	References	Some examples on the GS		In Preparation
			00000000	
		00	0000	
			0000	
			00000	

On the convergence order of gradient schemes for time dependent partial differential equations

Bradji, Abdallah Department of Mathematics, University of Annaba–Algeria

Talk in LAGA (Laboratoire d'Analyse, Géométrie, et Applications) November 24th-2017, Paris 13-France

Aim			Some examples on the GS		In Preparation
			0 0 00	00000000 00000000 0000 0000 0000	

Aim of the presentation

The aim of this presentation is to present some results related to the convergence order of Gradient Schemes for time dependent partial differential equations.

Plan		Some examples on the GS		In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	

Plan of this presentation

- History: FV (Finite Volume) on Admissible meshes, SUSHI, GS
- 2 References on the subject
- 3 Some highlights on FV (Finite Volume) on Admissible meshes
- 4 Some highlights on SUSHI
- 5 Definition of the approximate gradient discretization
- **6** Some examples of the approximate gradient discretization
- 7 Gradient schemes for some known models:
 1 Linear Heat equation (as a model for Parabolic equations)
 - 2 Linear Wave equation (as a model for Second Order Hyperbolic equations)

- 3 Semi-Linear Heat equation
- 4 Semi-Linear Wave equation
- 5 TDJHS (Time Dependent Joule Heating system)
- 8 Works under Preparation

Some History		Some examples on the GS		In Preparation
		0	00000000	
		00	0000 0000 00000	

First Step

Finite Volume Methods on Admissible meshes: Handbook of EGH (Eymard, Gallouët, Herbin) (2000).

Second Step

SUSHI (Scheme using Stabilization and hybrid interfaces) on General Meshes: EGH-IMAJNA (2010).

Third Step

GDM: Droniou, Eymard, Gallouët, Guichard, Herbin-HAL (2016).

Some History		Some examples on the GS		In Preparation
			00000000	
			0000	

First Step

Finite Volume Methods on Admissible meshes: Handbook of EGH (Eymard, Gallouët, Herbin) (2000).

Second Step

SUSHI (Scheme using Stabilization and hybrid interfaces) on General Meshes: EGH-IMAJNA (2010).

Third Step

GDM: Droniou, Eymard, Gallouët, Guichard, Herbin-HAL (2016).

Some History		Some examples on the GS		In Preparation
			00000000	
			0000	

First Step

Finite Volume Methods on Admissible meshes: Handbook of EGH (Eymard, Gallouët, Herbin) (2000).

Second Step

SUSHI (Scheme using Stabilization and hybrid interfaces) on General Meshes: EGH-IMAJNA (2010).

Third Step

GDM: Droniou, Eymard, Gallouët, Guichard, Herbin-HAL (2016).

Some History		Some examples on the GS		In Preparation
			00000000	
			0000	

First Step

Finite Volume Methods on Admissible meshes: Handbook of EGH (Eymard, Gallouët, Herbin) (2000).

Second Step

SUSHI (Scheme using Stabilization and hybrid interfaces) on General Meshes: EGH-IMAJNA (2010).

Third Step

GDM: Droniou, Eymard, Gallouët, Guichard, Herbin-HAL (2016).

	References	Some examples on the GS		In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	

References on the subject

- 1. Bradji: An analysis of a second order time accurate scheme for a finite volume method for parabolic equations on general nonconforming multidimensional spatial meshes. AMC, 2013.
- 2. Bradji: Some new first order and second order time accurate gradient schemes for semilinear parabolic equations. Under revision in CMWA, 2016.
- Bradji: Convergence analysis of some first order and second order time accurate gradient schemes for semilinear second order hyperbolic equations. NMPDE, 2017
- 4. Bradji: Convergence analysis of some high–order time accurate schemes for a finite volume method for second order hyperbolic equations on general nonconforming multidimensional spatial meshes. NMPDE, 2013

< ロ > < 同 > < 三 > < 三 >

Aim Plan Some History Reference	Definition of the gradient discretization	Some examples on the GS	Gradient schemes for some known models	In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	

References (Suite)

- Droniou, Eymard, Gallouët, Guichard, Herbin: Gradient discretisation method: A framework for the discretisation and numerical analysis of linear and nonlinear elliptic and parabolic problems. 2016. < *hal* – 01382358v3 >.
- 6. Droniou and Eymard: A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer Math, 2006.
- 7. Droniou, Eymard, Gallouët, and Herbin: A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. M3AS, 2010.
- 8. Eymard, Gallouët, and R. Herbin: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: A scheme using stabilization and hybrid interfaces. IMAJNA, 2010.

	References	Some examples on the GS		In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	

Principles of Finite Volume methods

Finite volume methods are numerical methods approximating different types of Partial Differential Equations (PDEs). They are based on three principle ideas:

- Subdivision of the spatial domain into subsets called Control Volumes.
- Integration of the equation to be solved over the Control Volumes.
- Approximation of the derivatives appearing after integration.

¹We mean here the "pure" finite volume methods and not finite volume-element methods $\rightarrow \langle \Xi \rangle$

LAGA's Talk of Bradji, November 24th, 2017

	References	Some examples on the GS		In Preparation
			00000000	
		00	0000	
			0000	

Definition

Let \mathcal{T} be an Admissible Mesh in the sense of Eymard et al. (Handbook, 2000).

 $K \in \mathcal{T}$ are the control volumes and σ are the edges of the control volumes K.

 $T_{K,L} = m_{K,L} / d_{K,L}$

Figure : transmissivity between K and L:
$$\mathcal{T}_{\sigma} = \mathcal{T}_{K|L} = \frac{m_{K,L}}{d_{K,L}}$$

イロト イヨト イヨト イヨト

	References	Some examples on the GS		In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	

Main properties of Admissible mesh:

- Convexity of the Control Volumes.
- 2 The orthogonality property: the $(x_K x_L)$ is orthogonal to the common edge σ between the control volumes *K* and *L*.

References	Some examples on the GS		In Preparation
		00000000	
		0000 0000 0000	

Model to be solved:

$$-\Delta u(\mathbf{x}) = f(\mathbf{x}), \ \mathbf{x} \in \Omega \quad \text{and} \quad u(\mathbf{x}) = 0, \ \mathbf{x} \in \partial \Omega.$$
(1)

Principles of Finite Volume scheme:

Integration on each control volume
$$K := \int_{K} \Delta u(\mathbf{x}) d\mathbf{x} = \int_{K} f(\mathbf{x}) d\mathbf{x}$$
,
Integration by Parts gives $:= \int_{\partial K} \nabla u(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) d\gamma(\mathbf{x}) = \int_{K} f(\mathbf{x}) d\mathbf{x}$
Summing on the lines of $K := \sum_{\sigma \in \mathcal{E}_{K}} \int_{\sigma} \nabla u(\mathbf{x}) \cdot \mathbf{n}(\mathbf{x}) d\gamma(\mathbf{x}) = \int_{K} f(\mathbf{x}) d\mathbf{x}$

(日)

	References	Some examples on the GS		In Preparation
			00000000	
		00	0000	
			0000	

Approximate Finite Volume Solution $u_{\mathcal{T}} = (u_K)_K$

$$-\sum_{\sigma\in\mathcal{E}_K}\frac{\mathbf{m}(\sigma)}{d_{K|L}}(u_L-u_K)=\int_K f(\mathbf{x})d\mathbf{x}.$$

Matrix Form

$$\mathcal{A}^{\mathcal{T}} u_{\mathcal{T}} = f_{\mathcal{T}}.$$

LAGA's Talk of Bradji, November 24th, 2017

	References	Some examples on the GS		In Preparation
			00000000	
			00000000	
		00	0000	
			0000	

Approximate Finite Volume Solution $u_{\mathcal{T}} = (u_K)_K$

$$-\sum_{\sigma\in\mathcal{E}_K}rac{\mathrm{m}(\sigma)}{d_{K|L}}(u_L-u_K)=\int_K f(\mathbf{x})d\mathbf{x}.$$

Matrix Form

$$\mathcal{A}^{\mathcal{T}} u_{\mathcal{T}} = f_{\mathcal{T}}.$$

(2)

