
Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

On the convergence order of gradient schemes for time dependent
partial differential equations

Bradji, Abdallah
Department of Mathematics, University of Annaba–Algeria

Talk in LAGA (Laboratoire d’Analyse, Géométrie, et Applications)
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Aim of the presentation

The aim of this presentation is to present some results related to the convergence
order of Gradient Schemes for time dependent partial differential equations.
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Plan of this presentation

1 History: FV (Finite Volume) on Admissible meshes, SUSHI, GS

2 References on the subject

3 Some highlights on FV (Finite Volume) on Admissible meshes

4 Some highlights on SUSHI

5 Definition of the approximate gradient discretization

6 Some examples of the approximate gradient discretization
7 Gradient schemes for some known models:

1 Linear Heat equation (as a model for Parabolic equations)

2 Linear Wave equation (as a model for Second Order Hyperbolic equations)

3 Semi-Linear Heat equation

4 Semi-Linear Wave equation

5 TDJHS (Time Dependent Joule Heating system )

8 Works under Preparation
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History on the Discrete Gradient Discretization (GDM)

First Step

Finite Volume Methods on Admissible meshes: Handbook of EGH (Eymard,
Gallouët, Herbin) (2000).

Second Step

SUSHI (Scheme using Stabilization and hybrid interfaces) on General Meshes:
EGH-IMAJNA (2010).

Third Step

GDM: Droniou, Eymard, Gallouët, Guichard, Herbin-HAL (2016).

LAGA’s Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes



Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

History on the Discrete Gradient Discretization (GDM)

First Step

Finite Volume Methods on Admissible meshes: Handbook of EGH (Eymard,
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References on the subject

1. Bradji: An analysis of a second order time accurate scheme for a finite volume
method for parabolic equations on general nonconforming multidimensional
spatial meshes. AMC, 2013.

2. Bradji: Some new first order and second order time accurate gradient schemes
for semilinear parabolic equations. Under revision in CMWA, 2016.

3. Bradji: Convergence analysis of some first order and second order time accurate
gradient schemes for semilinear second order hyperbolic equations. NMPDE,
2017

4. Bradji: Convergence analysis of some high–order time accurate schemes for a
finite volume method for second order hyperbolic equations on general
nonconforming multidimensional spatial meshes. NMPDE, 2013

LAGA’s Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes



Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

References (Suite)
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Principles of Finite Volume methods

Finite volume methods are numerical methods approximating different types of
Partial Differential Equations (PDEs). They are based on three principle ideas:

Subdivision of the spatial domain into subsets called Control Volumes.

Integration of the equation to be solved over the Control Volumes.

Approximation of the derivatives appearing after integration.

1We mean here the ”pure“ finite volume methods and not finite volume-element methods
LAGA’s Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes



Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

Finite Volume methods on admissible meshes

Definition

Let T be an Admissible Mesh in the sense of Eymard et al. (Handbook, 2000).

K ∈ T are the control volumes and σ are the edges of the control volumes K.

Figure : transmissivity between K and L: Tσ = TK|L =
mK,L
dK,L
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Finite Volume methods on admissible meshes

Main properties of Admissible mesh:

1 Convexity of the Control Volumes.

2 The orthogonality property: the (xKxL) is orthogonal to the common edge σ
between the control volumes K and L.
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Finite Volume methods on admissible meshes

Model to be solved:

−∆u(x) = f (x), x ∈ Ω and u(x) = 0, x ∈ ∂Ω. (1)

Principles of Finite Volume scheme:

1 Integration on each control volume K :−
∫

K
∆u(x)dx =

∫
K

f (x)dx,

2 Integration by Parts gives :−
∫
∂K
∇u(x) · n(x)dγ(x) =

∫
K

f (x)dx

3 Summing on the lines of K: −
∑
σ∈EK

∫
σ

∇u(x) · n(x)dγ(x) =

∫
K

f (x)dx
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Finite Volume methods on admissible meshes

Approximate Finite Volume Solution uT = (uK)K

−
∑
σ∈EK

m(σ)

dK|L
(uL − uK) =

∫
K

f (x)dx. (2)

