

Mortar Coupling of Multiphase Flow and Reactive Transport on Non-Matching Grids

Mary F. Wheeler, Gergina Pencheva, Sunil G. Thomas

Center for Subsurface Modeling Institute for Computational Engineering and Sciences The University of Texas at Austin

5th International Symposium on Finite Volumes for Complex Applications

Aussois, France, June 8-13, 2008

- Motivation
- Mortar mixed finite element (MMFE) methods for multiphase flow problem
- Time splitting for MMFE for multiphase flow and mixed/Godunov methods for diffusion-dispersion and reactive transport

Outline

- Numerical experiments
- Extensions to DG and DG-MMFE for flow
- Conclusions
- Current and Future Work

Societal Needs in Relation to Geological Systems

Resources Recovery

- Petroleum and natural gas recovery from conventional/unconventional reservoirs
- In situ mining
- Hot dry rock/enhanced geothermal systems
- Potable water supply
- Mining hydrology

Waste Containment/Disposal

- Deep waste injection
- Nuclear waste disposal
- CO₂ sequestration
- Cryogenic storage/petroleum/gas

Underground Construction

- Civil infrastructure
- Underground space
- Secure structures

Site Restoration

- Aquifer remediation
- Acid-rock drainage

CO₂ Sequestration

Millimeter-Scale Natural Heterogeneity in Perm K

Meter-Scale Natural Heterogeneity in Permeability K

Lawyer Canyon data, meter scale (ranges by a factor of 10⁶)

Difficulty. Fine-scale variation in the permeability K leads to fine-scale variation in the solution (\mathbf{u}, p) .

Motivation

- Goal is to solve flow coupled with transport in a multiscale setting.
- Applications: NAPL remediation, monitoring of nuclear wastes, modeling angiogenesis
- Traditional method uniform grid everywhere, may be too expensive. Mortar scheme leads to attractive dynamic meshing strategies.
- Cannot avoid if physical domain is irregular! No single smooth map to a regular computational grid exists.

Simplifying Assumptions

- Flow is independent of transport.
- Inter-phase distribution of species assumed to be ``locally equilibrium" controlled, instantaneously.
- Ignore adsorption.

Preliminaries

 $\bar{\Omega}=\cup_{i=1}^{n_b}\bar{\Omega}_i$: computational domain is decomposed into non-overlapping subdomain blocks

$$\Gamma_{ij} = \partial \Omega_i \cap \partial \Omega_j, \quad \Gamma = \bigcup_{i,j=1}^{n_b} \Gamma_{ij}, \quad \Gamma_i = \partial \Omega_i \cap \Gamma = \partial \Omega_i \setminus \partial \Omega$$

On each block $\Omega_i : \mathcal{T}_{h,i}$ - finite element partition
 $\mathbf{V}_{h,i} \times W_{h,i} \subset H(\operatorname{div}; \Omega_i) \times L^2(\Omega_i) - \operatorname{MFE}$ spaces on $\mathcal{T}_{h,i}$

On each interface $\Gamma_{i,j}$: $\mathcal{T}_{H,i,j}$ – interface finite element grid $M_{H,i,j} \subset L^2(\Gamma_{i,j})$ – mortar space on $\mathcal{T}_{H,i,j}$

$$\mathbf{V}_{h} = \bigoplus_{i=1}^{n_{b}} \mathbf{V}_{h,i}, \qquad W_{h} = \bigoplus_{i=1}^{n_{b}} W_{h,i} \qquad M_{H} = \bigoplus_{1 \le i < j \le n_{b}} M_{H,i,j}$$

Mortar Domain Decomposition

H HANDRENTY OF TEXAS IN USS

$$p_{\alpha}|_{\Omega_i} = p_{\alpha}|_{\Omega_j} \quad [\mathbf{u}_{\alpha} \cdot \mathbf{n}]_{i,j} \equiv \mathbf{u}_{\alpha}|_{\Omega_i} \cdot \mathbf{n}_i + \mathbf{u}_{\alpha}|_{\Omega_j} \cdot \mathbf{n}_j = 0$$