LAGA's Talk of Bradji, November 24th, 2017

	References	Some examples on the GS		In Preparation
			00000000	
		00	000000000	
			0000	

Approximate Finite Volume Solution
$$u_{\mathcal{T}} = (u_K)_K$$

$$-\sum_{\sigma\in\mathcal{E}_K}rac{\mathrm{m}(\sigma)}{d_{K|L}}(u_L-u_K)=\int_K f(\mathbf{x})d\mathbf{x}.$$

(2)

E

Matrix Form

$$\mathcal{A}^{\mathcal{T}} u_{\mathcal{T}} = f_{\mathcal{T}}.$$

LAGA's Talk of Bradji, November 24th, 2017

	References	Some examples on the GS		In Preparation
			00000000	
			00000000	
		00	0000	
			0000	

Theorem

Let $\mathcal{X}(\mathcal{T})$: functions which are constant on each control volume K. Let $e_{\mathcal{T}} \in \mathcal{X}(\mathcal{T})$ be defined by $e_K = u(\mathbf{x}_K) - u_K$ for any $K \in \mathcal{T}$. Assume that the exact solution usatisfies $u \in C^2(\overline{\Omega})$. Then the following convergence results hold:

1 H_0^1 -error estimate

$$\|e_{\mathcal{T}}\|_{1,\mathcal{T}} \le Ch \|u\|_{2,\overline{\Omega}},\tag{3}$$

(4)

where
$$\|\cdot\|_{1,\mathcal{T}}$$
 is the H_1^0 -norm $\|e_{\mathcal{T}}\|_{1,\mathcal{T}}^2 = \sum_{\sigma=K|L\in\mathcal{E}} \frac{\mathrm{m}(\sigma)}{d_{\sigma}} (u_L - u_K)^2.$

2 L^2 -error estimate:

$$\|e_{\mathcal{T}}\|_{L^2(\Omega)} \leq Ch \|u\|_{2,\overline{\Omega}}.$$

	References	Some examples on the GS		In Preparation
			00000000	
		00	0000	
			0000	
			00000	

Finite Volume methods using nonconforming grids, SUSHI scheme

Definition (New mesh of Eymard et al., IMAJNA 2010)

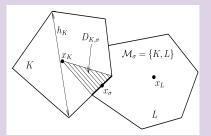


Figure : Notations for two neighbouring control volumes in d = 2

	References	Some examples on the GS		In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	

Finite Volume methods using nonconforming grids, SUSHI scheme

Main properties of this new mesh:

- **I** (mesh defined at any space dimension): $\Omega \subset \mathbb{R}^d$, $d \in \mathbb{N}$
- (orthogonality property is not required): the orthogonality property is not required in this new mesh. But, additional discrete unknowns are required.
- I (convexity): the classical admissible mesh should satisfy that the control volumes are convex, whereas the convexity property is not required in this new mesh.

0 00000000 0 00000000 00 0000 000 0000 0000 0000		References	Some examples on the GS		In Preparation
			0 0 00	00000000 0000 0000	

Finite Volume methods using nonconforming grids, SUSHI scheme

Principles of discretization for Poisson's equation:

Discrete unknowns: the space of solution as well as the space of test functions are in

$$\mathcal{X}_{\mathcal{D},0} = \{ \left(\left(v_K \right)_{K \in \mathcal{M}}, \, \left(v_\sigma \right)_{\sigma \in \mathcal{E}} \right), \, v_K, v_\sigma \in \mathbb{R}, \, v_\sigma = 0, \, \forall \sigma \in \mathcal{E}_{\text{ext}} \}$$

イロト (同) (三) (三)

- **2** Discretization of the gradient: the discretization of ∇ can be performed using a stabilized discrete gradient denoted by $\nabla_{\mathcal{D}}$, see Eymard et *al.* (IMAJNA, 2010):
 - 1 The discrete gradient $\nabla_{\mathcal{D}}$ is stable
 - **2** The discrete gradient $\nabla_{\mathcal{D}}$ is consistent.

Aim Plan Some History References Definition of the gradient discretization Some examples on the GS Gradien	schemes for some known models In Preparation
00 000 0000 0000	

Finite Volume methods using nonconforming grids, SUSHI

Weak formulation for Poisson's equation: Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$
(5)

SUSHI (Scheme Using stabilized Hybrid Interfaces) for Poisson's equation: Find $u_{\mathcal{D}} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\int_{\Omega} \nabla_{\mathcal{D}} u_{\mathcal{D}}(\boldsymbol{x}) \cdot \nabla_{\mathcal{D}} v(\boldsymbol{x}) d\boldsymbol{x} = \int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) d\boldsymbol{x}, \quad \forall v \in \mathcal{X}_{\mathcal{D},0}.$$
(6)

	References	Some examples on the GS		In Preparation
			00000000	
		ŏo		
			0000 00000	

Finite Volume methods using nonconforming grids, SUSHI

Theorem

Assume that the exact solution u satisfies $u \in C^2(\overline{\Omega})$. Then the following convergence result hold:

1 H_0^1 -error estimate

$$\|\nabla u - \nabla_{\mathcal{D}} u_{\mathcal{D}}\|_{L^{2}(\Omega)^{d}} \le Ch \|u\|_{2,\overline{\Omega}}.$$
(7)

2 L^2 -error estimate:

$$\|u - \Pi_{\mathcal{M}} u_{\mathcal{D}}\|_{L^{2}(\Omega)} \le Ch \|u\|_{2,\overline{\Omega}}.$$
(8)

イロト イポト イヨト イヨト

		Definition of the gradient discretization	Some examples on the GS		In Preparation
				00000000	
			00	0000	
				0000	

Definition of the approximate gradient discretization

Definition (Definition of a generic approximate gradient discretization, Droniou et al. (M2AS, 2013))

Let Ω be an open domain of \mathbb{R}^d , where $d \in \mathbb{N} \setminus \{0\}$. An approximate gradient discretization \mathcal{D} is defined by $\mathcal{D} = (\mathcal{X}_{\mathcal{D},0}, h_{\mathcal{D}}, \Pi_{\mathcal{D}}, \nabla_{\mathcal{D}})$, where

- **1** The set of discrete unknowns $\mathcal{X}_{\mathcal{D},0}$ is a finite dimensional vector space on **R**.
- 2 The space step $h_{\mathcal{D}} \in (0, +\infty)$ is a positive real number.
- 3 The linear mapping Π_D : X_{D,0} → L²(Ω) is the reconstruction of the approximate function.
- The mapping $\nabla_{\mathcal{D}} : \mathcal{X}_{\mathcal{D},0} \to L^2(\Omega)^d$ is the reconstruction of the gradient of the function; it must be chosen such that $\|\nabla_{\mathcal{D}} \cdot \|_{L^2(\Omega)^d}$ is a norm on $\mathcal{X}_{\mathcal{D},0}$.

		Definition of the gradient discretization	Some examples on the GS		In Preparation
			0 0 00	00000000 00000000 0000 0000 0000	

Additional hypotheses on the approximate gradient discretization

Definition (Additional hypotheses on the approximate gradient discretization)

• The **coercivity** of the discretization is measured through the the constant $C_{\mathcal{D}}$ given by:

$$C_{\mathcal{D}} = \max_{\nu \in \mathcal{X}_{\mathcal{D},0} \setminus \{0\}} \frac{\|\Pi_{\mathcal{D}}\nu\|_{L^{2}(\Omega)}}{\|\nabla_{\mathcal{D}}\nu\|_{L^{2}(\Omega)^{d}}}.$$
(9)

• The strong consistency: $S_{\mathcal{D}}: H_0^1(\Omega) \to [0, +\infty)$ defined by, for all $\varphi \in H_0^1(\Omega)$

$$S_{\mathcal{D}}(\varphi) = \min_{\nu \in \mathcal{X}_{\mathcal{D},0}} \left(\left\| \Pi_{\mathcal{D}} \nu - \varphi \right\|_{L^{2}(\Omega)}^{2} + \left\| \nabla_{\mathcal{D}} \nu - \nabla \varphi \right\|_{L^{2}(\Omega)^{d}}^{2} \right)^{\frac{1}{2}}.$$
 (10)

