	Problem to be solved and some highlights		Statement of convergence results	Perspective

On the convergence of a finite volume scheme for a parabolic equation

Bradji, Abdallah Department of Mathematics, University of Annaba–Algeria

Talk in LAGA (Laboratoire d'Analyse, Géométrie, et Applications) April 5th-2018, Paris 13-France

Aim	Problem to be solved and some highlights		Statement of convergence results	Perspective

Aim of the presentation

The aim of the present contribution is to deal with some error estimates of an implicit finite volume scheme for the heat equation.

Plan	Problem to be solved and some highlights		Statement of convergence results	Perspective

Plan of this presentation

Problem to be solved (Non Stationary Heat equation) and some highlights

(a)

- 2 Discretization in Space: Finite Volume meshes (Admissible Meshes)
 - 1 Definition of the Admissible Meshes
 - 2 Properties of Admissible Meshes
 - 3 Principles of the scheme
- 3 Formulation of a Finite Volume Scheme
 - Description of the method
 - 2 Steps to derive the Finite Volume Scheme
 - 3 Definition of the Finite Volume Scheme
- 4 Convergence results of the Finite Volume Scheme
 - 1 Statement of the convergence results
 - 2 Main ideas of the proof of the results

5 A perspective

	Problem to be solved and some highlights		Statement of convergence results	Perspective

Problem to be solved

Non Stationary Heat equation:

$$u_t(\mathbf{x},t) - \Delta u(\mathbf{x},t) = f(\mathbf{x},t), \ (\mathbf{x},t) \in \Omega \times (0,T),$$
(1)

where, Ω is an open bounded polyhedral subset in \mathbb{R}^d , with $d \in \mathbb{N}^*$, T > 0, and f is a given function. An initial condition is given by:

$$u(\mathbf{x},0) = u^{0}(\mathbf{x}), \ \mathbf{x} \in \Omega.$$
⁽²⁾

A Dirichlet boundary condition is defined by

$$u(\mathbf{x},t) = 0, \ (\mathbf{x},t) \in \partial\Omega \times (0,T), \tag{3}$$

イロト イポト イヨト イヨト

where, we denote by $\partial \Omega = \overline{\Omega} \setminus \Omega$ the boundary of Ω .

		Problem to be solved and some highlights		Statement of convergence results	Perspective
		•			
Some	highligh	ats on the problem to be solved			

Some highlights on the problem to be solved

- **(Some physics):** Heat equation $u_t \Delta u$ is typically used in different applications, such as *fluid mechanics, heat and mass transfer,...*
- (Existence and Uniqueness): existence and uniqueness of a weak solution of heat equation, with (2) (*initial condition*) and (3) (*Dirichlet boundary condition*) can be formulated using Bochner spaces; see for instance Evans book of partial differential equation

	Problem to be solved and some highlights			Statement of convergence results	Perspective		
References on the subject							

References on the subject

- Bradji, A.: Some simples error estimates for finite volume approximation of parabolic equations. Comptes Rendus de l'Académie de Sciences, Paris, 346/9-10, 571–574 (2008).
- (Handbook) Eymard, R., Gallouët T., Herbin, R.: Finite volume methods. Handbook of Numerical Analysis. P. G. Ciarlet and J. L. Lions (eds.), VII, 723–1020 (2000).

	Problem to be solved and some highlights	Finite Volume meshes	Statement of convergence results	Perspective

Finite Volume methods on Admissible meshes

Definition

Let \mathcal{T} be an Admissible Mesh in the sense of Eymard et al. (Handbook, 2000).

 $K \in \mathcal{T}$ are the control volumes and σ are the edges of the control volumes K.

 $T_{K,L} = \frac{m_{K,L}}{d_{K,L}}$

Figure : transmissivity between K and L: $\mathcal{T}_{\sigma} = \mathcal{T}_{K|L} = \frac{m_{K,L}}{d_{K,L}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

	Problem to be solved and some highlights	Finite Volume meshes	Statement of convergence results	Perspective
		•		

Finite Volume methods on admissible meshes

Main properties of Admissible mesh:

- **1** Convexity of the Control Volumes.
- 2 The orthogonality property: the $(x_K x_L)$ is orthogonal to the common edge σ between the control volumes *K* and *L*.

		Problem to be solved and some highlights	Finite Volume meshes		Statement of convergence results	Perspective		
			•					
Princit	Principles of Finite Volume methods							

Principles of Finite Volume methods

Finite volume methods are numerical methods approximating different types of Partial Differential Equations (PDEs). They are based on three principle ideas:

- Subdivision of the spatial domain into subsets called Control Volumes.
- Integration of the equation to be solved over the Control Volumes.
- Approximation of the derivatives appearing after integration.

¹We mean here the "pure" finite volume methods and not finite volume-element methods \rightarrow $\langle \equiv \rangle$

		Problem to be solved and some highlights		Formulation of a Finite Volume scheme	Statement of convergence results	Perspective		
				•				
Descri	Description of the method							

Definition (Description of the method)

There are two variables in $u_t(\mathbf{x}, t) - \Delta u(\mathbf{x}, t) = f(\mathbf{x}, t), \ \mathbf{x} \in \Omega, \ t \in (0, T), \Omega \subset \mathbb{R}^d$

1 Domain space Ω is discretized using Admissible Mesh.

2 Uniform mesh on (0, T) with constant step k = T/(N + 1). Mesh points $t_n = nk$ with n = 0, ..., N

	Problem to be solved and some highlights	Formulation of a Finite Volume scheme	Statement of convergence results	Perspective

Steps to derive the Finite Volume Scheme

Steps to derive the Finite Volume Scheme

I Integration of $u_t - \Delta u$ on each $K \times (t_n, t_{n+1})$.

