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Aim and Abstract of this presentation

The aim of this work is to establish a second order time accurate finite volume
scheme for a Time Fractional Diffusion-Wave equation. The discretization in space is
performed using SUSHI (Scheme Using Stabilization and Hybrid Interfaces)
developed recently in Eymard et al. (IMA J. Numer. Anal., 30/4, 2010).

The approach followed is to write the Time Fractional Diffusion-Wave equation as a
system of two low order differential equation and to apply the scheme of Alikhanov
(J. Comput. Phys., 280, 2015.
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Discretization in space:

An overview on the standard Finite Volume methods (Admissible Meshes) (Eymard
et al., Handbook 2000)

SUSHI method (Eymard et al., IMAJNA 2010).

Formulation of a second order time accurate Finite Volume scheme for a time
fractional diffusion equation A

Statement of the Convergence Rate of the numerical scheme
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Conclusion and Perspectives
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Equation to be solved

Equation

We consider the following Time Fractional Diffusion-Wave equation:
Fu(x, 1) — Au(x, 1) =f(x,1), (x,1) € Q2x(0,T), €]

where € an open polygonal bounded subset in R? and 1 < o < 2. The operator 9
is the Caputo derivative:

8% u(r) = ﬁ /0 (6 — ) (s)ds. @

Initial conditions

Initial conditions are given by u(x,0) = u°(x) and u,(x, 0) = ' (x), for all x € Q2

Homogeneous Dirichlet boundary

u(x,r) =0, (x,1) € 92 x (0,7T).
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‘What about Fractional differential equations?

What about Fractional differential equations?

Some physi

Fractional differential equations have been successfully used in the modeling of
many different processes and systems. They are used, for instance, to describe
anomalous transport in disordered semiconductors, penetration of light beam through
a turbulent medium, transport of resonance radiation in plasma, blinking fluorescence
of quantum dots, penetration and acceleration of cosmic ray in the Galaxy, and
large-scale statistical Cosmography.

The TFDWE (Time Fractional Diffusion-Wave Equation) can be used to model the
propagation of mechanical waves in viscoelastic media, see Jin et al. (Siam J. Sci.
Comp., 38/1, 2016).

We refer to the monograph Uchaikin (Fractional Derivatives for Physicists and
Engineers, Springer-Verlag Heidelberg, 2013) where we find many details.

LSSC2019 Talk of Benkhaldoun and Bradji, June 10th-2019

Finite Volumes for Time Fractional Diffusion-Wave
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Principles of the time discretization

Principles of the time discretization

Steps of Discretization in time

m First step: Definition of mesh points. We define k = T/(M + 1) and mesh
points £, = nk. We denote by ' and &? the discrete first time derivative and
discrete second time derivative given respectively by

Vil

gy
> = .

1+l _
oV = =

and &1 =9V

m Second step: Equation to be solved on the mesh points. Writing (1) with
t =tito = (n+ o)k =t, + ok with 0 < o < 1 will be chosen later (recall that
1 < a < 2) under the system:

8?_Iﬁ(ln+0) — Au(tuyo) =f(taro) and U(twio) = wi(tuto). (3)
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Principles of the time discretization

Principles of the time discretization (Suite)

n time (Suite)

m Third step: Principle idea of a second order approximation 9% '7(f,+, ) (Idea
of Alikhanov and Gao et al.). We write 0%~ '#(#,+1) as (Notation 8 = a — 1)

ﬁ jz_;/z,-j, (taro — ) Pus(s)ds + /tn+0 (turo — ) Pay(s) | ds.

“

For each j € [1,N + 1], let I, ;i be the quadratic interpolation defined on
(t—1, 1) on the points #;_1, #;, t;+1 of #. An explicit expansion for I, ju’ yields:

0"u(ti1) + 0°u(t41) (S - f_,ﬁ) = 0'u() + 0"u(tj1) (s - t,-_%) - ®
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Principles of the time discretization

Principles of the time discretization (Suite)

Steps of Discretiza n time (Suite)

m Fifth step: Computation of a second order approximation for (’),‘317(1,,+(,). When
approximating the terms of the sum (resp. the last term) using quadratic
interpolations (resp. a linear interpolation) in (4) of 8,’3 U(tnto ), We have to
compute the following integrals:

