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Aim of the presentation

We first give an overview on the approaches of MFEMs (Mixed Finite Element
Methods): Primal and Dual MFEMs. We review some known convergence results of
MFEMs for Elliptic and Parabolic. We then present some new convergence results of
MFEMs for Parabolic and Hyperbolique equations. We also give some new obtained
results on the super-convergence phenomenon of MFEMs applied to one dimensional
Parabolic equations. We finally sketch some interesting perspectives.
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Plan of this presentation

1 Overview on the approaches of MFEMs
1 Primal MFEMs

2 Dual MFEMs

2 Some known convergence results for Dual MFEMs for Elliptic Equations

3 Some known convergence results Dual MFEMs for Parabolic Equations.

4 New (recent) convergence results for Dual MFEMs for Parabolic Equations.

5 New convergence results Dual MFEMs for Second Order Hyperbolic Equations.

6 Some Super-convergence results.

7 Conclusion and Perspectives
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Primal MFEMs

Model Equation: Poisson Equation

Heat equation:

−∆u(x) = f (x), x ∈ Ω, (1)

where Ω ⊂ IRd is an open domain of IRd, f is given function.

Homogeneous Dirichlet boundary

u(x) = 0, x ∈ ∂Ω. (2)
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General principles of MFEMs

General principles of MFEM

First step: Writing the problem as:

p = −∇u. (3)

and

divp = f . (4)

Second step: Weak formulation for [3]–[4]

We have at least two possible weak formulations:

1 Primal Weak Formulation.

2 Dual (or also Primal Dual) Weak Formulation
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General principles of MFEMs

Primal Weak Formulation

Weak Formulation of Primal MFEMs

Find (p, u) ∈ L2(Ω)
d × H1

0(Ω) such that

(p, τ)L2(Ω) + (∇u, τ)L2(Ω) = 0, ∀τ ∈ L2(Ω)
d

(5)

and

− (p,∇v)L2(Ω) = (f , v)L2(Ω) , ∀v ∈ H1
0(Ω). (6)
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General principles of MFEMs

Dual Weak Formulation

Weak Formulation of Dual MFEMs

Find (p, u) ∈ Hdiv(Ω)× L2(Ω) such that

(p, ψ)L2(Ω) − (u, divψ)L2(Ω) = 0, ∀ψ ∈ Hdiv(Ω) (7)

and

(divp, ϕ)L2(Ω) = (f , ϕ)L2(Ω) , ∀ϕ ∈ L2(Ω), (8)

Hdiv(Ω) is the space defined by

Hdiv(Ω) =

{
ξ ∈

(
L2(Ω)

)d
: divξ ∈ L2(Ω)

}
.
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Dual MFEMs for Elliptic Equations

Finite Element spaces

Finite Element spaces

Let Vdiv
h ⊂ Hdiv(Ω) and Wh ⊂ L2(Ω) be two finite dimensional spaces such that:

Compatibility condition (also known as the inf − sup-condition). There exists
β? > 0 independent of h such that, for all q ∈ Wh

sup
w∈Vdiv

h \{0}

1
‖w‖Hdiv(Ω)

∫
Ω

q(x)divw(x)dx ≥ β?‖q‖L2(Ω). (9)

The subspace Gh of Vdiv
h given by

Gh = {w ∈ Vdiv
h :

∫
Ω

q(x)divw(x)dx = 0, ∀q ∈ Wh} satisfies (This condition

can be weakened.)

w ∈ Gh implies that div w = 0. (10)
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Dual MFEMs for Elliptic Equations

An example of Finite Element spaces: IRTl (Raviart-Thomas) finite Element
spaces

Example of space discretization: IRTl MFE

We define the Raviart-Thomas Mixed FE spaces, for l ∈ IN:

Vdiv
h = {v ∈ Hdiv(Ω) : v|K ∈ Dl, ∀K ∈ Th}, (11)

where Th is a family of triangulations of Ω with d-simplex and

Wh = {p ∈ L2(Ω) : p|K ∈ Pl, ∀K ∈ Th}, (12)

where Pl is the space of d-variate polynomials on K having degree less than or equal
to l and

Dl = (Pl)
d ⊕ xPl.
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Dual MFEMs for Elliptic Equations

Nice property of IRTl

Nice property of IRTl

One of the main properties of the spaces IRTl is that

divVdiv
h ⊂ Wh.