Introduce a pressure gradient term to avoid inverting $k_{r\alpha}$:

$$\tilde{\mathbf{u}}_{\alpha} = -K/\mu_{\alpha}(\nabla p_{\alpha} - \rho_{\alpha}g\nabla D), \quad \mathbf{u}_{\alpha} = k_{r\alpha}(S_{\alpha})\tilde{\mathbf{u}}_{\alpha}$$

In a backward Euler multi-block, we seek $\mathbf{u}_{\alpha,h}^n|_{\Omega_i} \in \mathbf{V}_{h,i}$, $\tilde{\mathbf{u}}_{\alpha,h}^n|_{\Omega_i} \in \tilde{\mathbf{V}}_{h,i}, \quad p_h^n|_{\Omega_i} \in W_{h,i}, \quad S_h^n|_{\Omega_i} \in W_{h,i}, \quad p_H^n|_{\Gamma_{i,j}} \in M_{H,i,j},$ $S_H^n|_{\Gamma_{i,j}} \in M_{H,i,j} \quad \text{for } 1 \leq i < j \leq n_b, \text{ such that:}$

$$\begin{split} \left(\frac{\Delta(\varphi\rho_{\alpha,h}S_{\alpha,h})^{n}}{\Delta t^{n}}, w\right)_{\Omega_{i}} + \left(\nabla \cdot \rho_{\alpha,h}^{n} \mathbf{u}_{\alpha,h}^{n}, w\right)_{\Omega_{i}} &= (q_{\alpha}^{n}, w)_{\Omega_{i}}, w \in W_{h,i} \\ \left(\left(\frac{K}{\mu_{\alpha,h}}\right)^{-1} \tilde{\mathbf{u}}_{\alpha,h}^{n}, \mathbf{v}\right)_{\Omega_{i}} &= (p_{\alpha,h}^{n}, \nabla \cdot \mathbf{v})_{\Omega_{i}} - \left\langle p_{\alpha,H}^{n}, \mathbf{v} \cdot \mathbf{n}_{i} \right\rangle_{\Gamma_{i}} \\ &+ (\rho_{\alpha,h}^{n} g \nabla D, \mathbf{v})_{\Omega_{i}}, \quad \mathbf{v} \in \mathbf{V}_{h,i} \\ \left(\mathbf{u}_{\alpha,h}^{n}, \tilde{\mathbf{v}})_{\Omega_{i}} &= (k_{r\alpha,h}^{n} \tilde{\mathbf{u}}_{\alpha,h}^{n}, \tilde{\mathbf{v}})_{\Omega_{i}}, \quad \tilde{\mathbf{v}} \in \tilde{\mathbf{V}}_{h,i} \\ \left\langle \left[\mathbf{u}_{\alpha,h}^{n} \cdot \mathbf{n}\right]_{i,j}, \zeta \right\rangle_{\Gamma_{i,j}} &= 0, \quad \zeta \in M_{H,i,j} \end{split}$$

Let
$$\mathbf{M}_{H} = M_{H} \times M_{H}$$
. Define
 $b^{n}(\psi, \eta) = \sum_{1 \leq i < j \leq n_{b}} \sum_{\alpha} \int_{\Gamma_{i,j}} \left[\rho_{\alpha,h}^{n} \mathbf{u}_{\alpha,h}^{n}(\psi) \cdot \mathbf{n} \right]_{ij} \eta_{\alpha} \, ds$
where $\psi = (p_{w,H}^{n}, S_{w,H}^{n}) \in \mathbf{M}_{H}, \, \eta = (\eta_{w}, \eta_{w}) \in \mathbf{M}_{H}$

Define the non-linear interface operator $\mathcal{B}^n : \mathbf{M}_H \to \mathbf{M}_H$ by

$$\langle \mathcal{B}^n \psi, \eta \rangle = b^n(\psi, \eta), \quad \forall \eta \in \mathbf{M}_H$$