1. First set of integrals:

1 K28
— — -5 = —_p° .
/1.71 (S tj,%) (tn+o' S) dS 1— ,6 n—js (6)
where
o 1 _ _
b = ﬂ((l+a+1)2 F_(I+0)? 3)

% ((1+a+ )'f 4+ (l+o)1*ﬁ) .
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Principles of the time discretization

Principles of the time discretization (Suite)

ime (Suite)

m Fifth step: Computation of a second order approximation for OI‘HH(I,,H,) (Suite).
2. Second set of integrals:

G s K=
(tryo —s) "ds = lidnﬂrfj,[% (®)
B —B
with, for all s > 0, d;, is given by
dyo = (s+1)'7° — 5", )

3. Third set of integrals:

In+o 1-B
/ (tn+0’ - s)iﬂds = 11677/80'176. (10)
I 7
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Formulation of a second order approximation for fractional derivative

Formulation of a second order approximation for 8? U(tyto)

Formulation of a second order ap

We then obtained approximation for the fractional derivative 8,5 U(ty+o) using
(4)—(10). This approximation is of order two if

6 3 «
P2 a 1
a 2-272° an

This approximation is given by

1 n
N5 | &

J=1

"t p kl—;fi
/ (tn+rr — S)_d (Hz}_,’ﬁ(S))/ ds + mgl_ﬂalﬁ(nﬂ»l)
ti—1

J

= > kxTo'a(). 12)

Jj=0

n
Let us denote A, 41 = Z kN0 (141).

j=0
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Formulation of a second order approximation for fractional derivative

Properties of the time approximation

Recall that

Anoli =Y kN0 A(t141) = O Aty o).

=0

1. Properties of )\j'-’“.

T!-8

ZkAnJrl < F 2 ﬂ Zk)\nJrl ( _/B)

and

1
PYARISSD VAN VAR P

2T°0(1 - )

Conclusion and Perspecti

(13)
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Formulation of a second order approximation for fractional derivative

Properties of the time approximation (Suite)

Properties of the time approximation (Suite)

» N+ N2
2. Stability result. For all ('y’ ) € R, forany n € [0,N + 1]:

(v + (1= o)") Z N =) 2 Z V- 0.

3. Consistency result. For any ¢ € C* ([0, T]):

‘8£50(tn+0') - An+0§0’ S Ck3_ﬁ ‘(p(’j)’ (14)

e(o,m)
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A second order approximation for the equation on the time mesh points

Formulation of a suitable approximation for 9 (fy1) — Au(tnse) = f(tnso)

Formulation of a suitable approximation for nto) — Au(tato) = ftnto)-

m First fact. As justified before

O ltrea) = KN 0 T(541) + O, 0

=0

m Second fact. Using a Taylor expansion yields

Al(tnso) = 0AU(tar1) + (1 — 0) Au(t,) + OK). (16)

From (15) and (16), we deduce that

S RN A1) — o Aultirs) — (1 — 0)Aulta) = F(tnra) + OG). (A7) €2

j=0
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A second order approximation for the equation on the time mesh points

Formulation of a suitable approximation for 8? U(tnto) — Au(tyre) = fthro)

(Suite)

Formulation of a suitable approximation for 9, %(tw+o) — Au(tnto) = f(futo)

Recall that

D kX0 A1) — o Au(trr) — (1 — 0)Auts) = f(taro) + OK).  (18)

Jj=0

The derivative %(ty+o) = u;(tn+o ) is approximated by

(20 + Du(tyg1) — dou(tn) + 20 — 1)u(ta—1) — Ttnro) + (’)(kz). (19) ﬂ

2k
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Introduction

Introduction: Finite Volume from Admissible meshes to Nonconforming
meshes

Finite volume methods are numerical methods approximating different types of
Partial Differential Equations (PDEs). They are based on three principle ideas:

m Subdivision of the spatial domain into subsets called Control Volumes.
m Integration of the equation to be solved over the Control Volumes.

m Approximation of the derivatives appearing after integration.
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Introduction

Introduction (suite): Finite Volume from Admissible meshes to
Nonconforming meshes

Finite Volume methods passed by two steps:
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Introduction

Introduction (suite): Finite Volume from Admissible meshes to
Nonconforming meshes

Finite Volume methods passed by two steps:

First step

Finite Volume methods using Admissible meshes.