15 / 49



Aim... Plan... References Overview on the approaches of MFEMs DMFEMs for Elliptic Equations DMFEMs for Parabolic Equations Wave Equation Preparation

Dual MFEMs for Elliptic Equations

DMFE (Dual Mixed Finite Element) scheme for the Poisson equation

Formulation of the DMFE scheme for the Poisson equation

Find (ph, uh) ∈ Vdiv
h ×Wh such that

(ph, ψ)L2(Ω) − (uh, divψ)L2(Ω) = 0, ∀ψ ∈ Vdiv
h (13)

and

(divph, ϕ)L2(Ω) = (f , ϕ)L2(Ω) , ∀ϕ ∈ Wh. (14)
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Dual MFEMs for Elliptic Equations

Well-Posedness and convergence result for the DMFES for the Poisson
equation

Theorem (cf. Quarteroni and Valli, 2008)

The well-posedness result:

‖ph‖Hdiv(Ω) + ‖uh‖L2(Ω) ≤ C‖f‖L2(Ω). (15)

Error estimate:

‖∇u + ph‖Hdiv(Ω) + ‖u− uh‖L2(Ω) ≤ CEh(−∇u, u), (16)

where Eh is the error given by

Eh(P,U) = inf
ψ∈Vdiv

h

‖P− ψ‖Hdiv(Ω) + inf
ϕ∈Wh

‖U − ϕ‖L2(Ω). (17)
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Problem to be solved

Problem to be solved

Heat equation

ut(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T). (18)

Initial and Dirichlet boundary conditions

u(x, 0) = u0(x), x ∈ Ω and u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (19)
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Space and time discretizations

Space and time discretizations

Space discretization

The FE spaces Vdiv
h ⊂ Hdiv(Ω) and Wh ⊂ L2(Ω) satisfy the hypotheses (9) and (10).

Time discretization

Constant time step k =
T

N + 1
, where N ∈ IN?. The mesh points are tn = nk.

Discrete temporal derivative

∂1vn+1 =
vn+1 − vn

k
.

Arithmetic mean value (it serves when we use Crank-Nicolson method):

vn+ 1
2 =

vn+1 + vn

2
.

19 / 49



Aim... Plan... References Overview on the approaches of MFEMs DMFEMs for Elliptic Equations DMFEMs for Parabolic Equations Wave Equation Preparation

Formulation of a DMFE scheme for Heat equation

Formulation of a MFE scheme for the Heat Equation

The unknowns of this scheme are the set of the couples{
(pn

h, u
n
h) ∈ Vdiv

h ×Wh; n ∈ J0,N + 1K
}
.

These unknowns are expected to approximate the set of the unknowns

{(−∇u(tn), u(tn)); n ∈ J0,N + 1K} .
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Formulation of a DMFE scheme for Heat equation

Formulation of a DMFE scheme for the Heat Equation (Suite)

For any n ∈ J0,NK and for all ϕ ∈ Wh :(
∂1un+1

h , ϕ
)

L2(Ω)
+
(
∇ · pn+1

h , ϕ
)

L2(Ω)
= (f (tn+1), ϕ)L2(Ω) , (20)

For any n ∈ J0,N + 1K:

(pn
h, ψ)L2(Ω)d = (un

h,∇ · ψ)L2(Ω) , ∀ψ ∈ Vdiv
h , (21)

where(
∇ · p0

h, ϕ
)

L2(Ω)
=
(
−∆u0, ϕ

)
L2(Ω)

, ∀ϕ ∈ Wh. (22)
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Formulation of a DMFE scheme for Heat equation

Known convergence result for the DMFES for the Heat Equation, cf. Johnson
and Thomee 1981

Theorem (L∞(L2(Ω)d)× L∞(L2(Ω))–error estimate, Johnson and Thomé 1981)

For all n ∈ J0,N + 1K

‖∇u(tn) + pn
h‖L2(Ω)d + ‖u(tn)− un

h‖L2(Ω)

≤ C
(

max
j∈{0,1}

N+1
max

n=j
Eh(−∇∂ ju(tn), ∂

ju(tn)) + k
)
, (23)

where Eh is the error given by (17).
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Formulation of a DMFE scheme for Heat equation

Principal and nice remark

Principal and nice remark

The error estimate (23) of Theorem 2 does not include the divergence of the velocity
p(tn) whereas this divergence is present in the Elliptic case.