Matrix Form

AT uT = fT .
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Finite Volume methods on admissible meshes

Theorem

Let X (T ): functions which are constant on each control volume K. Let eT ∈ X (T )
be defined by eK = u(xK)− uK for any K ∈ T . Assume that the exact solution u
satisfies u ∈ C2(Ω). Then the following convergence results hold:

1 H1
0 -error estimate

‖eT ‖1,T ≤ Ch‖u‖2,Ω, (3)

where ‖ · ‖1,T is the H0
1 -norm ‖eT ‖2

1,T =
∑

σ=K|L∈E

m(σ)

dσ
(uL − uK)2.

2 L2-error estimate:

‖eT ‖L2(Ω) ≤ Ch‖u‖2,Ω. (4)
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Finite Volume methods using nonconforming grids, SUSHI scheme

Definition (New mesh of Eymard et al., IMAJNA 2010)

Figure : Notations for two neighbouring control volumes in d = 2
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Finite Volume methods using nonconforming grids, SUSHI scheme

Main properties of this new mesh:

1 (mesh defined at any space dimension): Ω ⊂ IRd, d ∈ IN

2 (orthogonality property is not required): the orthogonality property is not
required in this new mesh. But, additional discrete unknowns are required.

3 (convexity): the classical admissible mesh should satisfy that the control
volumes are convex, whereas the convexity property is not required in this new
mesh.
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Finite Volume methods using nonconforming grids, SUSHI scheme

Principles of discretization for Poisson’s equation:
1 Discrete unknowns: the space of solution as well as the space of test functions

are in

XD,0 = {
(
(vK)K∈M , (vσ)σ∈E

)
, vK , vσ ∈ IR, vσ = 0, ∀σ ∈ Eext}

2 Discretization of the gradient: the discretization of∇ can be performed using a
stabilized discrete gradient denoted by∇D , see Eymard et al. (IMAJNA, 2010):

1 The discrete gradient ∇D is stable

2 The discrete gradient ∇D is consistent.
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Finite Volume methods using nonconforming grids, SUSHI

Weak formulation for Poisson’s equation: Find u ∈ H1
0(Ω) such that

∫
Ω

∇u(x) · ∇v(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ H1
0(Ω). (5)

SUSHI (Scheme Using stabilized Hybrid Interfaces) for Poisson’s equation: Find
uD ∈ XD,0 such that

∫
Ω

∇DuD(x) · ∇Dv(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ XD,0. (6)
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Finite Volume methods using nonconforming grids, SUSHI

Theorem

Assume that the exact solution u satisfies u ∈ C2(Ω). Then the following convergence
result hold:

1 H1
0 -error estimate

‖∇u−∇DuD‖L2(Ω)d ≤ Ch‖u‖2,Ω. (7)

2 L2-error estimate:

‖u−ΠMuD‖L2(Ω) ≤ Ch‖u‖2,Ω. (8)

LAGA’s Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes



Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

Definition of the approximate gradient discretization

Definition (Definition of a generic approximate gradient discretization, Droniou et al.
(M2AS, 2013))

Let Ω be an open domain of IRd, where d ∈ IN \ {0}. An approximate gradient
discretization D is defined by D = (XD,0, hD,ΠD,∇D), where

1 The set of discrete unknowns XD,0 is a finite dimensional vector space on IR.

2 The space step hD ∈ (0,+∞) is a positive real number.

3 The linear mapping ΠD : XD,0 → L2(Ω) is the reconstruction of the
approximate function.

4 The mapping∇D : XD,0 → L2(Ω)d is the reconstruction of the gradient of the
function; it must be chosen such that ‖∇D · ‖L2(Ω)d is a norm on XD,0.
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Additional hypotheses on the approximate gradient discretization

Definition (Additional hypotheses on the approximate gradient discretization)

The coercivity of the discretization is measured through the the constant CD
given by:

CD = max
v∈XD,0\{0}

‖ΠDv‖L2(Ω)

‖∇Dv‖L2(Ω)d
. (9)

