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Aim of the presentation

The aim of this talk is to establish a finite volume scheme along with a convergence
analysis for a Second Order Hyperbolic Equation with a Several Time Independent
Delays.
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Plan of this presentation

1 Problem to be solved

2 References

3 Introduction: Finite Volume methods from Admissible to Nonconforming
meshes (SUSHI scheme)

4 Finite Volume scheme for a Second Order Hyperbolic Equation with a Several
Time Independent Delays

5 Convergence analysis for the numerical scheme

6 Conclusion and Perspectives
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Problem to be solved

Equation

Second Order Hyperbolic Equation with several time Independent delays, see
Nicaise et al. (SIAM J. Control Optim. 45/5, 2006 ) and Parhi-Kirane (1994),
(x, t) ∈ Ω× (0, T):

utt(x, t)−∆u(x, t) + α0ut(x, t) + α1ut(x, t − τ1) + α2ut(x, t − τ2)

+ β0u(x, t) + β1u(x, t − τ3) + β2u(x, t − τ4) = f (x, t), (1)

where Ω is an open polygonal bounded subset in IRd, f is a given function defined on
Ω× (0, T), and T > 0, α0, α1, α2, β0, β1, β2 ≥ 0, τ1, τ2, τ3, τ4 > 0 are given.

The positive values τi called the delays.
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Problem to be solved (Suite)

Initial conditions

u(x, 0) = u0(x) and ut(x, t) = u1(x, t), x ∈ Ω, −τ ≤ t ≤ 0, (2)

where u0 and u1 are two given functions defined respectively on Ω and Ω× (−τ, 0)
with

τ = max{τ1, τ2, τ3, τ4}.

Homogeneous Dirichlet boundary

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (3)
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What about Delay Differential Equations?

What about Delay differential equations?

Some physics

Delay differential equations occur in many applications such as ecology and biology.
They have long played important roles in the literature of theoretical population
dynamics, and they have been continuing to serve as useful models.
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Introduction: Finite Volume from Admissible meshes to Nonconforming
meshes

Finite volume methods are numerical methods approximating different types of
Partial Differential Equations (PDEs). They are based on three principle ideas:

Subdivision of the spatial domain into subsets called Control Volumes.

Integration of the equation to be solved over the Control Volumes.

Approximation of the derivatives appearing after integration.

1We mean here the ”pure“ finite volume methods and not finite volume-element methods
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Introduction (suite): Finite Volume from Admissible meshes to
Nonconforming meshes

Finite Volume methods passed by two steps:

First step

Finite Volume methods using Admissible meshes.

Second step

SUSHI method.
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Definition

Let T be an Admissible Mesh in the sense of Eymard et al. (Handbook, 2000).

K ∈ T are the control volumes and σ are the edges of the control volumes K.

Figure: transmissivity between K and L: Tσ = TK|L =
mK,L
dK,L
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Main properties of Admissible mesh:

1 Convexity of the Control Volumes.

2 The orthogonality property: the (xKxL) is orthogonal to the common edge σ
between the control volumes K and L.
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Model to be solved:

−∆u(x) = f (x), x ∈ Ω and u(x) = 0, x ∈ ∂Ω. (4)

Principles of Finite Volume scheme:

1 Integration on each control volume K :−
∫

K
∆u(x)dx =

∫
K

f (x)dx,

2 Integration by Parts gives :−
∫
∂K
∇u(x) · n(x)dγ(x) =

∫
K

f (x)dx

3 Summing on the lines of K: −
∑
σ∈EK

∫
σ

∇u(x) · n(x)dγ(x) =

∫
K

f (x)dx
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Approximate Finite Volume Solution uT = (uK)K

−
∑
σ∈EK

m(σ)

dK|L
(uL − uK) =

∫
K

f (x)dx. (5)

Matrix Form

AT uT = fT .
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Theorem

Let X (T ): functions which are constant on each control volume K. Let eT ∈ X (T )
be defined by eK = u(xK)− uK for any K ∈ T . Assume that the exact solution u
satisfies u ∈ C2(Ω). Then the following convergence results hold:

1 H1
0 -error estimate

‖eT ‖1,T ≤ Ch‖u‖2,Ω, (6)

where ‖ · ‖1,T is the H0
1 -norm ‖eT ‖2

1,T =
∑

σ=K|L∈E

m(σ)

dσ
(uL − uK)2.

2 L2-error estimate:

‖eT ‖L2(Ω) ≤ Ch‖u‖2,Ω. (7)
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Finite Volume methods using nonconforming grids, SUSHI scheme

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI scheme

Definition (New mesh of Eymard et al., IMAJNA 2010)

Figure: Notations for two neighbouring control volumes in d = 2
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Finite Volume methods using nonconforming grids, SUSHI scheme

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI scheme

Main properties of this new mesh:

1 (mesh defined at any space dimension): Ω ⊂ IRd, d ∈ IN

2 (orthogonality property is not required): the orthogonality property is not
required in this new mesh. But, additional discrete unknowns are required.

