

Note on the convergence of a finite volume scheme for a second order hyperbolic equation with a time delay in any space dimension F. Benkhaldoun ^a and A. Bradji ^{b,c}

^a LAGA, Université Sorbonne Paris Nord (USPN), France ^b Department of Mathematics, Annaba-university, Algeria ^c Professeur Invité au LAGA, Paris Nord-France

Problem to be solved.

Second Order Hyperbolic Equation with a constant Time delay (see [6,7]):

 $U_{tt}(\mathbf{x}, t) - \Delta U(\mathbf{x}, t) + \alpha U_t(\mathbf{x}, t) + \beta U_t(\mathbf{x}, t - \tau) = f(\mathbf{x}, t), \quad (\mathbf{x}, t) \in \Omega \times (0, T), \quad (1)$

where

► T > 0,

 $\triangleright \Omega$ is an open polyhedral bounded subset in \mathbb{R}^d ,

Formulation of a Finite Volume scheme

We now set a formulation of an implicit finite volume scheme for problem (1)–(3). The unknowns of this scheme are the set $\{u_{\mathcal{D}}^n; n \in [-M, N]\}$ which are expected to approximate the set of the unknowns

$\{u(t_n); n \in [-M, N]\}.$

- Approximation of initial conditions (2). The discretization of initial conditions (2) can be performed as:

ightarrow au is the constant time delay,

 $\triangleright \alpha, \beta$ are given positive numbers,

 \blacktriangleright f is a given smooth function,

Initial conditions are given by

$$u(\boldsymbol{x},0) = u^0(\boldsymbol{x}) \quad \text{and} \quad u_t(\boldsymbol{x},0) = u^1(\boldsymbol{x}), \qquad \boldsymbol{x} \in \Omega.$$
 (2)

Homogeneous Dirichlet boundary conditions are given by

 $u(\mathbf{x},t) = \mathbf{0}, \qquad (\mathbf{x},t) \in \partial \Omega \times (\mathbf{0},T).$ (3)

Applications...

Delay differential equations occur in several applications such as ecology, biology, medicine, See References [1,5,6,7,8].

Finite volume mesh

The finite volume mesh considered is the one used in [3]. Among the properties of this mesh, we quote

- This new generic mesh is a generalization of the one introduced in [4].
- The control volumes are not necessary convex.
- No orthogonality is required.
- The discrete unknowns are located at the centers of the control volumes and at their interfaces.

Find $u_{\mathcal{D}}^0 \in X_{\mathcal{D},0}$ such that for all $v \in X_{\mathcal{D},0}$ $\langle u_{\mathcal{D}}^{0}, v \rangle_{F} = - \left(\Delta u^{0}, \Pi_{\mathcal{M}} v \right)_{\mathbb{L}^{2}(\Omega)}.$ (6) Find $u_{\mathcal{D}}^n$ for $n \in [-M, -1]$ such that for all $v \in X_{\mathcal{D},0}$ $\langle \partial^1 u_{\mathcal{D}}^n, v \rangle_F = - \left(\Delta u^1(t_n), \Pi_{\mathcal{M}} v \right)_{\mathbb{L}^2(\Omega)}.$ (7)

▶ Approximation of (1) and (3). For any $n \in [0, N-1]$, find $u_{\mathcal{D}}^{n+1} \in X_{\mathcal{D},0}$ such that, for all $v \in X_{\mathcal{D},0}$

> $\left(\partial^{2}\Pi_{\mathcal{M}} u_{\mathcal{D}}^{n+1}, \Pi_{\mathcal{M}} v\right)_{\mathbb{L}^{2}(\Omega)} + \left\langle u_{\mathcal{D}}^{n+1}, v \right\rangle_{F} + \alpha \left(\partial^{1}\Pi_{\mathcal{M}} u_{\mathcal{D}}^{n+1}, \Pi_{\mathcal{M}} v\right)_{\mathbb{L}^{2}(\Omega)}$ $+ \beta \left(\partial^{1} \Pi_{\mathcal{M}} u_{\mathcal{D}}^{n+1-M}, \Pi_{\mathcal{M}} v \right)_{\mathbb{T}^{2}(\Omega)} = (f(t_{n+1}), \Pi_{\mathcal{M}} v)_{\mathbb{L}^{2}(\Omega)}.$ (8)

New Error estimate for the Scheme (6)–(8)

- \blacktriangleright $\mathbb{L}^{\infty}(L^2)$ and $\mathbb{L}^{\infty}(H_0^1)$ error estimates. $\max_{n=0}^{n=N} \|u(t_n) - \Pi_{\mathcal{M}} u_{\mathcal{D}}^n\|_{\mathbb{L}^2(\Omega)} + \max_{n=0}^{n=N} \|\nabla u(t_n) - \nabla_{\mathcal{D}} u_{\mathcal{D}}^n\|_{\mathbb{L}^2(\Omega)} \le C(k+h_{\mathcal{D}}).$ (9)
- $\blacktriangleright W^{1,\infty}(\mathbb{L}^2)$ -estimate.

$$\max_{n=-M+1}^{n=N} \left\| u_t(t_n) - \Pi_{\mathcal{M}} \partial^1 u_{\mathcal{D}}^n \right\|_{\mathbb{L}^2(\Omega)} \le C(k+h_{\mathcal{D}}).$$
(10)

Main idea on the proof

Discrete Gradient and an Interpolation Operator.