The strong consistency: SD : H1
0(Ω)→ [0,+∞) defined by, for all ϕ ∈ H1

0(Ω)

SD(ϕ) = min
v∈XD,0

(
‖ΠDv− ϕ‖2

L2(Ω) + ‖∇Dv−∇ϕ‖2
L2(Ω)d

) 1
2
. (10)

The dual consistency: For all ϕ ∈ Hdiv(Ω), WD(ϕ) is given by

max
u∈XD,0\{0}

1
‖∇Du‖L2(Ω)d

∣∣∣∣∫
Ω

(∇Du(x) · ϕ(x) + ΠDu(x)divϕ(x)) dx
∣∣∣∣ .

LAGA’s Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes



Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

First example on the approximate gradient discretization: Conforming finite element method

First example on the approximate gradient discretization: Conforming finite
element method

Let {Th; h > 0} be a family of shape regular and quasi-uniform triangulations of the
domain Ω. Let Vh be the standard finite element space of continuous, piecewise
polynomial functions of degree less or equal l ∈ IN \ {0} and we denote by
Vh

0 = Vh ∩ H1
0(Ω). Assume that Vh

0 is spanned by the usual basis functions
ϕ1, . . . , ϕM . The space XD,0 can be IRM and for any (u1, . . . , uM) ∈ XD,0, we define
ΠDu =

∑M
i=1 uiϕ ∈ Vh

0 ⊂ H1
0(Ω) and∇Du =

∑M
i=1 ui∇ϕ = ∇ΠDu. Using the

Poincaré inequality, we have for all u ∈ XD,0, ‖ΠDu‖L2(Ω) ≤ C(Ω)‖∇Du‖L2(Ω).

Therefore, the assumption (9) of Definition 5 holds with constant CD only depending
on Ω. In addition to this, we have WD(ϕ) = 0, for all ϕ ∈ Hdiv(Ω), and SD(ϕ) is
bounded above by (up to a multiplicative constant independent of the mesh)
hl|ϕ|l+1,Ω, for all ϕ ∈ Hl+1(Ω).
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Other examples on GS

Other example on the approximate gradient discretization: SUSHI method

Second example

SUSHI method, cf. Eymard et al. (IMAJNA, 2010).

Third example

Mimetic Finite Difference methods, cf. Brezzi et al. (Math. Models Methods Appl.
Sci., 2005).

Fourth example

Mixed Finite Volume method, cf. Droniou et al. (Numer. Math., 2006).

Nice remark
It is shown in Droniou et al. (Math. Models Methods Appl. Sci., 2010) that the
Second example–Fourth example mentioned can be identified to each other.
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How to use GS: an example of application

How to use GS: an example of application

Weak formulation for Poisson’s equation

Find u ∈ H1
0(Ω) such that∫

Ω

∇u(x) · ∇v(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ H1
0(Ω). (11)

GS for Poisson’s equation

Find uD ∈ XD,0 such that∫
Ω

∇DuD(x) · ∇Dv(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈∈ XD,0. (12)
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How to use GS: an example of application

Control of the error, cf. Eymard, Guichard, and R. Herbin (M2AN, 2012)

Theorem

Assume that u ∈ H2(Ω). The following convergence results hold:

1 H1
0 -error estimate

‖∇u−∇DuD‖L2(Ω)d ≤ WD(∇u) + 2SD(u). (13)

2 L2-error estimate:

‖u−ΠDuD‖L2(Ω) ≤ CDWD(∇u) + (CD + 1)SD(u). (14)
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GS for parabolic equations

Gradient schemes for linear parabolic equations

Model to be solved:

Equation:

ut(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T), (15)

where, Ω ⊂ IRd, with d ∈ IN?.

Initial condition:

u(x, 0) = u0(x), x ∈ Ω. (16)

Dirichlet boundary conditions:

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T), (17)

where, ∂Ω = Ω \ Ω the boundary of Ω.
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GS for parabolic equations

About Heat equation?

1 (some physics): Heat equation ut −∆ u is typically used in different
applications, such as fluid mechanics, heat and mass transfer,...

