

Note on a new high order piecewise linear finite element approximation for the wave equation in one dimensional space Abdallah Bradji

Department of Mathematics, University of Annaba-Algeria

(1)

Problem to be solved

We consider the following one dimensional wave problem:

$$_{tt}(x,t)-u_{xx}(x,t)=f(x,t),\ (x,t)\in I imes (0,T),$$

where I = (0, 1), T > 0, and f is a given function. Initial conditions are defined by, for given functions u^0 and u^1 :

$$u(x,0) = u^0(x)$$
 and $u_t(x,0) = u^1(x), x \in I$, (2)

Homogeneous Dirichlet boundary conditions are given by

$$u(0,t) = u(1,t) = 0, t \in (0,T).$$
 (3)

Definition of the meshes

How to compute w_i^n and z_i^n involved in (18)?: Second main result

 $\sim w_i^n$: approximation for u_{ttxx} . Differentiating (1) twice with respect to x and twice with respect to t imply that $w = u_{ttxx}$ is satisfying $w_{tt}(x,t) - w_{xx}(x,t) = F(x,t), \ (x,t) \in I \times (0,T),$ (19)where $F = f_{ttxx}$. (20)Also, $w = u_{ttxx}$ satisfies First initial condition: (21) $w(x,0)=G^0(x), \ x\in I,$ where (22) $G^{0}(x) = (u^{0})_{XXXX}(x) + f_{XX}(x,0), \ x \in \mathbf{I}$ Second initial condition: (23) $W_t(x,0)=G^1(x), x \in \mathbf{I},$

- Time discretization: The time discretization is performed with a constant time step $k = \frac{T}{M+1}$, where $M \in \mathbb{N} \setminus \{0\}$, and we shall denote $t_n = nk$, for $n \in [0, M + 1].$
- Space discretization: The space discretization is performed using a *non-uniform* mesh with the points $0 < x_0 < ... < x_{N+1} = 1$. We define $h_i = x_{i+1} - x_i$, for all $i \in [0, N]$. We then set

$$h = \max_{i=0}^{N} h_i. \tag{4}$$

Let \mathcal{V}^h be the piecewise linear finite element space, i.e.

$$\mathcal{V}^{h} = \{ \mathbf{v} \in \mathcal{C}(\mathbf{I}), \mathbf{v}|_{\mathbf{I}_{i}} \in \mathcal{P}_{1}, \ \forall i \in \llbracket 0, \mathbf{N} \rrbracket \},$$
(5)

and we denote by

$$\mathcal{V}_0^h = \{ \mathbf{v} \in \mathcal{C}(\mathbf{I}), \mathbf{v}|_{\mathbf{I}_i} \in \mathcal{P}_1, \ \forall i \in [0, N]\} \cap H_0^1(\mathbf{I}), \tag{6}$$

where I_i is the subinterval [x_i , x_{i+1}] and \mathcal{P}_1 denotes the space of affine polynomials.

Basic scheme

The basic scheme is based on a Newmark's method as discretization in time. Find $(u_h^n)_{n=0}^{M+1} \in (\mathcal{V}_0^h)^{M+2}$ such that Approximation of initial conditions (2).

$$\mathbf{a}(u_h^0, \mathbf{v}) = -\left(\Delta u^0, \mathbf{v}\right)_{\mathbb{L}^2(\Omega)} = \mathbf{a}(u^0, \mathbf{v}), \ \forall \mathbf{v} \in \mathcal{V}_0^h, \tag{7}$$

with

 $G^{1}(x) = (u^{1})_{xxxx}(x) + f_{xxt}(x,0), x \in \mathbf{I}.$

Boundary conditions:

$$w(0, t) = w(1, t) = 0, t \in (0, T).$$

The problem (19)–(25) is similar to the problem (1)–(3) satisfied by u. Hence $w = u_{ttxx}$ can be approximated using the same scheme (7)–(10).

 $ightarrow z_i^n$: approximation for u_{tttt} . Thanks to equation (1), we have (recall that $W = U_{ttxx}$

$$U_{tttt}(x,t) = W(x,t) + f_{tt}(x,t), \ (x,t) \in I \times (0,T).$$
 (26)

As an approximation z^n for the unknown function $z = u_{tttt}(t_n)$, we suggest

$$f_n^n = w_h^n + f_{tt}(t_n).$$
 (27)

(24)

(25)

(28)

(29)

Definition of a new third order approximation: Third main resul

 Z'_{F}

We define the new approximation $u^{n,1} = (u_i^{n,1})_{i \in [1,N]}$: For each $n \in [0, M + 1]$, let $u_h^{n,1} \in \mathcal{V}_0^h$ be the new approximation given by $u_h^{n,1} = u_h^n - s_h^n$.