LSSC2019 Talk of Benkhaldoun and Bradji, June 10th-2019

Finite Volumes for Time Fractional Diffu
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Introduction

Introduction (suite): Finite Volume from Admissible meshes to
Nonconforming meshes

Finite Volume methods passed by two steps:

First step

Finite Volume methods using Admissible meshes.

Second step

SUSHI method.

LSSC2019 Talk of Benkhaldoun and Bradji, June 10th-2019

Finite Volumes for Time Fractional Diffu
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Definition
Let 7 be an Admissible Mesh in the sense of Eymard et al. (Handbook, 2000).

K € T are the control volumes and o are the edges of the control volumes K.

mg L
dk.,L

Figure : transmissivity between K and L: To = T, =
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Main properties of Admissible mesh:

Convexity of the Control Volumes.

The orthogonality property: the (xxx.) is orthogonal to the common edge o
between the control volumes K and L.
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Model to be solved:

—Au(x) =f(x), x€Q and u(x)=0, x € 0. (20)

Principles of Finite Volume scheme:

Integration on each control volume K :— / Au(x)dx = / f(x)dx,
K K

Integration by Parts gives :— Vu(x) - n(x)dvy(x) = /f(x)dx
oK K

Summing on the lines of K: — Z Vu(x) -n(x)dy(x) = /f(x)dx AA

occ&x V7
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Approximate Finite Volume Solution u1 = (ux)x

-3 M(uL—uK) = /Kf(x)dx. (1)

d
o€k KlL
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods on admissible meshes

Let X(T): functions which are constant on each control volume K. Let e € X(T)
be defined by ex = u(xx) — ug for any K € T. Assume that the exact solution u
satisfies u € CZ(Q). Then the following convergence results hold:

Hy-error estimate
ler[l,7 < Chllull, 5 22)

() 2

(ML — MK) o

1,7 is the HY-norm ||e7||i.+ = Z

o=K|LEE

where || - |
(ed

L*-error estimate:

leTllr20) < Chllull,q- (23)
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI scheme

Definition (New mesh of Eymard et al., IMAJNA 2

Figure : Notations for two neighbouring control volumes in d = 2
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI scheme

Main properties of this new mesh:

(mesh defined at any space dimension): Q2 C RY,d € N

(orthogonality property is not required): the orthogonality property is not
required in this new mesh. But, additional discrete unknowns are required.

(convexity): the classical admissible mesh should satisty that the control
volumes are convex, whereas the convexity property is not required in this new
mesh.




im and Abstract... Plan... Equation to be solved R ) a 5 inspace  Convergenc Conclusion and Pers|

000000080000

Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI scheme

Principles of discretization for Poisson’s equation:

Discrete unknowns: the space of solution as well as the space of test functions
are in

XD,O = {((VK)KGM P (Vo)geg) , VKk,Vo €R, vy =0, Vo € gext}

Discretization of the gradient: the discretization of V can be performed using a
stabilized discrete gradient denoted by Vp, see Eymard et al. (IMAJNA, 2010):

The discrete gradient Vo is stable

The discrete gradient Vp is consistent.
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods using nonconforming grids,
SUSHI

Weak formulation for Poisson’s equation: Find u € H{} () such that

/Vu - Vv(x dx—/f x)dx, Vv e Hy(Q). (24)

SUSHI (Scheme Using stabilized Hybrid Interfaces) for Poisson’s equation: Find
up € Xp, such that

/ Vopup(x) - Vpv(x)dx = /f x)dx, Yv € Xpy. (25
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Finite Volume methods on admissible meshes

Introduction (suite): Finite Volume methods using nonconforming grids,

SUSHI

Theorem

Assume that the exact solution u satisfies u € C*(Q). Then the following convergence
result hold:

H(l)-error estimate
|Vu — V'DMD”LZ(Q)d < Ch”u”z’ﬁ. (26)
L?-error estimate:

[l = Taup |20y < Chljully o @n
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Finite Volume methods on admissible meshes

Discretization in space

We use SUSHI scheme

Main properties of this new mesh:

(mesh defined at any space dimension): Q@ C R?, d € N

(orthogonality property is not required): the orthogonality property is not
required in this new mesh. But, additional discrete unknowns are required.