Then $(\psi, p_{\alpha,h}^n(\psi), S_{\alpha,h}^n(\psi), \mathbf{u}_{\alpha,h}^n(\psi))$ solves the multiphase flow equations when $\mathcal{B}^n(\psi) = 0$

Interface problem is solved by "inexact Newton-GMRES" scheme

Reactive Species Transport

Mass balance of species *i* in phase α : $\frac{\partial(\varphi c_{i\alpha}S_{\alpha})}{\partial t} + \nabla \cdot (c_{i\alpha}\mathbf{u}_{\alpha} - \varphi S_{\alpha}\mathbf{D}_{i\alpha}\nabla c_{i\alpha}) = r(c_{i\alpha})$ $\mathbf{D}_{i\alpha}\nabla c_{i\alpha} \cdot \mathbf{n} = 0$

Diffusion-Dispersion tensor $\mathbf{D}_{i\alpha} = \mathbf{D}_{i\alpha}^{\text{diff}} + \mathbf{D}_{i\alpha}^{\text{hyd}}$: Molecular diffusion: $\mathbf{D}_{i\alpha}^{\text{mol}} = \tau_{\alpha} d_{\text{m},i\alpha} \mathcal{I}$ Physical dispersion: $\varphi S_{\alpha} \mathbf{D}_{i\alpha}^{\text{hyd}} = d_{t,\alpha} |\mathbf{u}_{\alpha}| \mathcal{I} + (d_{l,\alpha} - d_{t,\alpha}) \frac{\mathbf{u}_{\alpha} \mathbf{u}_{\alpha}^{T}}{|\mathbf{u}_{\alpha}|}$ Source term: $r(\alpha, \beta) = r^{I} + \alpha S r^{C} + \alpha$

Source term: $r(c_{i\alpha}) = r_{i\alpha}^{I} + \varphi S_{\alpha} r_{i\alpha}^{C} + q_{i\alpha}$, where $r_{i\alpha}^{I}$ is influx/efflux from other phases, $r_{i\alpha}^{C}$ is chemical rate of decay $q_{i\alpha}$ is a source (or sink) term

Assume an equilibrium partitioning of species between phases:

$$c_{ilpha} = heta_{ilpha} c_{ilpha_0}$$

Sum over all phases for a given species:

$$\frac{\partial(\varphi_i^* c_{iw})}{\partial t} + \nabla \cdot (c_{iw} \mathbf{u}_i^* - \mathbf{D}_i^* \nabla c_{iw}) = r_i^*(\mathbf{c}_w)$$
$$\mathbf{D}_{iw} \nabla c_{iw} \cdot \mathbf{n} = 0$$
$$\mathcal{D}_i^* = \varphi \sum_{\alpha} \theta_{i\alpha} S_{\alpha} \qquad u_i^* = \sum_{\alpha} \theta_{i\alpha} \mathbf{u}_{\alpha}$$
$$\mathcal{D}_i^* = \varphi \sum_{\alpha} S_{\alpha} \theta_{i\alpha} \mathbf{D}_{i\alpha} \qquad r_i^*(\mathbf{c}_w) = \varphi \sum_{\alpha} r_{i\alpha}^C - r_{iR} + \sum_{\alpha} q_{i\alpha}$$
Note:
$$\sum_{\alpha} r_{i\alpha}^I + r_{iR} = 0, \text{ where } r_{iR} \text{ is the influx/efflux}$$

of species i into the stationary phase

IPARS-TRCHEM Structure

$$\left(\frac{\partial \varphi_i^* c_{iw}}{\partial t}, w\right)_{\Omega_j} + (\nabla \cdot (c_{iw} \mathbf{u}_i^*), w)_{\Omega_j} = \left(\sum_{\alpha} q_{i\alpha}, w\right)_{\Omega_j}, w \in W_j$$