3 (convexity): the classical admissible mesh should satisfy that the control
volumes are convex, whereas the convexity property is not required in this new
mesh.
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Finite Volume methods using nonconforming grids, SUSHI scheme

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI scheme

Principles of discretization for Poisson’s equation:
1 Discrete unknowns: the space of solution as well as the space of test functions

are in

XD,0 = {
(
(vK)K∈M , (vσ)σ∈E

)
, vK , vσ ∈ IR, vσ = 0, ∀σ ∈ Eext}

2 Discretization of the gradient: the discretization of∇ can be performed using a
stabilized discrete gradient denoted by∇D , see Eymard et al. (IMAJNA, 2010):

1 The discrete gradient ∇D is stable

2 The discrete gradient ∇D is consistent.
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Finite Volume methods using nonconforming grids, SUSHI scheme

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI

Weak formulation for Poisson’s equation: Find u ∈ H1
0(Ω) such that

∫
Ω

∇u(x) · ∇v(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ H1
0(Ω). (8)

SUSHI (Scheme Using stabilized Hybrid Interfaces) for Poisson’s equation: Find
uD ∈ XD,0 such that

∫
Ω

∇DuD(x) · ∇Dv(x)dx =

∫
Ω

f (x)v(x)dx, ∀v ∈ XD,0. (9)
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Finite Volume methods using nonconforming grids, SUSHI scheme

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI

Theorem

Assume that the exact solution u satisfies u ∈ C2(Ω). Then the following convergence
result hold:

1 H1
0 -error estimate

‖∇u−∇DuD‖L2(Ω)d ≤ Ch‖u‖2,Ω. (10)

2 L2-error estimate:

‖u−ΠMuD‖L2(Ω) ≤ Ch‖u‖2,Ω. (11)
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Principles of the discretization

Definition of a discretization in time and its parameters

The time discretization is performed with a constrained time step-size k such
that

τ

k
∈ IN. We set then k =

τ

M
, where M ∈ IN \ {0}. We denote by ∂1 the

discrete first time derivative given by ∂1vj+1 =
vj+1 − vj

k
.

The discrete second time derivative ∂2vj+1 = ∂1(∂1vj+1).

Denote by N the integer part of
T
k

, i.e. N =

[
T
k

]
.

We shall denote tn = nk, for n ∈ J−M,NK.

Advantages of this time discretization

The point t = 0 is a mesh point which is suitable since we have equation (1) defined
for t ∈ (0, T) and initial condition (2) defined for t ∈ (−τ, 0).
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Principles of the discretization (suite)

Discretization in space

We use SUSHI scheme
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Formulation of scheme

The set of unknowns

The unknowns of this scheme are {un
D; n ∈ J−M,NK}.

The set of unknowns

These unknowns are expected to approximate the unknowns {u(tn); n ∈ J−M,NK}.

Approximation of initial conditions (2)

Find un
D for n ∈ J−M, 0K such that for all v ∈ XD,0, for all n ∈ J−M + 1, 0K

〈u0
D, v〉F = −

(
∆u0,ΠMv

)
L2(Ω)

(12)

and

〈∂1un
D, v〉F = −

(
∆u1(tn),ΠMv

)
L2(Ω)

. (13)
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Formulation of scheme (Suite)

Approximation of (1) and (3)

For any n ∈ J0,N − 1K, find un+1
D ∈ XD,0 such that, for all v ∈ XD,0(

∂2ΠMun+1
D ,ΠMv

)
L2(Ω)

+ 〈 un+1
D , v〉F + α0

(
∂1ΠMun+1

D ,ΠMv
)
L2(Ω)

+ α1

(
∂1ΠMun+1−M1

D ,ΠMv
)
L2(Ω)

+ α2

(
∂1ΠMun+1−M2

D ,ΠMv
)
L2(Ω)

+ β0

(
ΠMun+1

D ,ΠMv
)
L2(Ω)

+ β1

(
ΠMun+1−M3

D ,ΠMv
)
L2(Ω)

+ β2

(
ΠMun+1−M4

D ,ΠMv
)
L2(Ω)

= (f (tn+1),ΠMv)L2(Ω) , (14)

where, for i ∈ {1, 2, 3, 4}, Mi =
[τi

k

]
.
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Useful Assumption

Assumption (Assumption on the time step k)

k < min{τ1, τ2, τ3, τ4}. (15)

This implies that Mi ≥ 1, for all i ∈ {1, 2, 3, 4}.
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Statement of the convergence results

Theorem (Error estimates)

We assume that u is sufficiently smooth.

L∞(H1
0)–estimate. For all n ∈ J−M,NK

‖∇Dun
D −∇u(tn)‖L2(Ω) ≤ C(k + hD). (16)

W1,2(L2)–estimate.(
N∑

n=−M+1

k
∥∥∥ut(tn)−ΠM∂

1un
D

∥∥∥2

L2(Ω)

) 1
2

≤ C(k + hD). (17)
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Idea on the proof

The proof is manly based on two facts:

Comparison with an optimal scheme : for any n ∈ J 0,N + 1K, find ūn
D ∈ XD,0

such that

(∇D ūn
D,∇D v)

(L2(Ω))d = −
∑

K∈M

vK

∫
K

∆u(x, tn)dx, ∀ v ∈ XD,0. (18)

A convenient a priori estimate.
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Conclusion

First result obtained

We developed a new finite volume scheme for a second hyperbolic equation with
several time independent delays. These delays are involved in both the the exact
solution and its time derivative.

Second result obtained

The order is proved to be one in time and one in space.

The third result obtained

The analysis is performed in several discrete norms.
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Perspectives

First perspective

The use of Crank Nicolson method in order to improve the order in time.
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Perspectives

Second perspective

Extension to the the case when the right hand side involves the exact solution and its
gradient

Third perspective

Delays are not numbers but functions depending on t (time dependent delays).
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