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Aim of the presentation

We first give an overview on the approaches of MFEMs (Mixed Finite Element
Methods): Primal and Dual MFEMs. We review some known convergence results of
MFEMs for Elliptic and Parabolic. We then present some new convergence results of
MFEMs for Parabolic and Second Order Hyperbolic Equations. We finally sketch
some interesting perspectives.
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Plan of this presentation

1 Overview on the approaches of MFEMs
1 Primal MFEMs

2 Dual MFEMs

2 Some known convergence results for Dual MFEMs for Elliptic Equations

3 Some known convergence results Dual MFEMs for Parabolic Equations.

4 New (recent) convergence results Dual MFEMs for Parabolic Equations.

5 New convergence results Dual MFEMs for Second Order Hyperbolic Equations.

6 Conclusion and Perspectives
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Primal MFEMs

Model Equation: Poisson Equation

Heat equation:

−∆u(x) = f (x), x ∈ Ω, (1)

where Ω ⊂ IRd is an open domain of IRd, f is given function.

Homogeneous Dirichlet boundary

u(x) = 0, x ∈ ∂Ω. (2)

LAGA Talk of Bradji, June 10th-202

Some Results in MFE



Aim... Plan... References Overview on the approaches of MFEMs DMFEMs for Elliptic Equations DMFEMs for Parabolic Equations Wave Equation Preparation

General principles of MFEMs

General principles of MFEM

First step: Writing the problem as:

p = −∇u. (3)

and

divp = f . (4)

Second step: Weak formulation for [3]–[4]

We have at least two possible weak formulations:

1 Primal Weak Formulation.

2 Dual (or also Primal Dual) Weak Formulation
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General principles of MFEMs

Primal Weak Formulation

Weak Formulation of Primal MFEMs

Find (p, u) ∈ L2(Ω)
d × H1

0(Ω) such that

(p, τ)L2(Ω) + (∇u, τ)L2(Ω) = 0, ∀τ ∈ L2(Ω)
d

(5)

and

(p,∇v)L2(Ω) = (f , v)L2(Ω) , ∀v ∈ H1
0(Ω). (6)
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General principles of MFEMs

Dual Weak Formulation

Weak Formulation of Dual MFEMs

Find (p, u) ∈ Hdiv(Ω)× L2(Ω) such that

(p, ψ)L2(Ω) − (u, divψ)L2(Ω) = 0, ∀ψ ∈ Hdiv(Ω) (7)

and

(divp, ϕ)L2(Ω) = (f , ϕ)L2(Ω) , ∀ϕ ∈ L2(Ω), (8)

Hdiv(Ω) is the space defined by

Hdiv(Ω) =

{
ξ ∈

(
L2(Ω)

)d
: divξ ∈ L2(Ω)

}
.
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Dual MFEMs for Elliptic Equations

Finite Element spaces

Finite Element spaces

We consider two finite dimensional spaces Vdiv
h ⊂ Hdiv(Ω) and Wh ⊂ L2(Ω) such that

the following two hypotheses hold:

Compatibility condition (also known as the inf − sup-condition). There exists
β? > 0 independent of h such that, for all q ∈ Wh

sup
w∈Vdiv

h \{0}

1
‖w‖Hdiv(Ω)

∫
Ω

q(x)divw(x)dx ≥ β?‖q‖L2(Ω). (9)

The subspace Gh of Vdiv
h given by

Gh = {w ∈ Vdiv
h :

∫
Ω

q(x)divw(x)dx = 0, ∀q ∈ Wh} satisfies (This condition

can be weakened.)

w ∈ Gh implies that div w = 0. (10)
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Dual MFEMs for Elliptic Equations

An example of Finite Element spaces: IRTl (Raviart-Thomas) finite Element
spaces

Example of space discretization: IRTl MFE

We define the Raviart-Thomas Mixed FE spaces, for l ∈ IN:

Vdiv
h = {v ∈ Hdiv(Ω) : v|K ∈ Dl, ∀K ∈ Th}, (11)

where Th is a family of triangulations of Ω with d-simplex and

Wh = {p ∈ L2(Ω) : p|K ∈ Pl, ∀K ∈ Th}, (12)

where Pl is the space of d-variate polynomials on K having degree less than or equal
to l and

Dl = (Pl)
d ⊕ xPl.
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Dual MFEMs for Elliptic Equations

Nice property of IRTl

Nice property of IRTl

One of the main properties of the spaces IRTl is that

divVdiv
h ⊂ Wh.
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Dual MFEMs for Elliptic Equations

DMFE (Dual Mixed Finite Element) scheme for the Poisson equation

The unknowns of the DMFE scheme for the Poisson equation

The unknowns of this scheme are the set of the couples{
(ph, uh) ∈ Vdiv

h ×Wh

}
.