2 Integration by parts:
$$\int_{K} (u(\mathbf{x}, t_{n+1}) - u(\mathbf{x}, t_n)) - \int_{t_n}^{t_{n+1}} \int_{\partial K} \nabla u(\mathbf{x}, t) \cdot \mathbf{n}_K$$
, where \mathbf{n}_K normal to ∂K outward to K

3 Summing on the edges of *K*:

$$\int_{K} (u(\boldsymbol{x}, t_{n+1}) - u(\boldsymbol{x}, t_{n})) - \int_{t_{n}}^{t_{n+1}} \sum_{\sigma \in \mathcal{E}_{K}} \int_{\sigma} \nabla u(\boldsymbol{x}, t) \cdot \mathbf{n}_{K, \sigma}.$$

4 We use the orthogonality property of admissible mesh and implicit choice:

$$\mathbf{m}(K)(u(\mathbf{x}_K,t_{n+1})-u(\mathbf{x}_K,t_n))-k\sum_{\sigma\in\mathcal{E}_K}\frac{\mathbf{m}(\sigma)}{d_{\sigma}}\left(u(\mathbf{x}_L,t_{n+1})-u(\mathbf{x}_K,t_{n+1})\right).$$

	Problem to be solved and some highlights	Formulation of a Finite Volume scheme	Statement of convergence results	Perspective
		•		

Definition of the Finite Volume Scheme

Definition of the Finite Volume Scheme

Definition (Definition of the Scheme)

The unknowns of the scheme are $\{u_K^n; K \in \mathcal{T}, n = 0, ..., N\}$, which are expected to approximates $u(\mathbf{x}_K, t_n)$, and satisfying:

I Approximation of the equation $u_t - \Delta u = f$ on each $K \times (t_n, t_{n+1})$:

$$\mathbf{m}(K)(u_K^{n+1}-u_K^n)-k\sum_{\sigma\in\mathcal{E}_K}\frac{\mathbf{m}(\sigma)}{d_\sigma}\left(u_L^{n+1}-u_K^n\right)=k\int_K f(\mathbf{x},t_{n+1})d\mathbf{x}.$$
 (4)

2 Discretization of initial condition:

$$u_K^0 = u^0(\mathbf{x}_K), \ \forall K \in \mathcal{T}.$$
(5)

(discretization of the homogeneous Dirichlet boundary condition): $u_L^{n+1} = 0$ if $\sigma \in \mathcal{E}_K \cap \mathcal{E}_{ext}$.

		Problem to be solved and some highlights		Statement of convergence results	Perspective
				•	
A first	converg	gence result			

A first convergence result

Theorem (A first convergence result: $L^{\infty}(L^2)$ -error estimate)

The Scheme has a unique solution. Assume that the solution is sufficiently smooth. Then, the following $L^{\infty}(L^2)$ -error estimate holds (cf. Handbook of Eymard et al. (2000)):

$$\sum_{K \in \mathcal{T}} \mathbf{m}(K) (u(x_K, t_n) - u_K^n)^2 \le C(h+k)^2, \quad \forall n = 0, \dots, N,$$
(6)

where h is the mesh size of the space discretization, that is $h = \sup{\dim(K), K \in \mathcal{T}}.$

		Problem to be solved and some highlights		Statement of convergence results	Perspective
				•	
A seco	nd conv	vergence result			

A second convergence result

Theorem (A second convergence result: $L^{\infty}(H^1)$ -error estimate)

Assume that the solution is sufficiently smooth. If the discrete initial condition (5) is chosen using an Orthogonal Projection for u^0 , then the following $L^{\infty}(H^1)$ –error estimate (cf. Bradji-2008), for all $n \in [\![0, N + 1]\!]$

$$\sum_{\substack{\sigma \in \mathcal{E} \\ \sigma = K \mid L}} \mathbf{m}(\sigma) d_{\sigma} \left(\frac{u_{L}^{n} - u_{K}^{n}}{d_{\sigma}} - \frac{1}{\mathbf{m}(\sigma)} \int_{\sigma} \nabla u(x, t_{n}) \cdot \mathbf{n}_{K, \sigma} d\gamma(x) \right)^{2} \leq C(h+k)^{2}.$$
(7)

		Problem to be solved and some highlights		Statement of convergence results	Perspective
				•	
Main i	deas of	the proof of the results			

Main ideas of the proof of the results

Two paths can be followed:

- **1** Using the truncation error.
- **2** Comparing with auxiliary scheme $\{\overline{u}_K^n : K \in \mathcal{T}, n \in [[0, N+1]]\}$ defined by, for all $K \in \mathcal{T}$:

$$-\sum_{\sigma\in\mathcal{E}_K}\frac{\mathbf{m}(\sigma)}{d_{\sigma}}\left(\bar{u}_L^n-\bar{u}_K^n\right)=-\int_K\Delta u(x,t_n)dx,\ \forall n=0,\ldots,N+1.$$
 (8)

Aim Plan Problem to be solved and some highlights		Statement of convergence results	Perspective

A perspective

A perspective

Applying these results to obtain error estimates of finite volume schemes for complex problems involving parabolic equations, for instance Navier Stokes equation.

	Problem to be solved and some highlights		Statement of convergence results	Perspective

A perspective

A perspective

Applying these results to obtain error estimates of finite volume schemes for complex problems involving parabolic equations, for instance Navier Stokes equation.