Solved using a Godunov scheme

First order Godunov scheme

Let
$$T_i^m = \varphi_i^{*,m} c_{h,iw}^m$$
, solve for \overline{T}_i from

$$\left(\frac{\overline{T}_{i} - T_{i}^{m}}{\Delta \tau^{m+1}}, w\right)_{\Omega_{j}} + \sum_{E \in \mathcal{T}_{h,j}} \left\langle c_{h,iw}^{m,\mathrm{upw}} \mathbf{u}_{h,i}^{*,m+1/2} \cdot \mathbf{n}_{E}, w \right\rangle_{\partial E} = \left(\sum_{\alpha} q_{i\alpha}, w\right)_{\Omega_{j}}$$

Chemical Reaction

Define
$$\Phi(t) \equiv \text{diag}\{\varphi_i^*(t)\}, \quad \mathbf{T} = \mathbf{T}(t) \equiv \Phi(t)\mathbf{c}_w$$
, and
 $r_i^{*,C}(\mathbf{T}) \equiv \varphi \sum_{\alpha} r_{i\alpha}^C(\Phi^{-1}(t)\mathbf{T})$ Then $\frac{\partial \mathbf{T}_i}{\partial t} = r_i^{*,C}(\mathbf{T})$

Solved by explict ODE integration using Runge-Kutta

Second order Runge-Kutta scheme

$$k_{1,i} = \Delta \tau^{m+1} r_i^{*,C}(\overline{\mathbf{T}})$$

$$k_{2,i} = \Delta \tau^{m+1} r_i^{*,C} \left(\overline{\mathbf{T}} + \frac{1}{2} \mathbf{k}_1\right)$$

$$\widehat{T}_i = \overline{T} + k_{2,i}$$

Diffusion-Dispersion

$$\frac{\partial(\varphi_i^* c_{iw})}{\partial t} - \nabla \cdot \mathbf{D}_i^* \nabla c_{iw} = 0$$

Solved fully-implicitly using Expanded MFEM with full-tensor

Introduce $\tilde{\mathbf{z}} = -\nabla c$, $\mathbf{z} = \mathbf{D}_i^* \tilde{\mathbf{z}}$ Find $\tilde{\mathbf{z}}_{h,iw}^{m+1}|_{\Omega_j} \in \tilde{\mathbf{V}}_{h,j}$, $\mathbf{z}_{h,iw}^{m+1}|_{\Omega_j} \in \mathbf{V}_{h,j}$, $c_{h,iw}^{m+1}|_{\Omega_j} \in W_{h,j}$ such that:

$$\left(\frac{\varphi_i^{*,m+1}c_{h,iw}^{m+1} - \widehat{T}_i}{\Delta \tau^{m+1}}, w\right)_{\Omega_j} + \left(\nabla \cdot \mathbf{z}_{h,iw}^{m+1}, w\right)_{\Omega_j} = 0, w \in W_{h,j}$$
$$(\widetilde{\mathbf{z}}_{h,iw}^{m+1}, \mathbf{v})_{\Omega_j} = (c_{h,iw}^{m+1}, \nabla \cdot \mathbf{v})_{\Omega_j} - \left\langle \mathcal{P}_j c_{h,iw}, \mathbf{v} \cdot \mathbf{n}_j \right\rangle_{\Gamma_j}, \mathbf{v} \in \mathbf{V}_{h,j}$$

$$(\mathbf{z}_{h,iw}^{m+1}, \mathbf{\tilde{v}})_{\Omega_j} = (\mathbf{D}_i^{*,m+1} \mathbf{\tilde{z}}_{h,iw}^{m+1}, \mathbf{\tilde{v}})_{\Omega_j}, \mathbf{\tilde{v}} \in \mathbf{\tilde{V}}_{h,iw}$$

 $\mathcal{P}_j: L^2(\Gamma_j) \to L^2(\Gamma_k)$ is an L^2 -orthogonal proj. s.t. $\forall \phi \in L^2(\Gamma_j)$ $\langle \phi - \mathcal{P}_j \phi, \mathbf{v} \cdot \mathbf{n}_j \rangle_{\Gamma_{k,j}} = 0, \, \forall \mathbf{v} \in \mathbf{V}_{h,i}, \forall k \text{ such that } \overline{\Omega}_k \cap \overline{\Omega}_j \neq \emptyset$