- ► A discrete space. X_D as the set of all $((v_K)_{K \in M}, (v_\sigma)_{\sigma \in E})$, where $v_K, v_\sigma \in \mathbb{R}$ for all $K \in \mathcal{M}$ and for all $\sigma \in \mathcal{E}$ such that $u_{\sigma} = 0$.
- ► A discrete Gradient. For $u = ((u_K)_{K \in M}, (u_\sigma)_{\sigma \in E}) \in X_D$, we define, for all $K\in\mathcal{M}$

$$\nabla_{\mathcal{D}} u(x) = \nabla_{K,\sigma} u, \quad \text{a. e. } x \in \mathcal{D}_{K,\sigma}, \tag{4}$$

where $\mathcal{D}_{K,\sigma}$ is the cone with vertex x_K and basis σ and

$$\nabla_{K,\sigma} u = \nabla_{K} u + \left(\frac{\sqrt{d}}{d_{K,\sigma}}(u_{\sigma} - u_{K} - \nabla_{K} u \cdot (x_{\sigma} - x_{K}))\right) \mathbf{n}_{K,\sigma}, \quad (5)$$
where $\nabla_{K} u = \frac{1}{\mathbf{m}(K)} \sum_{\sigma \in \mathcal{E}_{K}} \mathbf{m}(\sigma) (u_{\sigma} - u_{K}) \mathbf{n}_{K,\sigma}.$

- An Interpolation operator. For all $v \in X_D$, we denote by $\Pi_M v \in H_M(\Omega)$ the function defined by $\Pi_{\mathcal{M}} v(\mathbf{x}) = v_K$, for a.e. $\mathbf{x} \in K$, for all $K \in \mathcal{M}$.
- **Definition of a bilinear form over** $X_{\mathcal{D}} \times X_{\mathcal{D}}$:

$$\langle u, v \rangle_F = \int_{\Omega} \nabla_{\mathcal{D}} u(\mathbf{x}) \cdot \nabla_{\mathcal{D}} v(\mathbf{x}) d\mathbf{x}.$$

Time discretization and discrete temporal derivative

- A comparison with an optimal scheme.
- ► Well-developed discrete a priori estimates.

In Progress

Extension to GDM.

- Extension to Second order time accurate schemes.
- Consider Time Fractional Delay Equations

References

1. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Numerical Mathematics and Scientific Computation. Oxford: Oxford University Press (2003).

2. Bradji, A., Ghoudi, T.: Some convergence results of a multidimensional finite volume scheme for a semilinear parabolic equation with a time delay. Numerical methods and applications, 351–359, Lecture Notes in Comput. Sci., 11189, Springer, Cham, 2019.

3. Eymard, R., Gallouët, T., Herbin, R.: Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. IMA J. Numer. Anal. 30/4, 1009–1043 (2010).

4. Eymard R., Gallouët T. and Herbin R.: Finite Volume Methods,

The time discretization is performed with a constrained time step-size k such that $\frac{\gamma}{k} \in \mathbb{N}$.

We set then $k = \frac{\tau}{M}$, where $M \in \mathbb{N} \setminus \{0\}$.

Denote by N the integer part of $\frac{T}{k}$, i.e. $N = \left\lceil \frac{T}{k} \right\rceil$.

▶ We shall denote $t_n = nk$, for $n \in [-M, N]$. As particular cases $t_{-M} = -\tau$, $t_0 = 0$, and $t_N \leq T$.

 \triangleright One of the advantages of this time discretization is that the point t = 0 is a mesh point which is suitable since we have equation (1) defined for $t \in (0, T)$ and the second initial condition in (2) is defined for $t \in (-\tau, 0)$.

> We denote by ∂^1 the discrete first time derivative given by

$$\partial^1 v^{j+1} = rac{v^{j+1} - v^j}{k}.$$

 \blacktriangleright We define the discrete second time derivative ∂^2 as

 $\partial^2 v^{j+1} = \partial^1 (\partial^1 v^{j+1}).$

Handbook for Numerical Analysis, Ph. Ciarlet J.L. Lions (Eds.), North Holland, 2000, vol. VII pp. 715-1022.

5. Kuang, Y.: Delay Differential Equations: with Applications in Population Dynamics. Mathematics in Science and Engineering. 191. Boston, MA: Academic Press (1993).

6. Nicaise, S., Pignotti, C.: Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks. SIAM J. Control Optim. 45/5, 1561–1585 (2006).

7. Parhi, N., Kirane, M.: Oscillatory behaviour of solutions of coupled hyperbolic differential equations. Analysis 14/1, 43–56 (1994).

8. Raposo, C., Nguyen, H., Ribeiro, J.-O., Barros, V.: Well-posedness and exponential stability for a wave equation with nonlocal time-delay condition. Electron. J. Differential Equations, Paper No. 279, 11 pp (2017).