Formulation of the DMFE scheme for the Poisson equation

Find (ph, uh) ∈ Vdiv
h ×Wh such that

(ph, ψ)L2(Ω) − (uh, divψ)L2(Ω) = 0, ∀ψ ∈ Vdiv
h (13)

and

(divph, ϕ)L2(Ω) = (f , ϕ)L2(Ω) , ∀ϕ ∈ Wh. (14)
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Dual MFEMs for Elliptic Equations

DMFE (Dual Mixed Finite Element) scheme for the Poisson equation

The unknowns of the DMFE scheme for the Poisson equation

The unknowns of this scheme are the set of the couples{
(ph, uh) ∈ Vdiv

h ×Wh

}
.

Formulation of the DMFE scheme for the Poisson equation

Find (ph, uh) ∈ Vdiv
h ×Wh such that

(ph, ψ)L2(Ω) − (uh, divψ)L2(Ω) = 0, ∀ψ ∈ Vdiv
h (15)

and

(divph, ϕ)L2(Ω) = (f , ϕ)L2(Ω) , ∀ϕ ∈ Wh. (16)
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Dual MFEMs for Elliptic Equations

Well-Posedness and convergence result for the DMFES for the Poisson
equation

Theorem (cf. Quarteroni and Valli, 2008)

The well-posedness result:

‖ph‖Hdiv(Ω) + ‖uh‖L2(Ω) ≤ C‖f‖L2(Ω). (17)

Error estimate:

‖∇u + ph‖Hdiv(Ω) + ‖u− uh‖L2(Ω) ≤ CEh(−∇u, u), (18)

where Eh is the error given by

Eh(P,U) = inf
ψ∈Vdiv

h

‖P− ψ‖Hdiv(Ω) + inf
ϕ∈Wh

‖U − ϕ‖L2(Ω). (19)
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Problem to be solved

Problem to be solved

Heat equation

ut(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T). (20)

Initial conditions

u(x, 0) = u0(x), x ∈ Ω. (21)

Homogeneous Dirichlet boundary

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (22)
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Space and time discretizations

Space and time discretizations

Space discretization

The FE spaces Vdiv
h ⊂ Hdiv(Ω) and Wh ⊂ L2(Ω) satisfy the hypotheses (9) and (10).

Time discretization

We consider constant time step k =
T

N + 1
, where N ∈ IN?. The mesh points are

denoted by tn = nk, for n ∈ J0,N + 1K.

Discrete temporal derivative

∂1vn+1 =
vn+1 − vn

k
.

Arithmetic mean value (it serves when we use Crank-Nicolson method):

vn+ 1
2 =

vn+1 + vn

2
.
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Formulation of a DMFE scheme for Heat equation

Formulation of a MFE scheme for the Heat Equation

The unknowns of this scheme are the set of the couples{
(pn

h, u
n
h) ∈ Vdiv

h ×Wh; n ∈ J0,N + 1K
}
.

These unknowns are expected to approximate the set of the unknowns

{(−∇u(tn), u(tn)); n ∈ J0,N + 1K} .
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Formulation of a DMFE scheme for Heat equation

Formulation of a DMFE scheme for the Heat Equation (Suite)

For any n ∈ J0,NK and for all ϕ ∈ Wh :(
∂1un+1

h , ϕ
)

L2(Ω)
+
(
∇ · pn+1

h , ϕ
)

L2(Ω)
= (f (tn+1), ϕ)L2(Ω) , (23)

For any n ∈ J0,N + 1K:

(pn
h, ψ)L2(Ω)d = (un

h,∇ · ψ)L2(Ω) , ∀ψ ∈ Vdiv
h , (24)

where(
∇ · p0

h, ϕ
)

L2(Ω)
=
(
−∆u0, ϕ

)
L2(Ω)

, ∀ϕ ∈ Wh. (25)
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Formulation of a DMFE scheme for Heat equation

Known convergence result for the DMFES for the Heat Equation, cf. Johnson
and Thomee 1981

Theorem (L∞(L2(Ω)d)× L∞(L2(Ω))–error estimate, Johnson and Thomé 1981)

For all n ∈ J0,N + 1K

‖∇u(tn) + pn
h‖L2(Ω)d + ‖u(tn)− un

h‖L2(Ω)

≤ C
(

max
j∈{0,1}

N+1
max

n=j
Eh(−∇∂ ju(tn), ∂

ju(tn)) + k
)
, (26)

where Eh is the error given by (19).
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Formulation of a DMFE scheme for Heat equation

Principal and nice remark

Principal and nice remark

The error estimate (26) of Theorem 2 does not include the divergence of the velocity
p(tn) whereas this divergence is present in the Elliptic case.

Our aim...