• The **dual consistency**: For all $\varphi \in H_{div}(\Omega)$, $W_{\mathcal{D}}(\varphi)$ is given by

$$\max_{u \in \mathcal{X}_{\mathcal{D},0} \setminus \{0\}} \frac{1}{\|\nabla_{\mathcal{D}} u\|_{L^2(\Omega)^d}} \left| \int_{\Omega} \left(\nabla_{\mathcal{D}} u(\boldsymbol{x}) \cdot \varphi(\boldsymbol{x}) + \Pi_{\mathcal{D}} u(\boldsymbol{x}) \operatorname{div} \varphi(\boldsymbol{x}) \right) d\boldsymbol{x} \right|.$$

		Some examples on the GS		In Preparation
		• • • •	00000000 00000000 0000 0000 0000	

First example on the approximate gradient discretization: Conforming finite element method

First example on the approximate gradient discretization: Conforming finite element method

Let $\{\mathcal{T}_h; h > 0\}$ be a family of shape regular and quasi-uniform triangulations of the domain Ω . Let \mathcal{V}^h be the standard finite element space of continuous, piecewise polynomial functions of degree less or equal $l \in \mathbb{N} \setminus \{0\}$ and we denote by $\mathcal{V}_0^h = \mathcal{V}^h \cap H_0^1(\Omega)$. Assume that \mathcal{V}_0^h is spanned by the usual basis functions $\varphi_1, \ldots, \varphi_M$. The space $\mathcal{X}_{D,0}$ can be \mathbb{R}^M and for any $(u_1, \ldots, u_M) \in \mathcal{X}_{D,0}$, we define $\Pi_{\mathcal{D}} u = \sum_{i=1}^M u_i \varphi \in \mathcal{V}_0^h \subset H_0^1(\Omega)$ and $\nabla_{\mathcal{D}} u = \sum_{i=1}^M u_i \nabla \varphi = \nabla \Pi_{\mathcal{D}} u$. Using the Poincaré inequality, we have for all $u \in \mathcal{X}_{D,0}$, $\|\Pi_{\mathcal{D}} u\|_{\mathbb{L}^2(\Omega)} \leq C(\Omega) \|\nabla_{\mathcal{D}} u\|_{\mathbb{L}^2(\Omega)}$.

Therefore, the assumption (9) of Definition 5 holds with constant $C_{\mathcal{D}}$ only depending on Ω . In addition to this, we have $W_{\mathcal{D}}(\varphi) = 0$, for all $\varphi \in H_{\text{div}}(\Omega)$, and $S_{\mathcal{D}}(\varphi)$ is bounded above by (up to a multiplicative constant independent of the mesh) $h^{l}|\varphi|_{l+1,\Omega}$, for all $\varphi \in H^{l+1}(\Omega)$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

		Some examples on the GS		In Preparation
		0 00	00000000 00000000 0000 0000 0000	

Other example on the approximate gradient discretization: SUSHI method

Second example

SUSHI method, cf. Eymard et al. (IMAJNA, 2010).

Third example

Mimetic Finite Difference methods, cf. Brezzi et al. (Math. Models Methods Appl. Sci., 2005).

Fourth example

Mixed Finite Volume method, cf. Droniou et al. (Numer. Math., 2006).

Nice remark

It is shown in Droniou et al. (Math. Models Methods Appl. Sci., 2010) that the Second example–Fourth example mentioned can be identified to each other.

		Some examples on the GS		In Preparation
		0 00	00000000 00000000 0000 0000 0000	
			00000	

Other example on the approximate gradient discretization: SUSHI method

Second example

SUSHI method, cf. Eymard et al. (IMAJNA, 2010).

Third example

Mimetic Finite Difference methods, cf. Brezzi et al. (Math. Models Methods Appl. Sci., 2005).

Fourth example

Mixed Finite Volume method, cf. Droniou et al. (Numer. Math., 2006).

Nice remark

It is shown in Droniou et al. (Math. Models Methods Appl. Sci., 2010) that the Second example–Fourth example mentioned can be identified to each other.

		Some examples on the GS		In Preparation
		• •••	00000000 00000000 0000 0000 0000	

Other example on the approximate gradient discretization: SUSHI method

Second example

SUSHI method, cf. Eymard et al. (IMAJNA, 2010).

Third example

Mimetic Finite Difference methods, cf. Brezzi et al. (Math. Models Methods Appl. Sci., 2005).

Fourth example

Mixed Finite Volume method, cf. Droniou et al. (Numer. Math., 2006).

Nice remark

It is shown in Droniou et al. (Math. Models Methods Appl. Sci., 2010) that the Second example–Fourth example mentioned can be identified to each other.

イロト イヨト イヨト イヨト

		Some examples on the GS		In Preparation
		• •••	00000000 00000000 0000 0000 0000	

Other example on the approximate gradient discretization: SUSHI method

Second example

SUSHI method, cf. Eymard et al. (IMAJNA, 2010).

Third example

Mimetic Finite Difference methods, cf. Brezzi et al. (Math. Models Methods Appl. Sci., 2005).

Fourth example

Mixed Finite Volume method, cf. Droniou et al. (Numer. Math., 2006).

Nice remark

It is shown in Droniou et al. (Math. Models Methods Appl. Sci., 2010) that the Second example–Fourth example mentioned can be identified to each other.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

		Some examples on the GS		In Preparation
		• •••	00000000 00000000 0000 0000 0000	

Other example on the approximate gradient discretization: SUSHI method

Second example

SUSHI method, cf. Eymard et al. (IMAJNA, 2010).

Third example

Mimetic Finite Difference methods, cf. Brezzi et al. (Math. Models Methods Appl. Sci., 2005).

Fourth example

Mixed Finite Volume method, cf. Droniou et al. (Numer. Math., 2006).

Nice remark

It is shown in Droniou et al. (Math. Models Methods Appl. Sci., 2010) that the Second example–Fourth example mentioned can be identified to each other.

・ロト ・四ト ・ヨト ・ヨト

		Some examples on the GS		In Preparation
		0 0 ●0	00000000 00000000 0000 0000 0000	

How to use GS: an example of application

Weak formulation for Poisson's equation

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$
(11)

GS for Poisson's equation

Find $u_{\mathcal{D}} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\int_{\Omega} \nabla_{\mathcal{D}} u_{\mathcal{D}}(\mathbf{x}) \cdot \nabla_{\mathcal{D}} v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in \mathcal{X}_{\mathcal{D},0}.$$
 (12)

Э

イロト イヨト イヨト イヨト

		Some examples on the GS		In Preparation
		0 ○ ●0	00000000 00000000 0000 0000 0000	

How to use GS: an example of application

Weak formulation for Poisson's equation

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$
(11)

GS for Poisson's equation

Find $u_{\mathcal{D}} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\int_{\Omega} \nabla_{\mathcal{D}} u_{\mathcal{D}}(\mathbf{x}) \cdot \nabla_{\mathcal{D}} v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in \in \mathcal{X}_{\mathcal{D},0}.$$
 (12)

Э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

		Some examples on the GS		In Preparation
		0 ○ ●0	00000000 00000000 0000 0000 0000	

How to use GS: an example of application

Weak formulation for Poisson's equation

Find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u(\mathbf{x}) \cdot \nabla v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$
(11)

GS for Poisson's equation

Find $u_{\mathcal{D}} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\int_{\Omega} \nabla_{\mathcal{D}} u_{\mathcal{D}}(\mathbf{x}) \cdot \nabla_{\mathcal{D}} v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in \in \mathcal{X}_{\mathcal{D},0}.$$
(12)

LAGA's Talk of Bradji, November 24th, 2017

			Some examples on the GS		In Preparation
			0 0 0 ●	00000000 00000000 0000 0000 0000	
 	o	e			

Control of the error, cf. Eymard, Guichard, and R. Herbin (M2AN, 2012)

Theorem

Assume that $u \in H^2(\Omega)$. The following convergence results hold:

1 H_0^1 -error estimate

$$\|\nabla u - \nabla_{\mathcal{D}} u_{\mathcal{D}}\|_{L^{2}(\Omega)^{d}} \le W_{\mathcal{D}}(\nabla u) + 2S_{\mathcal{D}}(u).$$
(13)

2 L^2 -error estimate:

$$\|u - \Pi_{\mathcal{D}} u_{\mathcal{D}}\|_{L^{2}(\Omega)} \leq C_{\mathcal{D}} W_{\mathcal{D}}(\nabla u) + (C_{\mathcal{D}} + 1)S_{\mathcal{D}}(u).$$
(14)

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
		ŏo	0000 0000 0000	

GS for parabolic equations

Gradient schemes for linear parabolic equations

Model to be solved:

Equation:

$$u_t(\mathbf{x},t) - \Delta u(\mathbf{x},t) = f(\mathbf{x},t), \ (\mathbf{x},t) \in \Omega \times (0,T),$$
(15)

where, $\Omega \subset \mathbb{R}^d$, with $d \in \mathbb{N}^*$.