2 (existence and uniqueness): existence and uniqueness of a weak solution of heat
equation, with (16) ( initial condition) and (17) ( Dirichlet boundary condition)
can be formulated using Bochner spaces; see for instance Evans book of partial
differential equation
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GS for parabolic equations

Discretization of the domain Ω and time interval (0,T)

1 Spatial domain Ω ⊂ IRd, d ∈ IN, is discretized using the GS.

2 The time interval (0, T) constant step k = T/(N + 1), N ∈ IN.
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GS for parabolic equations

Principles of scheme

Principles of scheme:

1 discretization of heat equation: the discretization of ut −∆ u = f stems from
weak formulation (like in finite element method)∫

Ω

ut(x, t)v(x)dx−
∫

Ω

∇u(x, t) · ∇v(x)dx =

∫
Ω

f (x, t)v(x)dx, ∀v ∈ H1
0(Ω).

2 (discretization of initial condition u(x, 0) = u0(x)): using a suitable discrete
projection

3 (discretization of boundary condition u(x, t) = 0, x ∈ ∂Ω and t ∈ (0, T)): will
be in the definition of discrete space

4 The time interval (0, T) constant step k = T/(N + 1), N ∈ IN.
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GS for parabolic equations

Formulation of GS for Heat equation

Weak Formulation

∫
Ω

ut(x, t)v(x)dx−
∫

Ω

∇u(x, t) · ∇v(x)dx =

∫
Ω

f (x, t)v(x)dx, ∀v ∈ H1
0(Ω).

GS for Heat equation

For any n ∈ J0,NK, find un+1
D ∈ XD,0 such that(

∂1ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d = (f (tn+1), v)L2(Ω) , (18)

where ∂1 is a discrete time derivative.
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D ,∇Dv
)
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GS for parabolic equations

Formulation of GS for Heat equation (suite)

GS for Heat equation: discrete equation

For any n ∈ J0,NK, find un+1
D ∈ XD,0 such that(

∂1ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d = (f (tn+1), v)L2(Ω) , (19)

where ∂1 is a discrete time derivative.

GS for Heat equation: discrete initial condition u(x, 0) = u0(x) is an orthogonal
projection

Find u0
D ∈ XD,0 such that(
∇Du0

D,∇D v
)

(L2(Ω))d = −
(

∆u0,ΠD v
)
L2(Ω)

, ∀ v ∈ XD,0. (20)
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projection
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D,∇D v
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Formulation of GS for Heat equation (suite)
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For any n ∈ J0,NK, find un+1
D ∈ XD,0 such that(

∂1ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d = (f (tn+1), v)L2(Ω) , (19)

where ∂1 is a discrete time derivative.

GS for Heat equation: discrete initial condition u(x, 0) = u0(x) is an orthogonal
projection

Find u0
D ∈ XD,0 such that(
∇Du0

D,∇D v
)

(L2(Ω))d = −
(

∆u0,ΠD v
)
L2(Ω)

, ∀ v ∈ XD,0. (20)
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GS for parabolic equations

Error estimates for the GS for Heat equation, cf. Bradji and Fuhrmann
(AM-Praha, 2013)

Theorem (Error estimates)

Control of the error in the gradient approximation: For all n ∈ J 0,N + 1K

‖∇Dun
D −∇u(tn)‖L2(Ω)d ≤ C exp

(
CC2
D

)(
k‖u‖C2(L2) + Ek

D(u)
)
,

W1,∞(0, T; L2(Ω))–estimate: For all n ∈ J 1,N + 1K

‖ut(tn)− ∂1ΠDun
D‖L2(Ω) ≤ C

(
1 + CD exp

(
C2
D

))(
k‖u‖C2(L2) + Ek

D(u)
)
,

where we denote by, for any function u ∈ C([0, T]; H2(Ω))

Ek
D(u) = max

j∈{0,1}
max

n∈Jj,N+1K
ED(∂ ju(tn))

ED(ū) = max (WD(∇ū) + 2SD(ū), CDWD(∇ū) + (CD + 1)SD(ū)) .
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GS for parabolic equations

