that V- ty|x = £

@ Ris the residual vector
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Finite volume estimates including inexact linear
systems solution

Different estimators, error, and effectivity index as a function of
the number of CG iterations
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Comments on the estimates and their efficiency

General comments

p < H'(Q), no additional regularity
no convexity of 2 needed

no saturation assumption

no Helmholtz decomposition

no shape-regularity and polynomial data needed for the
upper bounds (only for the efficiency proofs)

polynomial degree-independent upper bound

@ no “monotonicity” hypothesis on inhomogeneities
distribution

@ the only important tools: Cauchy—Schwarz and optimal
Poincaré—Friedrichs and trace inequalities

@ holds from diffusion to convection—diffusion—reaction cases

_ Two types of a posteriori estimates for finite volume methods
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Essentials of the estimates

Essentials of the estimates

@ nonconformity estimate: the approximate solution
to a

@ diffusive flux estimate: the flux of the approximate
solution toa

° the for

@ for , I, has to be

@ in (b € H'(Q)), there is

@ in (—SVpp € H(div, Q)), there is

° for

@ use problem-dependent
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Conclusions
@ a posteriori error estimates: not only a tool to refine mesh
@ error control

@ guaranteed upper bound

e almost asymptotically exact

o fully robust with respect to inhomogeneities

e directly and easily computable estimators
@ one can
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calculation cost
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Conclusions
@ a posteriori error estimates: not only a tool to refine mesh
@ error control
@ guaranteed upper bound
e almost asymptotically exact
o fully robust with respect to inhomogeneities
e directly and easily computable estimators
@ one can

e increase considerably calculation precision and decrease
calculation cost

e give optimal algorithms which will automatically guaraniee
that the final error error is below a user-defined precision

_ Two types of a posteriori estimates for finite volume methods
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Conclusions and future work

Conclusions

@ a posteriori error estimates: a tool to
o
]
]
o fully with respect to
e directly and estimators
@ one can
° considerably calculation and
calculation
e give which will automatically
that the error is a

Future work
@ anisotropies
@ extensions to other types of problems
@ nonlinear (degenerate) cases
@ systems of equations

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C

Bibliography 1

Papers and collaborators

@ VOHRALIK M., A posteriori error estimates for lowest-order mixed
finite element discretizations of convection—diffusion—reaction
equations, SIAM J. Numer. Anal. 45 (2007), 1570—1599.

@ VOHRALIK M., Residual flux-based a posteriori error estimates
for finite volume discretizations of inhomogeneous, anisotropic,
and convection-dominated problems, to appear in Numer. Math.

@ ERN A., STEPHANSEN, A. F., VOHRALIK M., Improved energy
norm a posteriori error estimation based on flux reconstruction
for discontinuous Galerkin methods, to appear in SIAM J.
Numer. Anal.

@ VOHRALIK M., A posteriori error estimation in the conforming
finite element method based on its local conservativity and using
local minimization, C. R. Math. Acad. Sci. Paris. 346 (2008),
687-690.

M. Vohralik Two types of a posteriori estimates for finite volume methods



| Flux-based estimates Potential-based estimates Ext. C

Bibliography 2

@ VOHRALIK M., Guaranteed and fully robust a posteriori error
estimates for conforming discretizations of diffusion problems
with discontinuous coefficients, submitted to Math. Comp.

@ CHEDDADI I., FUuCik R., PRIETO M. |., VOHRALIK M.,
Computable a posteriori error estimates in the finite element
method based on its local conservativity: improvements using
local minimization, to appear in ESAIM: Proc.

@ CHEDDADI I., FUCik R., PRIETO M. |., VOHRALIK M.,
Guaranteed and robust a posteriori error estimates for singularly
perturbed reaction—diffusion problems, submitted to M2AN
Math. Model. Numer. Anal.

@ JIRANEK P., STRAKOS Z., VOHRALIK M., A posteriori error
estimates including algebraic error: computable upper bounds
and stopping criteria for iterative solvers, to be submitted to
SIAM J. Sci. Comput.

M. Vohralik Two types of a posteriori estimates for finite volume methods



	Introduction
	Classical a posteriori estimates

	Flux-based/cell-centered estimates
	A posteriori error estimates and their efficiency
	Numerical experiments

	Potential-based/vertex-centered estimates
	A posteriori error estimates and their efficiency
	Numerical experiments

	Extensions
	Cell-centered convection--diffusion--reaction estimates
	Vertex-centered reaction--diffusion estimates
	Estimates including the algebraic error

	Conclusions and future work

