Note on the convergence of a finite volume scheme using a general nonconforming mesh for an oblique derivative boundary value problem

Abdallah Bradji
Department of Mathematics, University Of Annaba, Algeria

Model of oblique derivative boundary value problem

Consider the following problem with oblique boundary condition

\[-\Delta u(x) = f(x), \quad x \in \Omega, \]

(1)

where \(\Omega \) is an open bounded polygonal connected subset of \(\mathbb{R}^2 \) and \(\omega_1(x) + \omega_2(x) = 0, \quad x \in \partial\Omega. \)

(2)

where \(x = (x,y) \) is the current point of \(\mathbb{R}^2 \), \(\omega_1 = \nabla u \cdot n \) and \(\omega_2 = \nabla u \cdot t, \) with \(n = (n_1, n_2)^T \) (resp. \(t = (t_1, t_2)^T \)) is the normal vector to the boundary \(\partial\Omega \) and outward to \(\Omega \) (resp. is a tangential derivative), and \(\omega_1 \) is a given constant. We will assume that \(\omega_2 > 0. \)

We add the following condition to get the uniqueness for (1)-(2)

\[\int_{\partial\Omega} u(x)dx = 0. \]

(3)

Why oblique derivative boundary value problem ?

- Unusual boundary condition
- It appears in the modeling of some mechanical problems, but perhaps not directly under the form (1)-(2), see [4] and references therein.
- Extension of the previous work [1].

Finite volume mesh

The finite volume mesh considered is the one used in [3]. Among the properties of this mesh, we quote:

- This new generic mesh is a generalization of the one introduced in [2].
- The control volumes are not necessary convexes.
- No orthogonality is required.
- The discrete unknowns are located at the centers of the control volumes and at their interfaces.

\[\begin{array}{c}
\text{Figure: Two adjacent control volumes in 2D} \\
\end{array} \]

Discrete Gradient

We define the space \(\mathcal{V}_h \) as the set of all \(\left\{ (v_h)_K \in C^0(X_K) \right\}_{K \in \mathcal{M}} \), where \(v_h \in \mathbb{R}^K \) for all \(K \in \mathcal{M} \) and for all \(e \in \mathcal{E}. \)

For \(\mathbb{V} \left(\omega_1, (\omega_2, t) \right) \in \Omega \), we define, for all \(K \in \mathcal{M} \)

\[\mathcal{V}_h(k) = \mathcal{V}_h(u, a, e) \in \mathcal{D}_h, \]

(4)

\[\mathcal{D}_h = \{ \phi \in C^0(X_h) \} \]

where \(X_h = \text{vertex} \ x_h \text{ and basis} \ a \)

\[\mathcal{V}_h = \{ v_h \in \mathbb{R}^K \} \]

\[\mathcal{V}_h(k) = \mathcal{V}_h(u, a, e) \in \mathcal{D}_h, \]

(5)

\[\text{where} \ v_h = \int_{X_h} p(\sigma) \left\{ \omega_1 - \omega_2 \right\} \text{d}x, \text{and} \ d \text{ is the space dimension}. \]

Useful notations

The following definition will help us to define the finite volume scheme we shall present and to prove its convergence:

Let \(a \in \mathbb{R}^2 \) and \(n \) be the normal vector to \(\partial\Omega, \) outward to \(\Omega. \) Recall that \(t = (-n_1, n_2)^T \) where \(n = (n_1, n_2)^T, \) then

\[a = (a_1, a_2), \quad a_1 = (1 - s) a, \quad a_2 = s(0, 1)^T \] where \(a, b \) are chosen such that

\[b - at \approx b - a. \]

We denote by \(a \) (resp. \(a^r \)) the element of \(\mathbb{R}^2 \) such that \(a \) is in the closure of \(e \) (resp. \(b \) is in the closure of \(a^r \)) and \(a^r \neq a. \)

We also set \(a_h = b \) and \(a^r_h = a \) (so that \(|a_h| = |a^r_h| = |a - b| \)).

Finite volume scheme for (1)-(3)

We define the finite volume approximation for (1)-(3) as

\[u_0 \in \{ (u)_K \}_{K \in \mathcal{M}} \in \mathbb{K}_h \text{ such that} \]

\[\left\{ \begin{array}{l}
\int_{X_h} (\omega_1 + \omega_2) u_0 d x = 0, \\
\int_{X_h} \sum_{K \in \mathcal{M}} m(K) u_0 d x = 0,
\end{array} \right. \]

(6)

and

\[\int_{X_h} \sum_{K \in \mathcal{M}} m(K) u_0 d x = 0. \]

(7)

Convergence order of volume scheme (6)-(7)

The following convergence result is proved:

\[\| \nabla D u - \nabla D u_h \|_{L^2(\Omega)} \leq C \sqrt{h}, \]

(8)

where \(h \) is the mesh size.

A comparison with our previous work [1]

The convergence result (8) provides an error estimate for the approximation of the gradient, whereas the convergence result of [1] is only provided in a discrete \(H^1 \)-norm.

Some results of error estimate (8)

- The convergence result (8) yields a discrete \(H^1 \) estimate (thanks to a result in [3]).
- Thanks to the techniques of [2], the stated discrete \(H^1 \) estimate in the previous item yields an \(L^2 \) estimate.

Stability and Consistency results from [3] for the Discrete Gradient

- Stability result:

\[C_0 \| v_h \|_{L^2(\Omega)} \leq \left\| \nabla D u \right\|_{L^2(\Omega)} \leq C_0 \| v_h \|_{L^2(\Omega)} \forall v_h \in \mathcal{V}_h. \]

(9)

\[|v_h| = \sum_{K \in \mathcal{M}} \frac{m(K)}{2} \left(\right) (v_h)^2 \]

\[\| \nabla D u - \nabla D u_h \|_{L^2(\Omega)} \leq C \sqrt{h} \| u \|_{L^2(\Omega)} \]

(10)

Idea on the Proof of error estimate (8)

Using the techniques of [1] combined with [3] leads to:

\[\sum_{K \in \mathcal{M}} m(K) \left(v_h - v_h \right) \]

(11)

\[\| \nabla D u_h \|_{L^2(\Omega)} \]

(12)

and

\[\| u_h \|_{L^2(\Omega)} \]

(13)

Taking \(v = v_h \) in (11), using the stability result (9) and consistency result (10) yields the desired estimate (8).

In Progress

We consider the same model of [4]: non-stationary Heat equation with non-linear oblique boundary condition.

References

Presented at FVCA7, WIAS–Berlin in Germany, June 15–20, 2014

Contact: abdallah.bradji@univ-annaba.dz, bradji@cmi.univ-mrs.fr