Initial condition:

$$u(\mathbf{x},0) = u^0(\mathbf{x}), \ \mathbf{x} \in \Omega.$$
⁽¹⁶⁾

Dirichlet boundary conditions:

$$u(\mathbf{x},t) = 0, \ (\mathbf{x},t) \in \partial \Omega \times (0,T),$$

where,
$$\partial \Omega = \overline{\Omega} \setminus \Omega$$
 the boundary of Ω .

(17)

E

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

					Some examples on the GS O OO	Gradient schemes for some known models	
						00000	
G	for pa	arabol	ic equations				

About Heat equation?

- **(some physics):** Heat equation $u_t \Delta u$ is typically used in different applications, such as *fluid mechanics, heat and mass transfer,...*
- 2 (existence and uniqueness): existence and uniqueness of a weak solution of heat equation, with (16) (*initial condition*) and (17) (*Dirichlet boundary condition*) can be formulated using Bochner spaces; see for instance Evans book of partial differential equation

				Some examples on the GS	Gradient schemes for some known models	In Preparation
				0 0 00	00000000 00000000 0000	
					0000 00000	
GS for	r parabo	olic equations				

Discretization of the domain Ω and time interval (0, T)

I Spatial domain $\Omega \subset \mathbb{R}^d$, $d \in \mathbb{N}$, is discretized using the GS.

2 The time interval (0, T) constant step $k = T/(N+1), N \in \mathbb{N}$.

				Some examples on the GS O OO	Gradient schemes for some known models ○○○○○○○○○ ○○○○ ○○○○ ○○○○ ○○○○ ○○○○ ○○○○ ○○○○ ○○○○	
GS fo	r parabo	olic equations				

Principles of scheme

Principles of scheme:

I discretization of heat equation: the discretization of $u_t - \Delta u = f$ stems from weak formulation (like in finite element method)

$$\int_{\Omega} u_t(\mathbf{x},t) v(\mathbf{x}) dx - \int_{\Omega} \nabla u(\mathbf{x},t) \cdot \nabla v(\mathbf{x}) dx = \int_{\Omega} f(\mathbf{x},t) v(x) dx, \quad \forall v \in H_0^1(\Omega).$$

- 2 (discretization of initial condition $u(x, 0) = u^0(x)$): using a suitable discrete projection
- **i** (discretization of boundary condition $u(x, t) = 0, x \in \partial\Omega$ and $t \in (0, T)$): will be in the definition of discrete space

イロト イヨト イヨト イヨト

4 The time interval (0, T) constant step $k = T/(N+1), N \in \mathbb{N}$.

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		o 0 00	000000000 000000000 0000 0000 00000	

Formulation of GS for Heat equation

Weak Formulation

$$\int_{\Omega} u_t(\mathbf{x},t)v(\mathbf{x})d\mathbf{x} - \int_{\Omega} \nabla u(\mathbf{x},t) \cdot \nabla v(\mathbf{x})d\mathbf{x} = \int_{\Omega} f(\mathbf{x},t)v(\mathbf{x})d\mathbf{x}, \quad \forall v \in H^1_0(\Omega).$$

GS for Heat equation

For any $n \in [[0, N]]$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{1}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),v\right)_{\mathbb{L}^{2}(\Omega)},\ (18)$$

where ∂^1 is a discrete time derivative.

Э

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		o 0 00	000000000 000000000 0000 0000	
			00000	

Formulation of GS for Heat equation

Weak Formulation

$$\int_{\Omega} u_t(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x} - \int_{\Omega} \nabla u(\boldsymbol{x},t) \cdot \nabla v(\boldsymbol{x})d\boldsymbol{x} = \int_{\Omega} f(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Heat equation

For any $n \in [[0, N]]$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{1}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),v\right)_{\mathbb{L}^{2}(\Omega)},\ (18)$$

where ∂^1 is a discrete time derivative.

イロト イヨト イヨト イヨト

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		o 0 00	000000000 000000000 0000 0000 00000	

Formulation of GS for Heat equation

Weak Formulation

$$\int_{\Omega} u_t(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x} - \int_{\Omega} \nabla u(\boldsymbol{x},t) \cdot \nabla v(\boldsymbol{x})d\boldsymbol{x} = \int_{\Omega} f(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Heat equation

For any $n \in [\![0, N]\!]$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{1}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),v\right)_{\mathbb{L}^{2}(\Omega)},\ (18)$$

where ∂^1 is a discrete time derivative.

< □ > < 同 > < 回 > < 回 > < □ > <</p>

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			000000000	
		ŏo	0000 0000 0000	

Formulation of GS for Heat equation (suite)

GS for Heat equation: discrete equation

For any $n \in \llbracket 0, N
rbracket$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{1}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),v\right)_{\mathbb{L}^{2}(\Omega)},\ (19)$$

where ∂^1 is a discrete time derivative.

GS for Heat equation: discrete initial condition $u(x, 0) = u^0(x)$ is an orthogonal projection

Find $u_{\mathcal{D}}^0 \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\nabla_{\mathcal{D}} u_{\mathcal{D}}^{0}, \nabla_{\mathcal{D}} v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}} = -\left(\Delta u^{0}, \Pi_{\mathcal{D}} v\right)_{\mathbb{L}^{2}(\Omega)}, \ \forall v \in \mathcal{X}_{\mathcal{D}, 0}.$$

(日)

	Some examples on the GS	Gradient schemes for some known models	In Preparation
		000000000	
		0000 0000 00000	

Formulation of GS for Heat equation (suite)

GS for Heat equation: discrete equation

For any $n \in \llbracket 0, N \rrbracket$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{1}\Pi_{\mathcal{D}}\boldsymbol{u}_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}\boldsymbol{v}\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}\boldsymbol{u}_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}\boldsymbol{v}\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),\boldsymbol{v}\right)_{\mathbb{L}^{2}(\Omega)},\ (19)$$

where ∂^1 is a discrete time derivative.

GS for Heat equation: discrete initial condition $u(x, 0) = u^0(x)$ is an orthogonal projection

Find $u_{\mathcal{D}}^0 \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\nabla_{\mathcal{D}} u_{\mathcal{D}}^{0}, \nabla_{\mathcal{D}} v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}} = -\left(\Delta u^{0}, \Pi_{\mathcal{D}} v\right)_{\mathbb{L}^{2}(\Omega)}, \ \forall v \in \mathcal{X}_{\mathcal{D},0}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

	Some examples on the GS	Gradient schemes for some known models	In Preparation
		000000000	
		0000 0000 00000	

Formulation of GS for Heat equation (suite)

GS for Heat equation: discrete equation

For any $n \in \llbracket 0, N \rrbracket$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{1}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),v\right)_{\mathbb{L}^{2}(\Omega)},\ (19)$$

where ∂^1 is a discrete time derivative.