Error estimates for the GS for Heat equation, cf. Bradji and Fuhrmann
(AM-Praha, 2013)

Theorem (Error estimates (Suite))

L∞(0, T; L2(Ω))–estimate: For all n ∈ J0,N + 1K

‖ΠDun
D − u(tn)‖L2(Ω) ≤ C(1 + CD exp

(
CC2
D

)
)
(

k‖u‖C2(L2) + Ek
D(u)

)
,
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GS for parabolic equations

Remarks on error estimates for the GS for Heat equation

Approximation of u and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Heat
equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to
construct another scheme using the Crank-Nicolson method whose the order in time
is two.
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GS for parabolic equations

Remarks on error estimates for the GS for Heat equation

Approximation of u and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Heat
equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to
construct another scheme using the Crank-Nicolson method whose the order in time
is two.
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GS for parabolic equations

Remarks on error estimates for the GS for Heat equation

Approximation of u and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Heat
equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to
construct another scheme using the Crank-Nicolson method whose the order in time
is two.

LAGA’s Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes



Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

GS for the Wave equation

Gradient schemes for linear Second Order Hyerbolic equations

Model to be solved:

Equation:

utt(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T), (21)

where, Ω ⊂ IRd, with d ∈ IN?.

Initial conditions:

u(x, 0) = u0(x) and ut(x, 0) = u1(x), x ∈ Ω. (22)

Dirichlet boundary conditions:

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (23)
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GS for the Wave equation

About Wave equation

1 (some physics): The wave equation occur in physics such as sound waves, light
waves and water waves. It arises in fields like acoustics, electromagnetics, and
fluid dynamics, ...

2 (as model): The wave equation is an important model of second-order
hyperbolic equations

3 (existence and uniqueness): existence and uniqueness of a weak solution of
wave equation (21), with (22) ( initial conditions) and (23) (Dirichlet boundary
condition) can be formulated using Bochner spaces; see for instance Evans book
of partial differential equation
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GS for the Wave equation

Discretization of the domain Ω and time interval (0,T)

1 Spatial domain Ω ⊂ IRd, d ∈ IN, is discretized using the GS.

2 The time interval (0, T) constant step k = T/(N + 1), N ∈ IN.
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GS for the Wave equation

Principles of scheme

Principles of scheme:

1 discretization of heat equation: the discretization of ut −∆ u = f stems from
weak formulation (like in finite element method)∫

Ω

utt(x, t)v(x)dx−
∫

Ω

∇u(x, t) · ∇v(x)dx =

∫
Ω

f (x, t)v(x)dx, ∀v ∈ H1
0(Ω).

2 (discretization of initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x)): using
a suitable discrete projection

3 (discretization of boundary condition u(x, t) = 0, x ∈ ∂Ω and t ∈ (0, T)): will
be in the definition of discrete space

4 The time interval (0, T) constant step k = T/(N + 1), N ∈ IN.
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GS for the Wave equation

Formulation of GS for Wave equation

Weak Formulation

∫
Ω

utt(x, t)v(x)dx−
∫

Ω

∇u(x, t) · ∇v(x)dx =

∫
Ω

f (x, t)v(x)dx, ∀v ∈ H1
0(Ω).

GS for Wave equation

For any n ∈ J1,NK, find un+1
D ∈ XD,0 such that(

∂2ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d = (f (tn+1), v)L2(Ω) , (24)

where ∂2 is a discrete second time derivative.
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GS for the Wave equation

Formulation of GS for Wave equation

Weak Formulation

∫
Ω

utt(x, t)v(x)dx−
∫

Ω

∇u(x, t) · ∇v(x)dx =

∫
Ω

f (x, t)v(x)dx, ∀v ∈ H1
0(Ω).

GS for Wave equation

For any n ∈ J1,NK, find un+1
D ∈ XD,0 such that(

∂2ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d = (f (tn+1), v)L2(Ω) , (24)

where ∂2 is a discrete second time derivative.
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GS for the Wave equation

Formulation of GS for Wave equation

Weak Formulation

∫
Ω

utt(x, t)v(x)dx−
∫

Ω

∇u(x, t) · ∇v(x)dx =

∫
Ω

f (x, t)v(x)dx, ∀v ∈ H1
0(Ω).