Our aim...

Our aim is to prove error estimates which include the divergence of the velocity p(tn)
for:

Heat Equation (as model of Parabolic Equations): Done

Superconvergence of MFEMs for Parabolic equations: Some Done and other in
Progress

Wave Equation (as model of Second Order Hyperbolic Equations). In Progress

The Evolutionary Stokes Equations. In Progress
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Formulation of a DMFE scheme for Heat equation

New convergence result, cf. Benkhaldoun and Bradji 2021

Theorem

L∞(Hdiv(Ω))× L∞(L2(Ω))–error estimate, cf. Benkhaldoun and Bradji 2021

N+1
max
n=0
‖∇u(tn) + pn

h‖Hdiv(Ω) +
N+1
max
n=1
‖ut(tn)− ∂1un

h‖L2(Ω)

≤ C
(

max
j∈{0,1,2}

N+1
max

n=j
Eh(−∇∂ ju(tn), ∂

ju(tn)) + k
)
. (24)
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Formulation of a DMFE scheme for Heat equation

Idea on the proof of Theorem 3

Lemma (New a priori estimate)

Assume that
(

(ηn
D)N+1

n=0 , (η
n
D)N+1

n=0

)
∈
(
Vdiv

h

)N+2 ×WN+2
h such that η0

h = 0 and for

any n ∈ J0,NK, for all ϕ ∈ Wh(
∂1ηn+1

h , ϕ
)

L2(Ω)
+
(

divηn+1
h , ϕ

)
L2(Ω)

=
(
Sn+1, ϕ

)
L2(Ω)

, (25)

where Sn+1 ∈ L2(Ω) is given and for any n ∈ J0,N + 1K

(ηn
h , ψ)L2(Ω)d = (ηn

h, divψ)L2(Ω) , ∀ψ ∈ Vdiv
h .

Then, the following L2(Hdiv)–a priori estimate holds:

N+1
max
n=0
‖divηn

h‖L2(Ω) ≤ C
N

max
n=0
‖Sn+1‖L2(Ω). (26)
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Formulation of a DMFE scheme using Crank Nicolson method

Formulation of a MFE scheme using Crank-Nicolson method (Suite)

For any n ∈ J0,NK and for all ϕ ∈ Wh :

(
∂1un+1

h , ϕ
)

L2(Ω)
+

(
∇ · pn+ 1

2
h , ϕ

)
L2(Ω)

=

(
f (tn+1) + f (tn)

2
, ϕ

)
L2(Ω)

,

(27)

For any n ∈ J0,N + 1K:

(pn
h, ψ)L2(Ω)d = (un

h,∇ · ψ)L2(Ω) , ∀ψ ∈ Vdiv
h , (28)

where(
∇ · p0

h, ϕ
)

L2(Ω)
=
(
−∆u0, ϕ

)
L2(Ω)

, ∀ϕ ∈ Wh. (29)
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Formulation of a DMFE scheme using Crank Nicolson method

New convergence result, cf. Benkhaldoun and Bradji 2023

Theorem (New error estimate for scheme (27)–(29))

The following L2(Hdiv)–error estimate holds:

N
max
n=0
‖divp

n+ 1
2

h + ∆u(tn+ 1
2
)‖2

L2(Ω) ≤ C(k2 + h). (30)

27 / 49



Aim... Plan... References Overview on the approaches of MFEMs DMFEMs for Elliptic Equations DMFEMs for Parabolic Equations Wave Equation Preparation

Super-convergence of DMFEMs for Parabolic Equations

Definition of Super-convergence, refer to Zlàmal-1977

Assume that u is an approximation of u using Finite Differences or Finite Element
Methods on a physical domain Ω. Assume in addition that

‖u− u‖ ≤ Chl, (31)

where h is the mesh size of the discretization of ω.
We assume that there exists interpolation operator Π such that, for some σ > 0

‖u−Πu‖ ≤ Chl+σ, (32)

where Πu is a some interpolation of u.
The estimate (32) means that the convergence is better on the points in which u
concides with its interpolation. This is called a Super-convergence phenomenon.
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Super-convergence of DMFEMs for Parabolic Equations

How the Super-convergence can serve us?