Our aim is to prove error estimates which include the divergence of the velocity p(tn)
for:

Heat Equation (as model of Parabolic Equations): Done

Wave Equation (as model of Second Order Hyperbolic Equations). In Progress

The Evolutionary Stokes Equations. In Progress
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Formulation of a DMFE scheme for Heat equation

New convergence result, cf. Benkhaldoun and Bradji 2020

Theorem

L∞(Hdiv(Ω))× L∞(L2(Ω))–error estimate, cf. Benkhaldoun and Bradji 2020

N+1
max
n=0
‖∇u(tn) + pn

h‖Hdiv(Ω) +
N+1
max
n=1
‖ut(tn)− ∂1un

h‖L2(Ω)

≤ C
(

max
j∈{0,1,2}

N+1
max

n=j
Eh(−∇∂ ju(tn), ∂

ju(tn)) + k
)
. (27)
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Formulation of a DMFE scheme for Heat equation

Idea on the proof of Theorem 3

Lemma (New a priori estimate)

Assume that
(

(ηn
D)N+1

n=0 , (η
n
D)N+1

n=0

)
∈
(
Vdiv

h

)N+2 ×WN+2
h such that η0

h = 0

For any n ∈ J0,NK, for all ϕ ∈ Wh:(
∂1ηn+1

h , ϕ
)

L2(Ω)
+
(

divηn+1
h , ϕ

)
L2(Ω)

=
(
Sn+1, ϕ

)
L2(Ω)

, (28)

For any n ∈ J0,N + 1K:

(ηn
h , ψ)L2(Ω)d = (ηn

h, divψ)L2(Ω) , ∀ψ ∈ Vdiv
h . (29)

Then, the following L2(Hdiv)–a priori estimate holds:

N+1
max
n=0
‖divηn

h‖L2(Ω) ≤ C
N

max
n=0
‖Sn+1‖L2(Ω). (30)
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Formulation of a DMFE scheme using Crank Nicolson method

Formulation of a MFE scheme using Crank-Nicolson method (Suite)

For any n ∈ J0,NK and for all ϕ ∈ Wh :

(
∂1un+1

h , ϕ
)

L2(Ω)
+

(
∇ · pn+ 1

2
h , ϕ

)
L2(Ω)

=

(
f (tn+1) + f (tn)

2
, ϕ

)
L2(Ω)

,

(31)

For any n ∈ J0,N + 1K:

(pn
h, ψ)L2(Ω)d = (un

h,∇ · ψ)L2(Ω) , ∀ψ ∈ Vdiv
h , (32)

where(
∇ · p0

h, ϕ
)

L2(Ω)
=
(
−∆u0, ϕ

)
L2(Ω)

, ∀ϕ ∈ Wh. (33)
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Formulation of a DMFE scheme using Crank Nicolson method

New convergence result, cf. Benkhaldoun and Bradji 2022

Theorem (New error estimate for scheme (31)–(31))

The following L2(Hdiv)–error estimate holds:

N+1
max
n=0
‖divpn

h + ∆u(tn)‖2
L2(Ω) ≤ C(k2 + h). (34)
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Problem to be solved

DMFEMs for the Wave Equation

Wave equation

utt(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T). (35)

Initial conditions

u(0) = u0 and ut(0) = u1. (36)

Homogeneous Dirichlet boundary

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (37)
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Formulation of a DMFE scheme for the Wave Equation

Formulation of a DMFE scheme for the Wave Equation

For any n ∈ J0,NK and for all ϕ ∈ Wh :(
∂2un+1

h , ϕ
)

L2(Ω)
+
(
∇ · pn+1

h , ϕ
)

L2(Ω)
= (f (tn+1), ϕ)L2(Ω) , (38)

For any n ∈ J0,N + 1K:

(pn
h, ψ)L2(Ω)d = (un

h,∇ · ψ)L2(Ω) , ∀ψ ∈ Vdiv
h , (39)

where, for ϕ ∈ Wh(
∇ · p0

h, ϕ
)

L2(Ω)
=
(
−∆u0, ϕ

)
L2(Ω)

(40)(
∇ · p1

h, ϕ
)

L2(Ω)
=
(
−k∆u1 + u0, ϕ

)
L2(Ω)

. (41)
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Formulation of another DMFE scheme for the Wave Equation: using Newmark’s method

Formulation of another DMFE scheme for the Wave Equation: using
Newmark’s method

Definition of the main scheme

For any n ∈ J0,NK and for all ϕ ∈ Wh :(
∂2un+1

h , ϕ
)

L2(Ω)
+

1
2

(
∇ · (pn+1

h + pn−1
h ), ϕ

)
L2(Ω)

=
1
2

(f (tn+1) + f (tn−1), ϕ)L2(Ω) . (42)

Discrete initial conditions

The discrete initial conditions should be chosen carefully to get second order time
accurate.
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Formulation of another DMFE scheme for the Wave Equation: using Newmark’s method

Formulation of another DMFE scheme for the Wave Equation: using
Newmark’s method

Definition of the main scheme

For any n ∈ J0,NK and for all ϕ ∈ Wh :(
∂2un+1

h , ϕ
)

L2(Ω)
+

1
2

(
∇ · (pn+1

h + pn−1
h ), ϕ

)
L2(Ω)

=
1
2

(f (tn+1) + f (tn−1), ϕ)L2(Ω) . (42)

Discrete initial conditions

The discrete initial conditions should be chosen carefully to get second order time
accurate.
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Works, related to the subject, under preparation

First work

DMFE for the Wave Equation

Second work

DMFE for the Evolutionary Stokes Equations.

Third work

DMFE for the Time Fractional Diffusion Equations.

Fourth work

Extension to Non-Uniform temporal mesh..
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