GS for Wave equation

For any n ∈ J1,NK, find un+1
D ∈ XD,0 such that(

∂2ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d = (f (tn+1), v)L2(Ω) , (24)

where ∂2 is a discrete second time derivative.
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GS for the Wave equation

Formulation of GS for Wave equation (suite)

Discrete initial conditions u(x, 0) = u0(x) and ut(x, 0) = u1(x) are orthogonal
projections

Find u0
D ∈ XD,0 and u1

D ∈ XD,0 such that(
∇Du0

D,∇D v
)

(L2(Ω))d = −
(

∆u0,ΠD v
)
L2(Ω)

, ∀ v ∈ XD,0, (25)

(
∇D∂1u1

D,∇D v
)

(L2(Ω))d = −
(

∆u1,ΠD v
)
L2(Ω)

, ∀ v ∈ XD,0, (26)
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GS for the Wave equation

Error estimates for the GS for Wave equation, Bradji (NMPDE, 2013)

Theorem (Error estimates)

Control of the error in the gradient approximation: For all n ∈ J 0,N + 1K

‖∇Dun
D −∇u(tn)‖L2(Ω)d ≤ C exp

(
CC2
D

)(
k‖u‖C2(L2) + Ek

D(u)
)
,

W1,∞(0, T; L2(Ω))–estimate: For all n ∈ J 1,N + 1K

‖ut(tn)− ∂1ΠDun
D‖L2(Ω) ≤ C

(
1 + CD exp

(
C2
D

))(
k‖u‖C2(L2) + Ek

D(u)
)
,

where we denote by, for any function u ∈ C([0, T]; H2(Ω))

Ek
D(u) = max

j∈{0,1}
max

n∈Jj,N+1K
ED(∂ ju(tn))

ED(ū) = max (WD(∇ū) + 2SD(ū), CDWD(∇ū) + (CD + 1)SD(ū)) .
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GS for the Wave equation

Error estimates for the GS for Wave equation, cf. Bradji (NMPDE, 2013)

Theorem (Error estimates (Suite))

L∞(0, T; L2(Ω))–estimate: For all n ∈ J0,N + 1K

‖ΠDun
D − u(tn)‖L2(Ω) ≤ C(1 + CD exp

(
CC2
D

)
)
(

k‖u‖C2(L2) + Ek
D(u)

)
,
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GS for the Wave equation

Remarks on error estimates for the GS for Wave equation

Approximation of u and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Wave
equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to
construct another scheme using the Newmark method whose the order in time is two.
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GS for the Wave equation

Remarks on error estimates for the GS for Wave equation

Approximation of u and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Wave
equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to
construct another scheme using the Newmark method whose the order in time is two.

LAGA’s Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes



Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

GS for the Wave equation

Remarks on error estimates for the GS for Wave equation

Approximation of u and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Wave
equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to
construct another scheme using the Newmark method whose the order in time is two.
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GS for Semi-linear parabolic equations

Gradient schemes for Semi-linear parabolic equations

Model to be solved:

Equation:

ut(x, t)−∆u(x, t) = f (x, t, u(x, t)), (x, t) ∈ Ω× (0, T). (27)

Initial condition:

u(x, 0) = u0(x), x ∈ Ω. (28)

Dirichlet boundary conditions:

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T), (29)
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GS for Semi-linear parabolic equations

Formulation of GS for Semi-linear Heat equation

Weak Formulation

∫
Ω

ut(x, t)v(x)dx−
∫

Ω

∇u(x, t) ·∇v(x)dx =

∫
Ω

f (x, t, u(x, t))v(x)dx, ∀v ∈ H1
0(Ω).