Algorithm

NAPL Remediation

- Bio-remediation of NAPL using microbes
- Advection-Diffusion-Reaction
- Discontinuous permeability field with barriers
- Two flowing phases quarterfive spot
- External BC: no-flow and zero diffusive flux
- IC: NAPL, microbes occupy 0 < y < 40 ft and O₂, N₂ occupy 40 < y < 400 ft.
- Domain: 20 ft x 400 ft x 400 ft
- Reference case: NX=20, NY=40, NZ=40

Flow Pattern in Multi-block

Reference Solution

Concentrations of tracer, NAPL, microbes and bio-degraded product at 100 days

Comparison to Mortar Scheme

Tracer & NAPL concentrations at 5, 50, 100 days

Comparison to Mortar Scheme, cont'd

Microbe & product concentrations at 5, 50, 100 days

- Consider a single species advection in single phase flow.
- Problem Description:
 - > Grid: 3d, 80 x 80 x 4 (elements: 5ft cubes)
 - Initial concentration of species = 1 lbM/cu-ft at location (1,1,1)
 - Two wells in a quarter-five spot pattern, (pressure specified), causing a radial flow for species.

HOG for Species Advection

Solution shows species concentration at 15 days

First Order Godunov

Higher Order Godunov

HOG for Species Advection

Solution shows species concentration at 40 days

First Order Godunov

Higher Order Godunov

HOG for Species Advection

Solution shows species concentration at 80 days

First Order Godunov

Higher Order Godunov

- Consider a 1-d thermal advection in single phase flow to validate the implementation of the HOG scheme.
- Problem Description:
 - Initial reservoir temperature, 60° F
 - ➢ Hot water injected at 100° F for 100 days
 - After 100 days, water injected at 60 F (original temperature of reservoir)
 - Simulation time: 400 days
 - > Purely hyperbolic problem (pulse solution).

Snapshots at t = 3, 28, 100, 200, 300 and 400 days

First Order Godunov

Higher Order Godunov

Multinumeric Extensions

- DG and Mixed FEM can be combined for treating flow using mortar spaces
- DG is applicable for both flow and transport on non-matching grids
- Examples for single-phase slightly compressible flow follow

DG-MFEM, 3 blocks with a fault

- 250 x 100 x 100 ft
- ◆ 2 ft wide fault: 10000 mD, φ=0.01
- 4 geological layers: 10, 100, 300, 10 mD, φ=0.2
- BC:
 500 psi at x=0
 400 psi at x=250,
 noflow o.w.
- r=2, k=0 (RT0), m=0

DG-DG, **Oxbow problem**

- 4 blocks with 6 wells
- 900 x 500 x 24 ft
- 1 production, 5 injection wells
- K_{xx} = K_{yy}={200,30,40}, K_{zz}={25,5,3}, φ={0.22,0.08,0.09}
- BC: P_{inj} = 700 psi,
 P_{prod} = 500 psi, noflow on the outer bdry
- nonmatching grids, r=2, m=1

Unstructured Mesh

Top view, 4 blocks

Magnified grid around well

Conclusions

- Fully implicit multiscale method (MMFE) for multiphase flow that is coupled to a mixed/Godunov method for advection-diffusion-reaction problems on non-matching grids, has been defined
- Variably refined sub-domains results in significant savings in computational time (1 domain with fine grid takes twice the time as 3 domains)
- Multiblock domain solution agrees very well with single-domain fine-everywhere

- Explore enhanced ``velocity" method for diffusiondispersion and dynamic load balancing for treating reactions in parallel computations
- Theoretical extensions of the Dawson & Wheeler paper on operator-splitting methods for advectiondiffusion-reaction are being investigated for these problems
- Apply error estimates for flow & transport to make suitable choice of sub-domain grids and mortar degrees of freedom
- Ading sharper a posteriori error estimators for adaptive mesh refinement (with M. Vohralík)