(convexity): the classical admissible mesh should satisty that the control
volumes are convex, whereas the convexity property is not required in this new .L\ A
mesh.
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Finite Volume methods on admissible meshes

Discretization in space for Time Fractional Diffusion-Wave equation, using
SUSHI

Discrete unknowns: the space of solution as well as the space of test functions
are in

Xpo = {((VK)KEM , (vg)geg) , Vk, Vo ER, vo =0, Vo € Eexi}

Discretization of the gradient: the discretization of V can be performed using a
stabilized discrete gradient denoted by Vp, see Eymard et al. (IMAJNA, 2010):

The discrete gradient Vp is stable

The discrete gradient Vp is consistent.
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Formulation of a finite volume scheme

Formulation of scheme

The finite volume scheme can then be defined as:

1. Discretization of initial conditions: Find u%, % € Xp o such that, for all

vE Xppo

(Voud, Vo) = (A, g V)Lz(m 28)
and

(vpu‘;;, Vo v) T (Au‘,n " V>ﬂﬂ<m : (29)

2. Discretization of the time factional diffusion equation. For any n € [0, N], find
U @ € Xp o such that, for all v € Xp g
Z X_z+l (H M(ﬁﬂrl . ﬁ/ ) 11 ‘\/l") + (vDunJra VDV) LA
v J D D)y D L2(Q
P @ JAYA
= (f(fn+(r)7 H/\/l V)]LZ(Q) 5
+

L2(Q)

where v+ is the two-point barycentric element o' "' + (1 — o')v".
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Formulation of a finite volume scheme

Formulation of scheme (Suite)

3. Discretization of the derivatives u(fy4o) = t:(trto)-

=0'uh (31)

Q-

u

and

1
Tl ¥ = 5 ((Z(r+ D™ — doulp + (20 — l)u'gl> , Vn € [1,N].
(32
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Convergence result

Theorem (L™ (H") and H' (L?)-error estimates)

The following L™ (H") and H' (L*)—error estimates hold:

N+1

Convergence results ~ Conclusion and Perspectives

N+1 n —n 2
max ||Vpup — Vu(ta)|| 20 + (Z k|| T pmip — Mf(tn)HLZ(Q))

n=0
< C(hp + kZ)H””c“(o,T; c2())-

=




Aim and Abstract... Plan... Equation to be solvec s ation in time  Discretization in s Convergence results  Conclusion and Perspectives

Idea on the proof

Idea on the proof

Comparison with an auxiliary schemes: For any n € [0, N + 1], find
2D, Y'p € Xp o such that

(Vo=, VD) 12(0y¢ = = (A1), Tlow) 30 (34)
and
(Y5, Vo v)<]L2(Q))d = — (Aw(tn), HDV)L2<Q) ,  YveE Xpy. (35)

A well developed discrete a priori estimate.
Other technical details can be found in Proceedings LSSC2019.

LSSC2019 Talk of Benkhaldoun and Bradji, June 10th-2019

Finite Volumes for Time F nal Diffusion-Wave Equation
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Conclusion

Conclusion

Conclusion

Using an equivalent system of low order equations for TFDWE, we established a
second order time accurate finite volume scheme a stable and consistent discrete
gradient. The time discretization uses the approximation of Caputo derivative of
order 0 < 8 < 1 developed in Alikhanov (J. Comp. Phy, 2015). We proved the
convergence under the strong regularity assumption C4(C 2). This regularity can be
weakened to C*(H?) in the particular cases when d = 2 or d = 3. The convergence
stated in this note includes a convergence in L> (H') and H' (L?) discrete
semi-norms.




Aim and Abstract Plan Equation to be i ] ization in time ~ Discretization in space C gence results — Conclusion and Perspectives

Perspectives

Perspectives

First perspective

We detail this note in a full future paper.

L 19 Talk of Benkhaldoun and Bradji, June 10th-2019

Finite Volumes for Time ional Diffusion-Wave Equation
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Perspectives

Perspectives

First perspective

We detail this note in a full future paper.

Second perspective

Address the case of TFDWE with variable coefficients.

2019 Talk of Benkhaldoun and Bradji, June 10th-2019
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