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Original Problem: Fokker-Planck Equation Approximation of the Caputo derivative

The time fractional Fokker—Planck equation can be written as follows:
Oru(X, t) — V- (rLO; “kaVU(X, t) — F(X, t)rLO; “u(x, 1)) = g(X, 1),

» Q) is an open polyhedral bounded subset in R?
» [ >0,0<a<1,k,>0
» F (the Force) and g are given functions.

» The operator r 0; ~“u(t) is the Riemann-Liouville derivative defined by
¢ (07 “u(t)) with 9, “u(t) is the fractional integral operator:

o u(t) — ﬁ /O (t — s)*"u(s)ds.

» |nitial condition is given by
u(x,0) =0, x < (.
» Homogeneous Dirichlet boundary conditions are given by
u(x,t) =0, (x,t) € 022 x (0, T).

Some Physics and others about the problem

» The Fokker—Planck equations describe: 1 »
1. The time evolution of the probability density function of the position. - (5’ Mpup HDV)
2.The velocity of a particle. '

1
» When « tends to one and the diffusion coefficient is constant, we get the — (FMpup™", Vov) 1o ga = (f(tn+1), Mo V) 2(g) (11)
standard Fokker—Planck equation. where u}, = 0.

n-+1
12(@) + Ko (VDU , VD V) 12(Q)

Disadvantage: No discrete Coercivity.
Simple version for the Fokker-Planck equation

Formulation of a GS: Second attempt-The right choice, see [1]

We assume that the driving force F is independent of time, F = F(x).
The equation can be written then as:

Ot — rLO; V- (k,VU — Fu) = g.
By acting the operator ' on the both sides of the last equation yields
ofu—V - (ko VU —Fu) =T,
where f = 98 'g and d¢u is the Caputo derivative of order o given by

(D) - 1_a) /O (t — s)"uy(s)ds.

Definition of an approximate gradient discretization, cf. [2]

Approximate gradient discretization D is defined by
D = (Xp,0,lp, Vp)

1. The set of discrete unknowns Xp g Is a finite dimensional vector
space on R.

2. The linear mapping Mp : Xp o — L2(Q) is the reconstruction of the
approximate function.

3. The gradient reconstruction Vp : Xpo — L2(Q)% is a linear mapping in(U) = max  max
which reconstructs, from an element of Xp o, a “gradient” (vector-valued JE10.13 nelh N1
function) over 2. The gradient reconstruction must be chosen such that

ip(T) = (1 + Cp) (Wp(VT) + Wp(FT)) + (1 + Cp + C2)Sp(1). (15)

||VD ' HLZ(Q)C’ 1S a norm on Xp,o.

Main idea on the proof
Parameters of an approximate gradient discretization D

A well-developed discrete a priori estimate.
1. Coercivity. Poincareé inequality:

MoV 20) < Cpl|VpV|2e, VYV € Xppo. In Progress

2. Strong consistency.

1

: 2 : : : _
Sp(p) = min (anv _ M@(ﬂ) + || Vpv — vgpuiz(md) | » The force F is dependent on time, i.e. F = F(x, f).

veX :
PO » Second order time accurate.
3. Dual consistency
1

W. — Vpou(x) - p(Xx)+ MNpu(X)divp(X)) dx| . References
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