Super-convergence serves us...

Super-convergence serves us to improve the convergence order using a Local Post
Processing for the approximate solution u (as in Durán-1999), or also using an
iteration of approximations (using the original matrix that was used in the begining)
as in Defect Correction (as in Bradji and Chibi 2007) .
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Super-convergence of DMFEMs for Parabolic Equations

Introduction: Super-convergence in Piece-wise Linear FE in 1D.

Consider the one dimensional stationary equation

− uxx(x) + u(x) = f (x), x ∈ I = (0, 1) and u(0) = u(1) = 0. (33)

The mesh points of I are denoted by 0 = x0 < x1 . . . < xM+1 = 1, with
M ∈ IN \ {0}, and the constant step is given by h = xi+1 − xi = 1/(M + 1). We
consider the sub-intervals Ii = (xi, xi+1), for i ∈ J0,MK. Let Vh be the Piece-Linear
FE, i.e.

Vh =
{

v ∈ C(I) : v ∈ |Ii ∈ P1, ∀i ∈ J0,MK and v(0) = v(1) = 0
}
. (34)

Define the approximate FE solution by: Find uh ∈ Vh such that∫
I

(
uh

x(x)vx(x) + uh(x)v(x)
)

dx =

∫
I
f (x)v(x)dx, ∀v ∈ Vh. (35)
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Super-convergence of DMFEMs for Parabolic Equations

Introduction: Super-convergence in Piece-wise Linear FE in 1D (suite).

Error estimate.

Assume that u ∈ H2(I), we have the following error estimate

‖u− uh‖H1(I) ≤ Ch. (36)

Superconvergence result.

‖Πu− uh‖H1(I) ≤ Ch2, (37)

where Π is the piece-wise linear interpolation over Vh.
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Super-convergence of DMFEMs for Parabolic Equations

Introduction: Super-convergence in Piece-wise Linear FE in 1D (suite).

Superconvergence result.

The super-convergence estimate can be written as(
M∑

i=0

h
(

u(xi+1)− u(xi)

h
− ui+1 − ui

h

)2
) 1

2

≤ Ch2, (38)

where ui are the components of uh in the usual basis of Vh.

Usefulness of this Superconvergence result.

As stated before, the super-convergence estimate can help us to derive a high order
(> 2) approximation; we refer for instance to Duran-1990, Bradji and Chibi-2007,
and Bradji-Thesis-2005.
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Super-convergence for MFEMs applied to 1D-Elliptic equation

Super-convergence for MFEMs applied to 1D-Elliptic equation; cf.
Benkhadloun and Bradji-2023.

Comment.

The super-convergence of MFEMs applied to 1D-Elliptic equation is not stated
explicitly but it can be deduced from some known a priori estimates in Quarteroni
and Valli-2008.
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Super-convergence for MFEMs applied to 1D-Elliptic equation

Super-convergence for MFEMs applied to 1D-Elliptic equation (Suite).

Let us consider the following second order elliptic equation in 1D:

1D Elliptic model

− ωxx(x) = F(x), x ∈ I = (0, 1) and ω(0) = ω(1) = 0. (39)

Mixed Formulation for (39)

Find (p, ω) ∈ Hdiv(I)× L2(I) such that, for all (ϕ,ψ) ∈ L2(I)× Hdiv(I)

(px, ϕ)L2(I) = (F, ϕ)L2(I) and (p, ψ)L2(I) = (ω, ψx)L2(I) . (40)

The space Hdiv(I) in the case of 1D is given by the Sobolev space Hdiv(I) = H1(I).
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Super-convergence for MFEMs applied to 1D-Elliptic equation

MFEMs for 1D-Elliptic equation (Suite).

Definition of IRT0-MFEs. First step: Mesh

I = (0, 1) is meshed by 0 = x0 < x1 . . . < xM+1 = 1, with M ∈ IN \ {0}, and the
constant step is given by h = 1/(M + 1). We set Ii = (xi, xi+1).

