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Model of oblique derivative boundary value problem

Consider the following problem with oblique boundary condition
−∆u(x) = f (x), x ∈ Ω, (1)

where Ω is an open bounded polygonal connected subset of IR2 and
un(x) + αut(x) = 0, x ∈ ∂Ω, (2)

where x = (x , y) is the current point of IR2, un = ∇u · n and ut = ∇u · t,
with n = (nx, ny)t (resp. t = (−ny , nx)t) is the normal vector to the
boundary ∂Ω and outward to Ω (resp. is a tangential derivative), and α is
a given constant. We will assume that α > 0.
We add the following condition to get the uniqueness for (1)–(2)∫

Ω

u(x)dx = 0. (3)

Why oblique derivative boundary value problem ?

I Unusual boundary condition
I It appears in the modeling of some mechanical problems, but perhaps not

directly under the form (1)–(2), see [4] and references therein.
I Extension of the previous work [1].

Finite volume mesh

The finite volume mesh considered is the one used in [3]. Among the
properties of this mesh, we quote

I This new generic mesh is a generalization of the one introduced in [2].
I The control volumes are not necessary convexes.
I No orthogonality is required.
I The discrete unknowns are located at the centers of the control volumes and

at their interfaces.

Figure: Two adjacent control volumes in 2D

Discrete Gradient

We define the space XD as the set of all
(

(vK )K∈M , (vσ)σ∈E
)
, where

vK , vσ ∈ IR for all K ∈M and for all σ ∈ E .
For u =

(
(uK )K∈M , (uσ)σ∈E

)
∈ XD, we define, for all K ∈M

∇D u(x) = ∇K ,σ u, a. e. x ∈ DK ,σ, (4)
where DK ,σ is the cone with vertex xK and basis σ and

∇K ,σu = ∇K u +

( √
d

dK ,σ
(uσ − uK −∇K u · (xσ − xK ))

)
nK ,σ, (5)

where ∇K u =
1

m(K )

∑
σ∈EK

m(σ) ( uσ − uK ) nK ,σ and d is the space

dimension.

Useful notations

The following definition will help us to define the finite volume scheme
we shall present and to prove its convergence:
Let σ ∈ Eext and n be the normal vector to σ, outward to Ω. Recall that
t = (−ny , nx)t where n = (nx, ny)t, then
σ = (a, b) = {sa + (1− s)b, s ∈ [0, 1]} where a, b are chosen such that
|b−a|t = b−a. We denote by σ− (resp. σ+) the element of Eext such that
a is in the closure of σ− (resp. b is in the closure of σ+) and σ− 6= σ (resp.
σ+ 6= σ). We also set σe = b and σb = a (so that |σe − σb|t = σe − σb).

Finite volume scheme for (1)–(3)

We define the finite volume approximation for (1)–(3) as
uD =

(
(uK )K∈M , (uσ)σ∈E

)
∈ XD such that

〈uD, v〉F + α
∑
σ∈Eext

(uσ − uσ−)vσ = ( f , ΠM v)L2(Ω) , ∀ v ∈ XD (6)

and ∑
K∈M

m(K )uK = 0, (7)

where 〈u, v〉F =

∫
Ω

∇D u(x) · ∇D v(x)dx .

Convergence order of volume scheme (6)–(7)

The following convergence result is proved:

‖∇D uD −∇ u‖L2(Ω) ≤ C1

√
hD‖u‖C2(Ω). (8)

where the size hD is the mesh size.

A comparison with our previous work [1]

The convergence result (8) provides an error estimate for the the
approximation of the gradient, whereas the convergence result of [1] is
only provided in a discrete H1

0-norm.

Some results of error estimate (8)

I The convergence result (8) yields a discrete H1
0-estimate (thanks to a result in

[3]).
I Thanks to the techniques of [2], the stated discrete H1

0-estimate in the
previous item yields an L2-estimate

Stability and Consistency results from [3] for the Discrete Gradient

I Stability result:
C2|v |X ≤ ‖∇D v‖L2(Ω) ≤ C3|v |X , ∀v ∈ XD, (9)

where
| v |2X =

∑
K∈M

∑
σ∈EK

m(σ)

dK ,σ
(vσ − vK )2.

I Consistency result:
‖∇D u −∇ u‖L2(Ω) ≤ C4hD‖u‖C2(Ω). (10)

Idea on the Proof of error estimate (8)

Using the techniques of [1] combined with [3] leads to

〈eD, v〉F + α
∑
σ∈Eext

vσ ( eσ − eσ−) =
∑

K∈M

∑
σ∈EK

(vK − vσ)RK ,σ(u)

− α
∑
σ∈Eext

rσ ( vσ+ − vσ) , (11)

where
eD = PD u − uD, (12)

PD u =
(

(u(xK ))K∈M , (u(xσ))σ∈E
)
,∑

K∈M

∑
σ∈EK

dK ,σ

m(σ)
(RK ,σ(u))2

1
2

≤ C5hD‖u‖C2(Ω), (13)

and
| rσ| ≤ C6m(σ)‖u‖C1(Ω). (14)

Taking v = eD in (11), using the stability result (9) and consistency result
(10) yields the desired estimate (8).

In Progress

We consider the same model of [4]: non-stationary Heat equation with
non-linear oblique boundary condition.
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