GS for Heat equation: discrete initial condition $u(\mathbf{x}, 0) = u^0(\mathbf{x})$ is an orthogonal projection

Find $u_{\mathcal{D}}^0 \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\nabla_{\mathcal{D}} u^{0}_{\mathcal{D}}, \nabla_{\mathcal{D}} v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}} = -\left(\Delta u^{0}, \Pi_{\mathcal{D}} v\right)_{\mathbb{L}^{2}(\Omega)}, \ \forall v \in \mathcal{X}_{\mathcal{D},0}.$$
(20)

E

LAGA's Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			000000000	
		00	0000	
			0000	
			00000	

Error estimates for the GS for Heat equation, cf. Bradji and Fuhrmann (AM-Praha, 2013)

Theorem (Error estimates)

• Control of the error in the gradient approximation: For all $n \in [\![0, N+1]\!]$

$$\|\nabla_{\mathcal{D}}u^n_{\mathcal{D}}-\nabla u(t_n)\|_{\mathbb{L}^2(\Omega)^d}\leq C\exp\left(CC^2_{\mathcal{D}}\right)\left(k\|u\|_{\mathcal{C}^2(\mathbb{L}^2)}+\mathbb{E}^k_{\mathcal{D}}(u)
ight),$$

• $W^{1,\infty}(0,T;L^2(\Omega))$ -estimate: For all $n \in \llbracket 1, N+1 \rrbracket$

$$\|u_t(t_n) - \partial^1 \Pi_{\mathcal{D}} u_{\mathcal{D}}^n\|_{\mathbb{L}^2(\Omega)} \leq C \left(1 + C_{\mathcal{D}} \exp\left(C_{\mathcal{D}}^2\right)\right) \left(k\|u\|_{\mathcal{C}^2(\mathbb{L}^2)} + \mathbb{E}_{\mathcal{D}}^k(u)\right),$$

where we denote by, for any function $u \in \mathcal{C}([0,T]; H^2(\Omega))$

$$\mathbb{E}_{\mathcal{D}}^{k}(u) = \max_{j \in \{0,1\}} \max_{n \in [j,N+1]} \mathbb{E}_{\mathcal{D}}(\partial^{j}u(t_{n}))$$

 $\mathbb{E}_{\mathcal{D}}(\bar{u}) = \max\left(W_{\mathcal{D}}(\nabla \bar{u}) + 2S_{\mathcal{D}}(\bar{u}), \ C_{\mathcal{D}}W_{\mathcal{D}}(\nabla \bar{u}) + (C_{\mathcal{D}} + 1)S_{\mathcal{D}}(\bar{u})\right).$

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		0 0 00	000000000 000000000 0000 0000 00000	
66.5 J. 1			00000	

Error estimates for the GS for Heat equation, cf. Bradji and Fuhrmann (AM-Praha, 2013)

Theorem (Error estimates (Suite))

• $L^{\infty}(0,T;L^{2}(\Omega))$ -estimate: For all $n \in [\![0,N+1]\!]$

$$\|\Pi_{\mathcal{D}} u_{\mathcal{D}}^n - u(t_n)\|_{\mathbb{L}^2(\Omega)} \leq C(1 + C_{\mathcal{D}} \exp\left(CC_{\mathcal{D}}^2\right))\left(k\|u\|_{\mathcal{C}^2(\mathbb{L}^2)} + \mathbb{E}_{\mathcal{D}}^k(u)\right),$$

LAGA's Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		000	00000000 00000000 0000 0000 0000	

Remarks on error estimates for the GS for Heat equation

Approximation of *u* and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Heat equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to construct another scheme using the Crank-Nicolson method whose the order in time is two.

			Some examples on the GS	Gradient schemes for some known models	In Preparation
			0 00	00000000 00000000 0000 0000 0000	
00.0					

Remarks on error estimates for the GS for Heat equation

Approximation of *u* and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Heat equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to construct another scheme using the Crank-Nicolson method whose the order in time is two.

			Some examples on the GS	Gradient schemes for some known models	In Preparation
			0 00	00000000 00000000 0000 0000 0000	
00.0					

Remarks on error estimates for the GS for Heat equation

Approximation of *u* and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Heat equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to construct another scheme using the Crank-Nicolson method whose the order in time is two.

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	

Gradient schemes for linear Second Order Hyerbolic equations

Model to be solved:

Equation:

$$u_{tt}(\boldsymbol{x},t) - \Delta u(\boldsymbol{x},t) = f(\boldsymbol{x},t), \ (\boldsymbol{x},t) \in \Omega \times (0,T),$$
(21)

where, $\Omega \subset \mathbb{R}^d$, with $d \in \mathbb{N}^*$.

Initial conditions:

$$u(\mathbf{x},0) = u^0(\mathbf{x})$$
 and $u_t(\mathbf{x},0) = u^1(\mathbf{x}), \ \mathbf{x} \in \Omega.$ (22)

(23)

Dirichlet boundary conditions:

$$u(\mathbf{x},t) = 0, \ (\mathbf{x},t) \in \partial \Omega \times (0,T).$$

					Some examples on the GS	Gradient schemes for some known models	In Preparation
						00000000	
					00	0000	
						0000	
G	6 for	the Wa	ave equation				

About Wave equation

- (some physics): The wave equation occur in physics such as sound waves, light waves and water waves. It arises in fields like acoustics, electromagnetics, and fluid dynamics, ...
- 2 (as model): The wave equation is an important model of second-order hyperbolic equations
- (existence and uniqueness): existence and uniqueness of a weak solution of wave equation (21), with (22) (*initial conditions*) and (23) (*Dirichlet boundary condition*) can be formulated using Bochner spaces; see for instance Evans book of partial differential equation

				Some examples on the GS	Gradient schemes for some known models	In Preparation
					00000000	
				õo		
					0000	
GS for	the Wa	ave equation				

Discretization of the domain Ω and time interval (0, T)

I Spatial domain $\Omega \subset \mathbb{R}^d$, $d \in \mathbb{N}$, is discretized using the GS.

2 The time interval (0, T) constant step $k = T/(N+1), N \in \mathbb{N}$.

				Some examples on the GS O O OO	Gradient schemes for some known models ○○○○○○○○○ ○○○○○○○○○ ○○○○ ○○○○ ○○○○ ○○○○ ○○○○	
GS fo	r the Wa	ave equation				

Principles of scheme

Principles of scheme:

I discretization of heat equation: the discretization of $u_t - \Delta u = f$ stems from weak formulation (like in finite element method)

$$\int_{\Omega} u_{tt}(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x} - \int_{\Omega} \nabla u(\boldsymbol{x},t) \cdot \nabla v(\boldsymbol{x})d\boldsymbol{x} = \int_{\Omega} f(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x}, \quad \forall v \in H_0^1(\Omega).$$

- 2 (discretization of initial conditions $u(\mathbf{x}, 0) = u^0(\mathbf{x})$ and $u_t(\mathbf{x}, 0) = u^1(\mathbf{x})$): using a suitable discrete projection
- **i** (discretization of boundary condition $u(x, t) = 0, x \in \partial\Omega$ and $t \in (0, T)$): will be in the definition of discrete space

イロト イヨト イヨト イヨト

4 The time interval (0, T) constant step $k = T/(N+1), N \in \mathbb{N}$.

he gradient discretization Some examples on the C	S Gradient schemes for some known models	In Preparation
	00000000	

Formulation of GS for Wave equation

Weak Formulation

$$\int_{\Omega} u_{ll}(\mathbf{x},t)v(\mathbf{x})d\mathbf{x} - \int_{\Omega} \nabla u(\mathbf{x},t) \cdot \nabla v(\mathbf{x})d\mathbf{x} = \int_{\Omega} f(\mathbf{x},t)v(\mathbf{x})d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Wave equation

For any $n \in [\![1, N]\!]$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{2}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),v\right)_{\mathbb{L}^{2}(\Omega)},\ (24)$$

where ∂^2 is a discrete second time derivative.

イロト イヨト イヨト イヨト

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
		ŏo	0000 0000 0000	

Formulation of GS for Wave equation

Weak Formulation

$$\int_{\Omega} u_{tt}(\mathbf{x},t)v(\mathbf{x})dx - \int_{\Omega} \nabla u(\mathbf{x},t) \cdot \nabla v(\mathbf{x})d\mathbf{x} = \int_{\Omega} f(\mathbf{x},t)v(\mathbf{x})d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Wave equation

For any $n \in \llbracket 1, N \rrbracket$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{2}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),v\right)_{\mathbb{L}^{2}(\Omega)},\ (24)$$

where ∂^2 is a discrete second time derivative.