GS for Semi-linear Heat equation

For any n ∈ J0,NK, find un+1
D ∈ XD,0 such that(

∂1ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d

=
(

f (tn+1,ΠDun+1
D (tn+1)), v

)
L2(Ω)

, (30)

where f (tn+1, un+1(tn+1)) represents the function x 7→ f (x, tn+1,ΠDun+1
D (x)).
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GS for Semi-linear parabolic equations

Formulation of GS for Semi-linear Heat equation

Weak Formulation

∫
Ω

ut(x, t)v(x)dx−
∫

Ω

∇u(x, t) ·∇v(x)dx =

∫
Ω

f (x, t, u(x, t))v(x)dx, ∀v ∈ H1
0(Ω).

GS for Semi-linear Heat equation

For any n ∈ J0,NK, find un+1
D ∈ XD,0 such that(

∂1ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d

=
(

f (tn+1,ΠDun+1
D (tn+1)), v

)
L2(Ω)

, (30)

where f (tn+1, un+1(tn+1)) represents the function x 7→ f (x, tn+1,ΠDun+1
D (x)).
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GS for Semi-linear parabolic equations

Formulation of GS for Semi-linear Heat equation

Weak Formulation

∫
Ω

ut(x, t)v(x)dx−
∫

Ω

∇u(x, t) ·∇v(x)dx =

∫
Ω

f (x, t, u(x, t))v(x)dx, ∀v ∈ H1
0(Ω).

GS for Semi-linear Heat equation

For any n ∈ J0,NK, find un+1
D ∈ XD,0 such that(

∂1ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d

=
(

f (tn+1,ΠDun+1
D (tn+1)), v

)
L2(Ω)

, (30)

where f (tn+1, un+1(tn+1)) represents the function x 7→ f (x, tn+1,ΠDun+1
D (x)).
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GS for Semi-linear parabolic equations

Formulation of GS for Semi-linear Heat equation (suite)

GS for Semi-linear Heat equation: discrete initial condition

Discrete initial condition can be defined as done for the linear case.
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GS for Semi-linear parabolic equations

Error estimates for GS for Semi-linear Heat equation

Error estimates for GS for Semi-linear Heat equation

Assume that the source function (x, t, s) 7→ f (x, t, s) is Lipschitz continuous with
respect to s with a constant κ independent of (x, t) ∈ Ω× (0, T), i.e.

|f (x, t, s)− f (x, t, r)| ≤ κ|s− r|, ∀(s, r) ∈ IR× IR, ∀(x, t) ∈ Ω× (0, T). (31)

Then, we obtain convergence results similar to those obtained for the linear case.
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GS for Semi-linear second order hyperbolic equations

Gradient schemes for Semi-linear second order hyperbolic equations

Model to be solved:

Equation:

utt(x, t)−∆u(x, t) = f (x, t, u(x, t)), (x, t) ∈ Ω× (0, T). (32)

Initial condition:

u(x, 0) = u0(x) and ut(x, 0) = u1(x), x ∈ Ω. (33)

Dirichlet boundary conditions:

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T), (34)
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GS for Semi-linear second order hyperbolic equations

Formulation of GS for Semi-linear Wave equation

Weak Formulation

∫
Ω

utt(x, t)v(x)dx−
∫

Ω

∇u(x, t)·∇v(x)dx =

∫
Ω

f (x, t, u(x, t))v(x)dx, ∀v ∈ H1
0(Ω).

GS for Semi-linear Wave equation

For any n ∈ J1,NK, find un+1
D ∈ XD,0 such that(

∂2ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d

=
(

f (tn+1,ΠDun+1
D (tn+1)), v

)
L2(Ω)

, (35)

where f (tn+1, un+1(tn+1)) represents the function x 7→ f (x, tn+1,ΠDun+1
D (x)).
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GS for Semi-linear second order hyperbolic equations

Formulation of GS for Semi-linear Wave equation

Weak Formulation

∫
Ω

utt(x, t)v(x)dx−
∫

Ω

∇u(x, t)·∇v(x)dx =

∫
Ω

f (x, t, u(x, t))v(x)dx, ∀v ∈ H1
0(Ω).

