	Equation to be solved		Conclusion and Perspectives
		00 00 0	

A New Error Estimate for a Primal-Dual Crank-Nicolson Mixed Finite Element using Lowest Degree Raviart-Thomas Spaces for Parabolic Equations

Fayssal Benkhaldoun¹ and Abdallah Bradji²

¹ LAGA (Laboratoire d'Analyse, Géométrie, et Applications)-Paris 13–France
² Department of Mathematics, University of Annaba–Algeria

LSSC2021 (The 13th Int. Conference on Large-Scale Scientific Computations) June 7–10, Sozopol-Bulgaria On-Line Presentation

イロト (同) (三) (三)

Aim	Equation to be solved		Conclusion and Perspectives
•		00 00 0	

Aim of the presentation

We prove a new error estimate for a Lowest Order Raviart-Thomas Mixed method combined with the Crank-Nicolson method for Parabolic equations. This new convergence result states the convergence rate towards the "velocity" $P(t) = -\nabla u(t)$ in the norm of $L^2(H_{\text{div}})$

Plan	Equation to be solved		Conclusion and Perspectives
•		00 00 0	

Plan of this presentation

- Problem to be solved
- 2 Space and time discretizations
- Formulation of the scheme (based on Lowest Order Raviart-Thomas Mixed method combined with the Crank Nicolson finite difference method)
- 4 Known convergence results and a novel error estimate
- **5** Conclusion and Perspectives

	Equation to be solved		Conclusion and Perspectives
	•	00 00 0	

Problem to be solved

Equation

Heat equation:

$$u_t(\mathbf{x},t) - \Delta u(\mathbf{x},t) = f(\mathbf{x},t), \ (\mathbf{x},t) \in \Omega \times (0,T),$$
(1)

(2)

(3

where $\Omega \subset \mathbb{R}^d$ is an open domain of \mathbb{R}^d , f is given function, and T > 0 is given.

Initial conditions

$$u(\boldsymbol{x},0) = u^0(\boldsymbol{x}), \ \boldsymbol{x} \in \Omega.$$

Homogeneous Dirichlet boundary

$$u(\mathbf{x},t) = 0, \ (\mathbf{x},t) \in \partial \Omega \times (0,T).$$

LSSC2021 Talk of Benkhaldoun and Bradji, June 10th-2021

MFE for Parabolic Equations

	Equation to be solved		Conclusion and Perspectives
		00 00 0	

About Heat equation?

Some physics

Heat equation $u_t - \Delta u$ is typically used in different applications, such as *fluid* mechanics, heat and mass transfer,...

Existence and uniqueness

Existence and uniqueness of a weak solution of heat equation, with (2) (*initial condition*) and (3) (*Dirichlet boundary condition*) can be formulated using Bochner spaces; see for instance Evans book of partial differential equation

		Equation to be solved	Formulation of a MFE scheme		Conclusion and Perspectives			
			0					
			00					
Space and	Space and time discretizations							

Space and time discretizations

Space discretization

We define the lowest order Raviart-Thomas Mixed FE spaces:

$$V_h^{\text{div}} = \{ v \in H_{\text{div}}(\Omega) : \quad v|_K \in \mathbb{D}_0, \quad \forall K \in \mathcal{T}_h \},$$
(4)

where \mathcal{T}_h is a family of triangulations of $\overline{\Omega}$ with *d*-simplex and

$$W_h = \{ p \in L^2(\Omega) : \quad p|_K \in \mathbb{P}_0, \quad \forall K \in \mathcal{T}_h \},$$
(5)

where \mathbb{P}_0 is the space of constant functions and $\mathbb{D}_0 = (\mathbb{P}_0)^d \oplus \mathbf{x} \mathbb{P}_0$.

		Equation to be solved	Formulation of a MFE scheme		Conclusion and Perspectives			
			00					
			00					
Space and	Space and time discretizations							

Time discretization

We consider constant time step $k = \frac{T}{N+1}$, where $N \in \mathbb{N}^*$. The mesh points are denoted by $t_n = nk$, for $n \in [0, N+1]$.

Discrete temporal derivative

$$\partial^1 v^{n+1} = \frac{v^{n+1} - v^n}{k}$$

Arithmetic mean value:

$$v^{n+\frac{1}{2}} = \frac{v^{n+1} + v^n}{2}$$

LSSC2021 Talk of Benkhaldoun and Bradji, June 10th-2021

MFE for Parabolic Equations

	Formulation of a MFE scheme	
	0	

Formulation of a MFE scheme

Formulation of a MFE scheme using Crank-Nicolson method

The unknowns of this scheme are the set of the couples

$$\left\{ (p_h^n, u_h^n) \in V_h^{ ext{div}} imes W_h; n \in \llbracket 0, N+1
rbracket
ight\}$$

These unknowns are expected to approximate the set of the unknowns

$$\{(-\nabla u(t_n), u(t_n)); \quad n \in \llbracket 0, N+1 \rrbracket\}.$$

	Equation to be solved	Formulation of a MFE scheme	Conclusion and Perspectives
		00	

Formulation of a MFE scheme

Formulation of a MFE scheme using Crank-Nicolson method (Suite)

For any $n \in [0, N]$ and for all $\varphi \in W_h$:

$$\left(\partial^{1}u_{h}^{n+1},\varphi\right)_{L^{2}(\Omega)}+\left(\nabla\cdot p_{h}^{n+\frac{1}{2}},\varphi\right)_{L^{2}(\Omega)}=\left(\frac{f(t_{n+1})+f(t_{n})}{2},\varphi\right)_{L^{2}(\Omega)},$$
(6)