イロト イヨト イヨト イヨト

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
		ŏo	0000 0000 0000	

Formulation of GS for Wave equation

Weak Formulation

$$\int_{\Omega} u_{tt}(\mathbf{x},t)v(\mathbf{x})dx - \int_{\Omega} \nabla u(\mathbf{x},t) \cdot \nabla v(\mathbf{x})d\mathbf{x} = \int_{\Omega} f(\mathbf{x},t)v(\mathbf{x})d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Wave equation

For any $n \in \llbracket 1, N \rrbracket$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^{2}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)}+\left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=\left(f(t_{n+1}),v\right)_{\mathbb{L}^{2}(\Omega)},\ (24)$$

where ∂^2 is a discrete second time derivative.

(日)

			Some examples on the GS	Gradient schemes for some known models	In Preparation
			0 0 00	00000000 00000000 0000 0000 0000	
00.0	41 . 337				

Formulation of GS for Wave equation (suite)

Discrete initial conditions $u(\mathbf{x}, 0) = u^0(\mathbf{x})$ and $u_t(\mathbf{x}, 0) = u^1(\mathbf{x})$ are orthogonal projections

Find $u_{\mathcal{D}}^0 \in \mathcal{X}_{\mathcal{D},0}$ and $u_{\mathcal{D}}^1 \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\nabla_{\mathcal{D}} u^{0}_{\mathcal{D}}, \nabla_{\mathcal{D}} v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}} = -\left(\Delta u^{0}, \Pi_{\mathcal{D}} v\right)_{\mathbb{L}^{2}(\Omega)}, \ \forall v \in \mathcal{X}_{\mathcal{D},0},$$
(25)

$$\left(\nabla_{\mathcal{D}}\partial^{1}u_{\mathcal{D}}^{1},\nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}=-\left(\Delta u^{1},\Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)},\ \forall v\in\mathcal{X}_{\mathcal{D},0},$$
(26)

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			000000000	
		00	0000	
			0000	
			00000	

Error estimates for the GS for Wave equation, Bradji (NMPDE, 2013)

Theorem (Error estimates)

• Control of the error in the gradient approximation: For all $n \in [[0, N + 1]]$

$$\|\nabla_{\mathcal{D}} u_{\mathcal{D}}^n - \nabla u(t_n)\|_{\mathbb{L}^2(\Omega)^d} \leq C \exp\left(CC_{\mathcal{D}}^2\right) \left(k\|u\|_{\mathcal{C}^2(\mathbb{L}^2)} + \mathbb{E}_{\mathcal{D}}^k(u)\right),$$

• $W^{1,\infty}(0,T;L^2(\Omega))$ -estimate: For all $n \in \llbracket 1, N+1 \rrbracket$

$$\|u_t(t_n) - \partial^1 \Pi_{\mathcal{D}} u_{\mathcal{D}}^n\|_{\mathbb{L}^2(\Omega)} \leq C \left(1 + C_{\mathcal{D}} \exp\left(C_{\mathcal{D}}^2\right)\right) \left(k\|u\|_{\mathcal{C}^2(\mathbb{L}^2)} + \mathbb{E}_{\mathcal{D}}^k(u)\right),$$

where we denote by, for any function $u \in C([0,T]; H^2(\Omega))$

$$\mathbb{E}_{\mathcal{D}}^{k}(u) = \max_{j \in \{0,1\}} \max_{n \in [j,N+1]} \mathbb{E}_{\mathcal{D}}(\partial^{j}u(t_{n}))$$

$$\mathbb{E}_{\mathcal{D}}(\bar{u}) = \max\left(W_{\mathcal{D}}(\nabla\bar{u}) + 2S_{\mathcal{D}}(\bar{u}), \ C_{\mathcal{D}}W_{\mathcal{D}}(\nabla\bar{u}) + (C_{\mathcal{D}} + 1)S_{\mathcal{D}}(\bar{u})\right)$$

			Some examples on the GS	Gradient schemes for some known models	In Preparation
			0 0 00	00000000 000000000 0000 0000 0000	
00.0	41 . 337				

Error estimates for the GS for Wave equation, cf. Bradji (NMPDE, 2013)

Theorem (Error estimates (Suite))

• $L^{\infty}(0,T;L^{2}(\Omega))$ -estimate: For all $n \in [\![0,N+1]\!]$

$$\|\Pi_{\mathcal{D}} u_{\mathcal{D}}^n - u(t_n)\|_{\mathbb{L}^2(\Omega)} \leq C(1 + C_{\mathcal{D}} \exp\left(CC_{\mathcal{D}}^2\right)) \left(k\|u\|_{\mathcal{C}^2(\mathbb{L}^2)} + \mathbb{E}_{\mathcal{D}}^k(u)\right),$$

LAGA's Talk of Bradji, November 24th, 2017 Convergence rate of gradient schemes

			Some examples on the GS	Gradient schemes for some known models	In Preparation
			0 0 00	00000000 00000000 0000 0000 0000	
CR fr	- 4h - 337				

Remarks on error estimates for the GS for Wave equation

Approximation of *u* and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Wave equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to construct another scheme using the Newmark method whose the order in time is two.

			Some examples on the GS	Gradient schemes for some known models	In Preparation
			0 0 00	00000000 00000000 0000 0000 0000	
CR fr	- 4h - 337				

Remarks on error estimates for the GS for Wave equation

Approximation of *u* and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Wave equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to construct another scheme using the Newmark method whose the order in time is two.

			Some examples on the GS	Gradient schemes for some known models	In Preparation
			0 0 00	00000000 00000000 0000 0000 0000	
CR fr	- 4h - 337				

Remarks on error estimates for the GS for Wave equation

Approximation of *u* and its first derivatives

Error estimates obtained do not allow to approximate the exact solution for the Wave equation but also its first derivatives both temporal and spatial.

Possibility to improve the order in time

The convergence order in time of the suggested scheme is one. But it is possible to construct another scheme using the Newmark method whose the order in time is two.

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		0 0 00	00000000 00000000 ●000 0000 0000	

Gradient schemes for Semi-linear parabolic equations

Model to be solved:

• Equation:

$$u_t(\mathbf{x},t) - \Delta u(\mathbf{x},t) = f(\mathbf{x},t,u(\mathbf{x},t)), \ (\mathbf{x},t) \in \Omega \times (0,T).$$
(27)

Initial condition:

$$u(\boldsymbol{x},0) = u^{0}(\boldsymbol{x}), \ \boldsymbol{x} \in \Omega.$$
⁽²⁸⁾

Dirichlet boundary conditions:

$$u(\mathbf{x},t) = 0, \ (\mathbf{x},t) \in \partial\Omega \times (0,T),$$
(29)

<ロト <回 > < 回 > < 回 > < 回 >

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		o 0 00	00000000 00000000 0000 0000	
			00000	

Formulation of GS for Semi-linear Heat equation

Weak Formulation

$$\int_{\Omega} u_t(\mathbf{x},t) v(\mathbf{x}) d\mathbf{x} - \int_{\Omega} \nabla u(\mathbf{x},t) \cdot \nabla v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x},t,u(\mathbf{x},t)) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Semi-linear Heat equation

For any
$$n \in [\![0, N]\!]$$
, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that
 $\left(\partial^{1}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1}, \Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)} + \left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1}, \nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}$
 $= \left(f(t_{n+1}, \Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1}(t_{n+1})), v\right)_{\mathbb{L}^{2}(\Omega)},$
(3)

where $f(t_{n+1}, u^{n+1}(t_{n+1}))$ represents the function $\mathbf{x} \mapsto f(\mathbf{x}, t_{n+1}, \prod_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(\mathbf{x}))$

E

(日)