Definition of IRT0-MFEs. Second step: Discrete spaces

Vdiv
h = {v ∈ Hdiv(I) : v|Ii ∈ P0 ⊕ xP0, ∀i ∈ J0,MK} (41)

and

Wh = {u ∈ L2(I) : u|Ii ∈ P0, ∀i ∈ J0,MK}, (42)

The space Vdiv
h (resp. Wh) is the set of continuous functions (resp. functions of L2(I))

which are linear (resp. constant) over each Ii.
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Super-convergence for MFEMs applied to 1D-Elliptic equation

MFEMs for 1D-Elliptic equation (Suite)

Definition of IRT0-MFEs. Third step: Formulation of scheme

Find (ph, ωh) ∈ Vdiv
h ×Wh such that, for all (ϕ,ψ) ∈ Wh × Vdiv

h(
(ph)x , ϕ

)
L2(I)

= (F, ϕ)L2(I) and (ph, ψ)L2(I) = (ωh, ψx)L2(I) . (43)

Error estimate of scheme; see Quarteroni and Valli-2008

‖ph + ux‖1,I + ‖ωh − ω‖L2(I) ≤ Ch. (44)

36 / 49



Aim... Plan... References Overview on the approaches of MFEMs DMFEMs for Elliptic Equations DMFEMs for Parabolic Equations Wave Equation Preparation

Super-convergence for MFEMs applied to 1D-Elliptic equation

MFEMs for 1D-Elliptic equation (Suite)

Superconvergence of IRT0. First step: Interpolation operator; see Yang and Shi-2020

The usual linear interpolation operator Πh over Vdiv
h .

The interpolation operator Jh over Wh of ω:

Jω|Ii = Jiω =
1
h

∫
Ii

ω(x)dx. (45)

Superconvergence of IRT0-MFEs. Second step: Superconvergence estimate

‖ph + Πhux‖1,I + ‖ωh − Jhω‖L2(I) ≤ Ch2. (46)
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Super-convergence for MFEMs applied to 1D-parabolic equations

Super-convergence for MFEMs applied to 1D-Heat equation: Problem to be
solved.

1D Heat model

ut(x, t)− uxx(x, t) = f (x, t), (x, t) ∈ I = (0, 1)× (0, T), (47)

This equation is equipped with an initial condition and Dirichlet boundary conditions:

u(0) = u0 and u(0, t) = u(1, t) = 0, t ∈ (0, T). (48)
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Super-convergence for MFEMs applied to 1D-parabolic equations

Super-convergence for MFEMs applied to 1D-Heat equation: Mixed
Formulation

A “formal” mixed formulation:

For each t ∈ (0, T), find (p(t), u(t)) ∈ Hdiv(I))× L2(I) such that, for all
(ϕ,ψ) ∈ L2(I)× Hdiv(I)

(ut(t), ϕ)L2(I) + (ϕ, div p(t))L2(I) = (ϕ, f (t))L2(I) , (49)

(ψ, p(t))L2(I) = (divψ, u(t))L2(I) , (50)

and

u(0) = u0. (51)

In 1D, Hdiv(I) = H1(I).

39 / 49



Aim... Plan... References Overview on the approaches of MFEMs DMFEMs for Elliptic Equations DMFEMs for Parabolic Equations Wave Equation Preparation

Super-convergence for MFEMs applied to 1D-parabolic equations

Super-convergence for MFEMs applied to 1D-Heat equation: Meshes

Meshes

Uniform Mesh in time:
0 = t0 < t1 = k < t2 = 2k . . . tn = nk < . . . tN+1 = (N + 1)k = T

Descretization in space: as above using IRT0-MFEs.

Descrete spaces: as above using IRT0-MFEs
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Super-convergence for MFEMs applied to 1D-parabolic equations

Super-convergence for MFEMs applied to 1D-Heat equation: MFE Scheme

MFE Scheme:

Find (pn
h, u

n
h) ∈ Vdiv

h ×Wh such that:

For any n ∈ J0,NK and for all ϕ ∈ Wh:(
∂1un+1

h , ϕ
)

L2(I)
+

((
p

n+ 1
2

h

)
x
, ϕ

)
L2(I)

=
(

f (tn+ 1
2
), ϕ
)

L2(I)
, (52)

For any n ∈ J0,N + 1K:

(pn
h, ψ)L2(I) = (un

h, ψx)L2(I) , ∀ψ ∈ Vdiv
h , (53)

where p0
h = −Πh(u0)x.
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Super-convergence for MFEMs applied to 1D-parabolic equations

Super-convergence for MFEMs applied to 1D-Heat equation: known error
estimate; Benkhaldoun and Bradji (2023)

known error estimate.

