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Aim of the presentation

We prove a new error estimate for a Lowest Order Raviart-Thomas Mixed method
combined with the Crank-Nicolson method for Parabolic equations. This new
convergence result states the convergence rate towards the “velocity” P(t) = −∇u(t)
in the norm of L2(Hdiv)
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Plan of this presentation

1 Problem to be solved

2 Space and time discretizations

3 Formulation of the scheme (based on Lowest Order Raviart-Thomas Mixed
method combined with the Crank Nicolson finite difference method)

4 Known convergence results and a novel error estimate

5 Conclusion and Perspectives
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Problem to be solved

Equation

Heat equation:

ut(x, t)−∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T), (1)

where Ω ⊂ IRd is an open domain of IRd, f is given function, and T > 0 is given.

Initial conditions

u(x, 0) = u0(x), x ∈ Ω. (2)

Homogeneous Dirichlet boundary

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T). (3)
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About Heat equation?

Some physics

Heat equation ut −∆ u is typically used in different applications, such as fluid
mechanics, heat and mass transfer,...

Existence and uniqueness

Existence and uniqueness of a weak solution of heat equation, with (2) ( initial
condition) and (3) ( Dirichlet boundary condition) can be formulated using Bochner
spaces; see for instance Evans book of partial differential equation
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Space and time discretizations

Space and time discretizations

Space discretization

We define the lowest order Raviart-Thomas Mixed FE spaces:

Vdiv
h = {v ∈ Hdiv(Ω) : v|K ∈ D0, ∀K ∈ Th}, (4)

where Th is a family of triangulations of Ω with d-simplex and

Wh = {p ∈ L2(Ω) : p|K ∈ P0, ∀K ∈ Th}, (5)

where P0 is the space of constant functions and D0 = (P0)
d ⊕ xP0.
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Space and time discretizations

Time discretization

We consider constant time step k =
T

N + 1
, where N ∈ IN?. The mesh points are

denoted by tn = nk, for n ∈ J0,N + 1K.

Discrete temporal derivative

∂1vn+1 =
vn+1 − vn

k
.

Arithmetic mean value:

vn+ 1
2 =

vn+1 + vn

2
.
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Formulation of a MFE scheme

Formulation of a MFE scheme using Crank-Nicolson method

The unknowns of this scheme are the set of the couples{
(pn

h, u
n
h) ∈ Vdiv

h ×Wh; n ∈ J0,N + 1K
}
.

These unknowns are expected to approximate the set of the unknowns

{(−∇u(tn), u(tn)); n ∈ J0,N + 1K} .
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Formulation of a MFE scheme

Formulation of a MFE scheme using Crank-Nicolson method (Suite)

For any n ∈ J0,NK and for all ϕ ∈ Wh :

(
∂1un+1

h , ϕ
)

L2(Ω)
+

(
∇ · pn+ 1

2
h , ϕ

)
L2(Ω)

=

(
f (tn+1) + f (tn)

2
, ϕ

)
L2(Ω)

,

(6)

For any n ∈ J0,N + 1K:

(pn
h, ψ)L2(Ω)d = (un

h,∇ · ψ)L2(Ω) , ∀ψ ∈ Vdiv
h , (7)

where(
∇ · p0

h, ϕ
)

L2(Ω)
=
(
−∆u0, ϕ

)
L2(Ω)

, ∀ϕ ∈ Wh. (8)
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Some references on the subject
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Known error estimates

Known error estimates

Johnson and Thomee (1981): L∞
((

L2)d
)

–error estimate

N+1
max
n=0
‖pn

h +∇u(tn)‖L2(Ω)d ≤ C(k2 + h). (9)

Our aim

Our aim is to improve the error estimate (9) in the sense that the norm L∞
((

L2)d
)

is

replaced by L2(Hdiv).
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Statement of the main result

Statement of the main result

Theorem (New error estimate for scheme (6)–(8))

The following L2(Hdiv)–error estimate holds:(
N+1∑
n=0

k‖divpn
h + ∆u(tn)‖2

L2(Ω)

) 1
2

≤ C(k2 + h). (10)
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Idea on the proof

Idea on the proof

Lemma (New a priori estimate)

Assume that
(

(ηn
D)N+1

n=0 , (η
n
D)N+1

n=0

)
∈
(
Vdiv

h

)N+2 ×WN+2
h such that η0

h = 0

For any n ∈ J0,NK, for all ϕ ∈ Wh:(
∂1ηn+1

h , ϕ
)

L2(Ω)
+

(
divη

n+ 1
2

h , ϕ

)
L2(Ω)

=
(
Sn+1, ϕ

)
L2(Ω)

, (11)

For any n ∈ J0,N + 1K:

(ηn
h , ψ)L2(Ω)d = (ηn

h, divψ)L2(Ω) , ∀ψ ∈ Vdiv
h . (12)

Then, the following L2(Hdiv)–a priori estimate holds:(
N+1∑
n=0

k‖divηn
h‖2

L2(Ω)

) 1
2

≤ C
N

max
n=0
‖Sn+1‖L2(Ω). (13)
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Conclusion

Conclusion

First result obtained

We established a numerical scheme using Lowest Order Raviart-Thomas Mixed
Finite Element methods as discretization in space and Crank-Nicolson finite
difference method as discretization in time.

Second result obtained

We proved a new convergence result towards −∇u(t) in the norm of L2(Hdiv). The
order in time is two and is one in space.
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Perspectives

Perspectives

A First perspective

One of the main perspectives is to extend this result to a large class of mixed finite
elements. In progress.

A second perspective

Extension to Evolutionary Stokes Equations.
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