GS for Semi-linear Wave equation

For any n ∈ J1,NK, find un+1
D ∈ XD,0 such that(

∂2ΠDun+1
D ,ΠD v

)
L2(Ω)

+
(
∇Dun+1

D ,∇Dv
)

(L2(Ω))d

=
(

f (tn+1,ΠDun+1
D (tn+1)), v

)
L2(Ω)

, (35)

where f (tn+1, un+1(tn+1)) represents the function x 7→ f (x, tn+1,ΠDun+1
D (x)).
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GS for Semi-linear second order hyperbolic equations

Formulation of GS for Semi-linear Wave equation

Weak Formulation

∫
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∫

Ω
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GS for Semi-linear second order hyperbolic equations

Formulation of GS for Semi-linear Wave equation (suite)

GS for Semi-linear Wave equation: discrete initial conditions

Discrete initial conditions can be defined as done for the linear case.
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GS for Semi-linear second order hyperbolic equations

Error estimates for GS for Semi-linear Wave equation

Error estimates for GS for Semi-linear Wave equation

Assume that the source function (x, t, s) 7→ f (x, t, s) is Lipschitz continuous with
respect to s with a constant κ independent of (x, t) ∈ Ω× (0, T), i.e.

|f (x, t, s)− f (x, t, r)| ≤ κ|s− r|, ∀(s, r) ∈ IR× IR, ∀(x, t) ∈ Ω× (0, T). (36)

Then, we obtain convergence results similar to those obtained for the linear case.

LAGA’s Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes



Aim.. Plan Some History References Definition of the gradient discretization Some examples on the GS Gradient schemes for some known models In Preparation

GS for a Time Dependent Joule Heating system

Problem to be solved: Time Dependent Joule Heating system (TDJAS)

Model to be solved: We seek a couple of real valued functions (u, ϕ) defined on
Ω× [0, T] and satisfying:

1 Temperature equation:

ut(x, t)−∆u(x, t) = κ(u(x, t)) |∇ϕ|2 (x, t), (x, t) ∈ Ω× (0, T), (37)

2 Electric potential equation:

−∇ · (κ(u(x, t))∇ϕ) (x, t) = 0, (x, t) ∈ Ω× (0, T), (38)

3 An initial condition is given by:

u(x, 0) = u0(x), x ∈ Ω, (39)

4 Dirichlet boundary conditions:

u(x, t) = 0 and ϕ(x, t) = g(x, t), (x, t) ∈ ∂Ω× (0, T). (40)
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GS for a Time Dependent Joule Heating system

Some physics on TDJHS

Some physics on TDJHS

The nonlinear system models electric heating of a conducting body, where u is the
temperature, ϕ is the electric potential.
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GS for a Time Dependent Joule Heating system

An assumption

Assumption on the function κ

We assume that the function κ is satisfying κ ∈ C2(IR) and that for some two positive
constants K1 and K2, we have for all s ∈ IR

K1 < κ(s) + |κ′(s)|+ |κ′′(s)| ≤ K2. (41)
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GS for a Time Dependent Joule Heating system

Some literature

1 Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion
problems by finite–element and finite-volume methods. IMA J. Numer. Anal.
28/3, 469–495 (2008).

2 Elliott, Ch.M., Larsson, S.: A finite element model for the time-dependent Joule
heating problem. Math. Comput. 64/112, 1433–1453 (1995).

3 Glitzky, A., Gärtner, K.: Energy estimates for continuous and discretized
electro-reaction-diffusion systems. Nonlinear Anal. 70, 788–805 (2009).

4 Li, B., Sun, W.: Error analysis of linearized semi implicit Galerkin finite
element methods for non linear parabolic equations. International Journal of
Numerical Analysis and Modeling. 10/3 622–633 (2013).
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GS for a Time Dependent Joule Heating system

GS for TDJHS

Till now

A formulation for the GS can constructed as for semilinear heat equation. However,
the convergence order is not yet well proved
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In Preparation related to the subject of GS for PDEs

First work

Proof of the convergence rate for TDJHS..

Second work

GS for p(x)-Laplacian −∇ · (|∇u(x)|p(x)−2∇u(x)) = f (x): with WIAS.

Third work

FV for a Coupled system of a Darcy equation and a parabolic equation: joint work
with Fayssal B. (LAGA).
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