For any $n \in [[0, N + 1]]$:

$$(p_h^n, \psi)_{L^2(\Omega)^d} = (u_h^n, \nabla \cdot \psi)_{L^2(\Omega)}, \qquad \forall \psi \in V_h^{\text{div}}, \tag{7}$$

where

$$\left(\nabla \cdot p_{h}^{0}, \varphi\right)_{L^{2}(\Omega)} = \left(-\Delta u^{0}, \varphi\right)_{L^{2}(\Omega)}, \quad \forall \varphi \in W_{h}$$

<ロト <回 > < 回 > < 回 > < 回 >

		Equation to be solved	Formulation of a MFE scheme		Conclusion and Perspectives				
			00 00 ●						
Some refe	Some references on the subject								

Some references on the subject

- P. G. Ciarlet, The Finite Element Method for Elliptic Problems. Classics in Applied Mathematics, 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002).
- C. Johnson and V. Thomee, Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Anal. Numér. 15/1, 41–78 (1981).
- A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics 23. Berlin: Springer (2008)

イロト (同) (三) (三)

		Equation to be solved		Known error estimates and a new one	Conclusion and Perspectives			
			00 00 0	• 0 0				
Known error estimates								

Known error estimates

Johnson and Thomee (1981):
$$L^{\infty}\left(\left(L^{2}\right)^{d}\right)$$
 –error estimate

$$\max_{n=0}^{N+1} \|p_h^n + \nabla u(t_n)\|_{L^2(\Omega)^d} \le C(k^2 + h).$$
(9)

Our aim

Our aim is to improve the error estimate (9) in the sense that the norm $L^{\infty}\left(\left(L^{2}\right)^{d}\right)$ is replaced by $L^{2}(H_{\text{div}})$.

<ロト <回 > < 回 > < 回 > < 回 >

		Equation to be solved		Known error estimates and a new one	Conclusion and Perspectives			
			00	•				
Statement	Statement of the main result							

Statement of the main result

Theorem (New error estimate for scheme (6)–(8))

The following $L^2(H_{div})$ -error estimate holds:

$$\left(\sum_{n=0}^{N+1} k \|\operatorname{div} p_h^n + \Delta u(t_n)\|_{L^2(\Omega)}^2\right)^{\frac{1}{2}} \le C(k^2 + h).$$
(10)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

LSSC2021 Talk of Benkhaldoun and Bradji, June 10th-2021

MFE for Parabolic Equations

		Equation to be solved		Known error estimates and a new one	Conclusion and Perspectives
			00		
Idea on the	proof				

Idea on the proof

Lemma (New a priori estimate)

Assume that
$$\left((\eta_{\mathcal{D}}^{n})_{n=0}^{N+1}, (\overline{\eta}_{\mathcal{D}}^{n})_{n=0}^{N+1} \right) \in \left(V_{h}^{\text{div}} \right)^{N+2} \times W_{h}^{N+2}$$
 such that $\overline{\eta}_{h}^{0} = 0$
For any $n \in [\![0,N]\!]$, for all $\varphi \in W_{h}$:

$$\left(\partial^{1}\overline{\eta}_{h}^{n+1},\varphi\right)_{L^{2}(\Omega)}+\left(\operatorname{div}\eta_{h}^{n+\frac{1}{2}},\varphi\right)_{L^{2}(\Omega)}=\left(\mathcal{S}^{n+1},\varphi\right)_{L^{2}(\Omega)},$$
(11)

For any $n \in [[0, N + 1]]$:

$$(\eta_h^n, \psi)_{L^2(\Omega)^d} = (\overline{\eta}_h^n, \operatorname{div}\psi)_{L^2(\Omega)}, \qquad \forall \psi \in V_h^{\operatorname{div}}.$$
(12)

Then, the following $L^2(H_{div})$ -a priori estimate holds:

$$\left(\sum_{n=0}^{N+1} k \|\operatorname{div} \eta_h^n\|_{L^2(\Omega)}^2\right)^{\frac{1}{2}} \le C \max_{n=0}^N \|\mathcal{S}^{n+1}\|_{L^2(\Omega)}.$$

			Conclusion and Perspectives
		00 00 0	õ
Conclusion	a		

Conclusion

First result obtained

We established a numerical scheme using Lowest Order Raviart-Thomas Mixed Finite Element methods as discretization in space and Crank-Nicolson finite difference method as discretization in time.

Second result obtained

We proved a new convergence result towards $-\nabla u(t)$ in the norm of $L^2(H_{\text{div}})$. The order in time is two and is one in space.

			Conclusion and Perspectives
		00 00 0	• •
Conclusion	n		

Conclusion

First result obtained

We established a numerical scheme using Lowest Order Raviart-Thomas Mixed Finite Element methods as discretization in space and Crank-Nicolson finite difference method as discretization in time.

Second result obtained

We proved a new convergence result towards $-\nabla u(t)$ in the norm of $L^2(H_{\text{div}})$. The order in time is two and is one in space.

			Conclusion and Perspectives
			•
Perspective	es		

Perspectives

A First perspective

One of the main perspectives is to extend this result to a large class of mixed finite elements. In progress.

A second perspective

Extension to Evolutionary Stokes Equations.

(日)

LSSC2021 Talk of Benkhaldoun and Bradji, June 10th-2021 MFE for Parabolic Equations

		Equation to be solved			Conclusion and Perspectives	
			00 00 0		•	
Perspectives						

Perspectives

A First perspective

One of the main perspectives is to extend this result to a large class of mixed finite elements. In progress.

A second perspective

Extension to Evolutionary Stokes Equations.

イロト イ団ト イヨト イヨト

LSSC2021 Talk of Benkhaldoun and Bradji, June 10th-2021