LAGA's Talk of Bradji, November 24th, 2017 Convergence rate of gradient schemes

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
		00	0000	
			0000	

Formulation of GS for Semi-linear Heat equation

Weak Formulation

$$\int_{\Omega} u_t(\mathbf{x},t) v(\mathbf{x}) dx - \int_{\Omega} \nabla u(\mathbf{x},t) \cdot \nabla v(\mathbf{x}) d\mathbf{x} = \int_{\Omega} f(\mathbf{x},t,u(\mathbf{x},t)) v(\mathbf{x}) d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Semi-linear Heat equation

For any
$$n \in [0, N]$$
, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that
 $\left(\partial^{1}\Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1}, \Pi_{\mathcal{D}}v\right)_{\mathbb{L}^{2}(\Omega)} + \left(\nabla_{\mathcal{D}}u_{\mathcal{D}}^{n+1}, \nabla_{\mathcal{D}}v\right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}$
 $= \left(f(t_{n+1}, \Pi_{\mathcal{D}}u_{\mathcal{D}}^{n+1}(t_{n+1})), v\right)_{\mathbb{L}^{2}(\Omega)},$
(30)

where $f(t_{n+1}, u^{n+1}(t_{n+1}))$ represents the function $\mathbf{x} \mapsto f(\mathbf{x}, t_{n+1}, \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(\mathbf{x}))$

・ロト ・回 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

LAGA's Talk of Bradji, November 24th, 2017 Convergence rate of gradient schemes

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
		00	0000	
			0000	

Formulation of GS for Semi-linear Heat equation

Weak Formulation

$$\int_{\Omega} u_t(\mathbf{x},t)v(\mathbf{x})d\mathbf{x} - \int_{\Omega} \nabla u(\mathbf{x},t) \cdot \nabla v(\mathbf{x})d\mathbf{x} = \int_{\Omega} f(\mathbf{x},t,u(\mathbf{x},t))v(\mathbf{x})d\mathbf{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Semi-linear Heat equation

For any $n \in \llbracket 0, N \rrbracket$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\begin{pmatrix} \partial^{1} \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}, \Pi_{\mathcal{D}} v \end{pmatrix}_{\mathbb{L}^{2}(\Omega)} + \left(\nabla_{\mathcal{D}} u_{\mathcal{D}}^{n+1}, \nabla_{\mathcal{D}} v \right)_{\left(\mathbb{L}^{2}(\Omega)\right)^{d}}$$

$$= \left(f(t_{n+1}, \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(t_{n+1})), v \right)_{\mathbb{L}^{2}(\Omega)},$$

$$(30)$$

where $f(t_{n+1}, u^{n+1}(t_{n+1}))$ represents the function $\mathbf{x} \mapsto f(\mathbf{x}, t_{n+1}, \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(\mathbf{x}))$.

◆□▶ ◆□▶ ◆注≯ ◆注≯ ─注

Convergence rate of gradient schemes

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	
			00000	

Formulation of GS for Semi-linear Heat equation (suite)

GS for Semi-linear Heat equation: discrete initial condition

Discrete initial condition can be defined as done for the linear case.

LAGA's Talk of Bradji, November 24th, 2017 Convergence rate of gradient schemes

				Some examples on the GS	Gradient schemes for some known models	In Preparation
				0 0 00	00000000 00000000 000● 0000 0000	
GS for	r Semi-l	linear parabolic	equations			

Error estimates for GS for Semi-linear Heat equation

Error estimates for GS for Semi-linear Heat equation

Assume that the source function $(\mathbf{x}, t, s) \mapsto f(\mathbf{x}, t, s)$ is Lipschitz continuous with respect to *s* with a constant κ independent of $(\mathbf{x}, t) \in \Omega \times (0, T)$, i.e.

 $|f(\mathbf{x},t,s) - f(\mathbf{x},t,r)| \le \kappa |s-r|, \quad \forall (s,r) \in \mathbb{R} \times \mathbb{R}, \quad \forall (\mathbf{x},t) \in \Omega \times (0,T).$ (31)

Then, we obtain convergence results similar to those obtained for the linear case.

		Some examples on the GS	Gradient schemes for some known models	In Preparation
		0 0 00	00000000 00000000 0000 0000 0000	

Gradient schemes for Semi-linear second order hyperbolic equations

Model to be solved:

• Equation:

$$u_{tt}(\boldsymbol{x},t) - \Delta u(\boldsymbol{x},t) = f(\boldsymbol{x},t,u(\boldsymbol{x},t)), \ (\boldsymbol{x},t) \in \Omega \times (0,T).$$
(32)

Initial condition:

$$u(\mathbf{x},0) = u^0(\mathbf{x})$$
 and $u_t(\mathbf{x},0) = u^1(\mathbf{x}), \ \mathbf{x} \in \Omega.$ (33)

Dirichlet boundary conditions:

$$u(\mathbf{x},t) = 0, \ (\mathbf{x},t) \in \partial\Omega \times (0,T), \tag{34}$$

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
			00000000	
		00	0000	
			0000	
			00000	

Formulation of GS for Semi-linear Wave equation

Weak Formulation

$$\int_{\Omega} u_{tt}(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x} - \int_{\Omega} \nabla u(\boldsymbol{x},t) \cdot \nabla v(\boldsymbol{x})d\boldsymbol{x} = \int_{\Omega} f(\boldsymbol{x},t,u(\boldsymbol{x},t))v(\boldsymbol{x})d\boldsymbol{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Semi-linear Wave equation

or any
$$n \in \llbracket 1, N \rrbracket$$
, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that
 $\left(\partial^2 \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}, \Pi_{\mathcal{D}} v\right)_{\mathbb{L}^2(\Omega)} + \left(\nabla_{\mathcal{D}} u_{\mathcal{D}}^{n+1}, \nabla_{\mathcal{D}} v\right)_{\left(\mathbb{L}^2(\Omega)\right)^d}$
 $= \left(f(t_{n+1}, \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(t_{n+1})), v\right)_{\mathbb{L}^2(\Omega)},$

where $f(t_{n+1}, u^{n+1}(t_{n+1}))$ represents the function $\mathbf{x} \mapsto f(\mathbf{x}, t_{n+1}, \prod_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(\mathbf{x}))$

E

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

LAGA's Talk of Bradji, November 24th, 2017 Convergence rate of gradient schemes

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
			00000000	
			0000	

Formulation of GS for Semi-linear Wave equation

Weak Formulation

$$\int_{\Omega} u_{tt}(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x} - \int_{\Omega} \nabla u(\boldsymbol{x},t) \cdot \nabla v(\boldsymbol{x})d\boldsymbol{x} = \int_{\Omega} f(\boldsymbol{x},t,u(\boldsymbol{x},t))v(\boldsymbol{x})d\boldsymbol{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Semi-linear Wave equation

For any
$$n \in \llbracket 1, N \rrbracket$$
, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that
 $\left(\partial^{2} \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}, \Pi_{\mathcal{D}} v\right)_{\mathbb{L}^{2}(\Omega)} + \left(\nabla_{\mathcal{D}} u_{\mathcal{D}}^{n+1}, \nabla_{\mathcal{D}} v\right)_{(\mathbb{L}^{2}(\Omega))^{d}}$
 $= \left(f(t_{n+1}, \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(t_{n+1})), v\right)_{\mathbb{L}^{2}(\Omega)},$
(35)

where $f(t_{n+1}, u^{n+1}(t_{n+1}))$ represents the function $\mathbf{x} \mapsto f(\mathbf{x}, t_{n+1}, \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(\mathbf{x}))$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

LAGA's Talk of Bradji, November 24th, 2017 Convergence rate of gradient schemes

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
			00000000	
			0000	

Formulation of GS for Semi-linear Wave equation

Weak Formulation

$$\int_{\Omega} u_{tt}(\boldsymbol{x},t)v(\boldsymbol{x})d\boldsymbol{x} - \int_{\Omega} \nabla u(\boldsymbol{x},t) \cdot \nabla v(\boldsymbol{x})d\boldsymbol{x} = \int_{\Omega} f(\boldsymbol{x},t,u(\boldsymbol{x},t))v(\boldsymbol{x})d\boldsymbol{x}, \quad \forall v \in H_0^1(\Omega).$$

GS for Semi-linear Wave equation

For any $n \in [\![1, N]\!]$, find $u_{\mathcal{D}}^{n+1} \in \mathcal{X}_{\mathcal{D},0}$ such that

$$\left(\partial^2 \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}, \Pi_{\mathcal{D}} v \right)_{\mathbb{L}^2(\Omega)} + \left(\nabla_{\mathcal{D}} u_{\mathcal{D}}^{n+1}, \nabla_{\mathcal{D}} v \right)_{\left(\mathbb{L}^2(\Omega)\right)^d}$$

$$= \left(f(t_{n+1}, \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(t_{n+1})), v \right)_{\mathbb{L}^2(\Omega)},$$

$$(35)$$

where $f(t_{n+1}, u^{n+1}(t_{n+1}))$ represents the function $\mathbf{x} \mapsto f(\mathbf{x}, t_{n+1}, \Pi_{\mathcal{D}} u_{\mathcal{D}}^{n+1}(\mathbf{x}))$.