Statement of Convergence results

▶ Discrete $\mathbb{L}^{\infty}(0, T; H_0^1(\mathbf{I}))$ —estimate: for all $n \in [0, M + 1]$ $|u_h^{n,1} - \pi u^n|_{1,I} \leq C(h+k)^3.$

and

$$\mathbf{a}(\partial^1 u_h^1, \mathbf{v}) = -(\Delta \bar{u}^1, \mathbf{v})_{\mathbb{L}^2(\Omega)} = \mathbf{a}(\bar{u}^1, \mathbf{v}), \ \forall \mathbf{v} \in \mathcal{V}_0^h, \tag{8}$$

▶ Approximation of the wave equation (1): For any $n \in [1, M]$, find $u_h^{n+1} \in \mathcal{V}_0^h$ such that, for all $v \in \mathcal{V}_0^h$

$$\left(\partial^2 u_h^{n+1}, v\right)_{\mathbb{L}^2(\Omega)} + \frac{1}{2} \mathbf{a}(u_h^{n+1} + u_h^{n-1}, v) = \frac{1}{2} \left(f(t_{n+1}) + f(t_{n-1}), v\right)_{\mathbb{L}^2(\Omega)}, \quad (9)$$

where

$$u^{1} = u^{1} + \frac{k}{2} (\Delta u^{0} + f(0)),$$
 (10)

and $(\cdot, \cdot)_{\mathbb{L}^{2}(\Omega)}$ denotes the \mathbb{L}^{2} inner product and

$$\mathbf{a}(u, v) = \int_{\Omega} \nabla u(x) \cdot \nabla v(x) dx.$$

$$\partial^{1} v^{n} = \frac{v^{n} - v^{n-1}}{k}, \ \forall n \in [1, M+1],$$
(11)

and

$$\partial^2 v^n = rac{v^n - 2v^{n-1} + v^{n-2}}{k^2}, \ \forall n \in [\![2, M+1]\!].$$
 (12)

Convergence order of basic scheme (7)–(10): First main result

- ▶ Discrete $\mathbb{L}^{\infty}(0, T; H_0^1(\mathbf{I}))$ –estimate: for all $n \in [0, M + 1]$ $|u_h^n - \pi u^n|_{1,I} \leq C(h+k)^2.$ ▶ Discrete $\mathbb{L}^{\infty}(0, T; \mathbb{L}^{\infty}(\mathbf{I}))$ —estimate: for all $n \in [0, M + 1]$ $\| u_h^n - \pi u^n \|_{\mathcal{C}(\bar{\mathbf{I}})} \leq C(h+k)^2.$

▶ Discrete $\mathbb{L}^{\infty}(0, T; \mathbb{L}^{\infty}(\mathbf{I}))$ —estimate: for all $n \in [0, M + 1]$ $\|u_h^{n,1} - \pi u^n\|_{\mathcal{C}(\bar{\mathbf{I}})} \leq C(h+k)^3.$ (30)

▶ Discrete $\mathcal{W}^{1,\infty}(0, T; \mathbb{L}^2(\mathbf{I}))$ —estimate: for all $n \in [1, M + 1]$ $\|\partial^1\left(u_h^{n,1}-\pi u(t_n)
ight)\|_{\mathbb{L}^2(\mathbf{I})}\leq C(h+1)$

$$(3^{-}k)^{3}$$
.

Idea on the Proof of Statement of (29)–(31)

• Convergence of w^n of u_{ttxx} An a priori estimate for the discrete problem

References

(13)

(14)

(15)

- Bradji, A. and Fuhrmann, "Some new error estimates for finite element methods for the acoustic wave equation using the Newmark method". Mathematica Bohemica, 139/2, 125–136, 2014.
- Ciarlet, Ph. G., "Basic Error Estimates for Elliptic Problems". Ciarlet, P. G. and Lions, J. L. eds. 2 Handbook of numerical analysis. Volume II: Finite element methods (Part 1). Amsterdam: North-Holland. 16–351, 1991.

▶ Discrete $\mathcal{W}^{1,\infty}(0, T; \mathbb{L}^2(\mathbf{I}))$ —estimate: for all $n \in [1, M + 1]$ $\|\partial^1 (u_h^n - \pi u(t_n))\|_{L^2(\mathbf{I})} \leq C(h+k)^2.$

The operator π is the linear interpolant operator.

An auxiliary helpful element in \mathcal{V}_0^h

For each $n \in [0, M + 1]$, let $s_h^n \in \mathcal{V}_0^h$ be the solution of the following scheme

$$s_h^0 = 0,$$
 (16)

$$\mathbf{a}(\partial^{1} \boldsymbol{s}_{h}^{1}, \boldsymbol{v}) = \frac{k^{2}}{6} \left(\Delta(f_{t}(0) + \Delta u^{1}), \boldsymbol{v} \right)_{\mathbb{L}^{2}(\Omega)}, \ \forall \, \boldsymbol{v} \in \mathcal{V}_{0}^{h},$$
(17)

and for all $n \in [1, M]$

$$\left(\partial^{2}\bar{s}_{h}^{n+1},v\right)_{\mathbb{L}^{2}(\mathrm{I})}+\frac{1}{2}\mathbf{a}\left(s_{h}^{n+1}+s_{h}^{n-1},v\right)=\sum_{i=0}^{N}\int_{\mathrm{I}_{i}}\alpha_{i}(x)w_{h}^{n}(x_{i})v(x)dx+\frac{5k^{2}}{12}\left(z_{h}^{n}v\right)_{\mathbb{L}^{2}(\mathrm{I})}.$$
(18)

where

 \mathbf{v}_{i}^{n} is an approximation for u_{ttxx}

 $rightarrow z_i^n$ is an approximation for u_{tttt}

abdallah.bradji@univ-annaba.dz, bradji@cmi.univ-mrs.fr Contact:

Presented at NAA'16, Lozenetz–Bulgaria, June 15–22, 2016