N
max
n=0
‖ux(tn+ 1

2
) + p

n+ 1
2

h ‖H1(I) ≤ C
(

h + k2
)
. (54)
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Super-convergence for MFEMs applied to 1D-parabolic equations

Super-convergence for of IRT0 applied to 1D-Heat equation:
Superconvergence result; Benkhaldoun and Bradji-FVCA-2023

New super-convergence result.

(
N∑

n=0

k
∥∥∥∥Πhux(tn+ 1

2
) + p

n+ 1
2

h

∥∥∥∥2

1,I

) 1
2

≤ C(h + k)2. (55)
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Problem to be solved

DMFEMs for the Wave Equation

Wave equation

utt(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T). (56)

Initial and Dirichlet boundary conditions

(u(0), ut(0)) = (u0, u1) and u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (57)
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Formulation of a DMFE scheme for the Wave Equation

Formulation of a DMFE scheme for the Wave Equation

For any n ∈ J0,NK and for all ϕ ∈ Wh :(
∂2un+1

h , ϕ
)

L2(Ω)
+
(
∇ · pn+1

h , ϕ
)

L2(Ω)
= (f (tn+1), ϕ)L2(Ω) , (58)

For any n ∈ J0,N + 1K:

(pn
h, ψ)L2(Ω)d = (un

h,∇ · ψ)L2(Ω) , ∀ψ ∈ Vdiv
h , (59)

where, for ϕ ∈ Wh(
∇ · p0

h, ϕ
)

L2(Ω)
=
(
−∆u0, ϕ

)
L2(Ω)

(60)(
∇ · p1

h, ϕ
)

L2(Ω)
=
(
−k∆u1 + u0, ϕ

)
L2(Ω)

. (61)
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Formulation of another DMFE scheme for the Wave Equation: using Newmark’s method

Formulation of another DMFE scheme for the Wave Equation: using
Newmark’s method

Definition of the main scheme

For any n ∈ J0,NK and for all ϕ ∈ Wh :(
∂2un+1

h , ϕ
)

L2(Ω)
+

1
2

(
∇ · (pn+1

h + pn−1
h ), ϕ

)
L2(Ω)

=
1
2

(f (tn+1) + f (tn−1), ϕ)L2(Ω) . (62)

Discrete initial conditions

The discrete initial conditions should be chosen carefully to get second order time
accurate.
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Formulation of another DMFE scheme for the Wave Equation: using Newmark’s method

Formulation of another DMFE scheme for the Wave Equation: using
Newmark’s method

Definition of the main scheme

For any n ∈ J0,NK and for all ϕ ∈ Wh :(
∂2un+1

h , ϕ
)

L2(Ω)
+

1
2

(
∇ · (pn+1

h + pn−1
h ), ϕ

)
L2(Ω)

=
1
2

(f (tn+1) + f (tn−1), ϕ)L2(Ω) . (62)

Discrete initial conditions

The discrete initial conditions should be chosen carefully to get second order time
accurate.
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Works, related to the subject, under preparation

First work

Extend the Superconvergence, obtained in 1D, to Multi-dimensional Parabolic
equations.

Second work

What about the Superconvergence for time derivative ut of Pressure ?

Third work

Proof the convergence in L∞(Hdiv) without assumption that the exact solution is
smooth and without a need to obtain a convergence rate.
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Works, related to the subject, under preparation (Suite)

Fourth work

DMFE for the Wave Equation

Fifth work

DMFE for the Evolutionary Stokes Equations.

Sixth work

DMFE for the Time Fractional Diffusion Equations.

48 / 49



Aim... Plan... References Overview on the approaches of MFEMs DMFEMs for Elliptic Equations DMFEMs for Parabolic Equations Wave Equation Preparation

Works, related to the subject, under preparation (Suite)

Fourth work

DMFE for the Wave Equation

Fifth work

DMFE for the Evolutionary Stokes Equations.

Sixth work

DMFE for the Time Fractional Diffusion Equations.

48 / 49



Aim... Plan... References Overview on the approaches of MFEMs DMFEMs for Elliptic Equations DMFEMs for Parabolic Equations Wave Equation Preparation

Works, related to the subject, under preparation (Suite)

Seventh work

Extension to Non-Uniform temporal mesh..
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