LAGA's Talk of Bradji, November 24th, 2017

Convergence rate of gradient schemes

		Some examples on the GS	Gradient schemes for some known models	In Preparation
			00000000	
			00000000	
			0000	
			00000	

Formulation of GS for Semi-linear Wave equation (suite)

GS for Semi-linear Wave equation: discrete initial conditions

Discrete initial conditions can be defined as done for the linear case.

LAGA's Talk of Bradji, November 24th, 2017 Convergence rate of gradient schemes

				Some examples on the GS	Gradient schemes for some known models	In Preparation
				0 0 00	00000000 00000000 0000 0000 0000	
GS for Ser	mi-linear second ord	ler hyperbolic	equations			

Error estimates for GS for Semi-linear Wave equation

Error estimates for GS for Semi-linear Wave equation

Assume that the source function $(x, t, s) \mapsto f(x, t, s)$ is Lipschitz continuous with respect to *s* with a constant κ independent of $(x, t) \in \Omega \times (0, T)$, i.e.

 $|f(\mathbf{x},t,s) - f(\mathbf{x},t,r)| \le \kappa |s-r|, \quad \forall (s,r) \in \mathbb{R} \times \mathbb{R}, \quad \forall (\mathbf{x},t) \in \Omega \times (0,T).$ (36)

Then, we obtain convergence results similar to those obtained for the linear case.

			Some examples on the GS	Gradient schemes for some known models	In Preparation
			0 0 00	00000000 00000000 0000 0000 0000	
00.0	D 1 1	1. 11			

GS for a Time Dependent Joule Heating system

Problem to be solved: Time Dependent Joule Heating system (TDJAS)

Model to be solved: We seek a couple of real valued functions (u, φ) defined on $\Omega \times [0, T]$ and satisfying:

1 Temperature equation:

$$u_t(\mathbf{x},t) - \Delta u(\mathbf{x},t) = \kappa(u(\mathbf{x},t)) \left| \nabla \varphi \right|^2(\mathbf{x},t), \quad (\mathbf{x},t) \in \Omega \times (0,T), \quad (37)$$

2 Electric potential equation:

$$-\nabla \cdot \left(\kappa(u(\boldsymbol{x},t))\nabla\varphi\right)(\boldsymbol{x},t) = 0, \quad (\boldsymbol{x},t) \in \Omega \times (0,T),$$
(38)

3 An initial condition is given by:

$$u(\mathbf{x},0) = u^0(\mathbf{x}), \ x \in \Omega, \tag{39}$$

4 Dirichlet boundary conditions:

$$u(\mathbf{x},t) = 0 \text{ and } \varphi(\mathbf{x},t) = g(\mathbf{x},t), \ (\mathbf{x},t) \in \partial\Omega \times (0,T).$$
 (40)

Э

					Some examples on the GS	Gradient schemes for some known models	In Preparation
					0 0 00	00000000 00000000 0000 0000	
						0000	
GS fo	r a Time	e Dependent Jou	le Heating sy	stem			

Some physics on TDJHS

Some physics on TDJHS

The nonlinear system models electric heating of a conducting body, where u is the temperature, φ is the electric potential.

					Some examples on the GS	Gradient schemes for some known models	In Preparation
					0 0 00	00000000 00000000 0000 0000 0000	
GS for	r a Time	e Dependent Jou	le Heating sy	stem			

An assumption

Assumption on the function κ

We assume that the function κ is satisfying $\kappa \in C^2(\mathbb{R})$ and that for some two positive constants K_1 and K_2 , we have for all $s \in \mathbb{R}$

$$K_1 < \kappa(s) + |\kappa'(s)| + |\kappa''(s)| \le K_2.$$
(41)

				Some examples on the GS O O OO	Gradient schemes for some known models	
GS for a Tin	ne Dependent Jou	le Heating sy	stem			
Some	literatu	re				

- Bradji, A., Herbin, R.: Discretization of coupled heat and electrical diffusion problems by finite–element and finite-volume methods. IMA J. Numer. Anal. 28/3, 469–495 (2008).
- Elliott, Ch.M., Larsson, S.: A finite element model for the time-dependent Joule heating problem. Math. Comput. 64/112, 1433–1453 (1995).
- Glitzky, A., Gärtner, K.: Energy estimates for continuous and discretized electro-reaction-diffusion systems. Nonlinear Anal. 70, 788–805 (2009).
- Li, B., Sun, W.: Error analysis of linearized semi implicit Galerkin finite element methods for non linear parabolic equations. International Journal of Numerical Analysis and Modeling. 10/3 622–633 (2013).

イロト (同) (三) (三)

					Some examples on the GS	Gradient schemes for some known models	In Preparation
						00000000	
						00000000	
					00	0000	
						0000	
						00000	
GS fo	r a Time	Dependent Jou	le Heating sy	stem			

GS for TDJHS

Till now

A formulation for the GS can constructed as for semilinear heat equation. However, the convergence order is not yet well proved

LAGA's Talk of Bradji, November 24th, 2017 Convergence rate of gradient schemes

		Some examples on the GS		In Preparation
			00000000	
			00000000	
		00	0000	
			0000	
			00000	

First work

Proof of the convergence rate for TDJHS..

Second work

GS for
$$p(\mathbf{x})$$
-Laplacian $-\nabla \cdot (|\nabla u(\mathbf{x})|^{p(\mathbf{x})-2} \nabla u(\mathbf{x})) = f(\mathbf{x})$: with WIAS.

Third work

FV for a Coupled system of a Darcy equation and a parabolic equation: joint work with Fayssal B. (LAGA).

		Some examples on the GS		In Preparation
			00000000	
			00000000	
		00	0000	
			0000	
			00000	

First work

Proof of the convergence rate for TDJHS..

Second work

GS for
$$p(\mathbf{x})$$
-Laplacian $-\nabla \cdot (|\nabla u(\mathbf{x})|^{p(\mathbf{x})-2} \nabla u(\mathbf{x})) = f(\mathbf{x})$: with WIAS.

Third work

FV for a Coupled system of a Darcy equation and a parabolic equation: joint work with Fayssal B. (LAGA).

		Some examples on the GS		In Preparation
			00000000	
			00000000	
		00	0000	
			0000	
			00000	

First work

Proof of the convergence rate for TDJHS..

Second work

GS for
$$p(\mathbf{x})$$
-Laplacian $-\nabla \cdot (|\nabla u(\mathbf{x})|^{p(\mathbf{x})-2} \nabla u(\mathbf{x})) = f(\mathbf{x})$: with WIAS.

Third work

FV for a Coupled system of a Darcy equation and a parabolic equation: joint work with Fayssal B. (LAGA).

		Some examples on the GS		In Preparation
			00000000	
			00000000	
		00	0000	
			0000	
			00000	

First work

Proof of the convergence rate for TDJHS..

Second work

GS for
$$p(\mathbf{x})$$
-Laplacian $-\nabla \cdot (|\nabla u(\mathbf{x})|^{p(\mathbf{x})-2} \nabla u(\mathbf{x})) = f(\mathbf{x})$: with WIAS.

Third work

FV for a Coupled system of a Darcy equation and a parabolic equation: joint work with Fayssal B. (LAGA).