

A note on a new second order approximation based on a low-order finite volume scheme for the wave equation in one space dimension Abdallah Bradji

Department of Mathematics, University Of Annaba, Algeria

(1)

Problem to be solved

We consider the following one dimensional wave problem:

$$U_{tt}(x,t) - U_{xx}(x,t) = f(x,t), \ (x,t) \in I \times (0,T),$$

where I = (0, 1), T > 0, and f is a given function. Initial conditions are defined by, for given functions u^0 and u^1 :

$$u(x,0) = u^0(x)$$
 and $u_t(x,0) = u^1(x), x \in I$, (2)

Homogeneous Dirichlet boundary conditions are given by

$$u(0,t) = u(1,t) = 0, t \in (0,T).$$
 (3)

Definition of the meshes

How to compute d_i^n given by (7)?

- ► α_i^n : approximation for u_{xx} . Since u_{xx} is a second time integration of u_{xxtt} , we are able to derive an approximation for u_{xx} using a *discrete second time integration* of u_{xxtt} .
- Approximation of u_{xxtt} . We have thanks (1) $u_{xxtt} = f_{xx} + u_{xxxx}$. So, an approximation for u_{xxxx} yields an approximation for u_{xxtt} . To derive an approximation for u_{xxxx} , we remark that $\varphi = u_{xxxx}$ is satisfying

$$\varphi_{tt} - \varphi_{xx} = f_{xxxx}, \qquad (8)$$

$$\varphi(x,0) = (u^0)_{xxxx}(x) \text{ and } \varphi_t(x,0) = (u^1)_{xxxx}(x), x \in \mathbf{I},$$
(9)

and

$$\varphi(0,t) = -f_{xx}(0,t) - f_{tt}(0,t)$$
 and $\varphi(1,t) = -f_{xx}(1,t) - f_{tt}(1,t).$ (10)

The problem (8)–(10) is similar to the problem (1)–(3) satisfied by *u*. Hence $\varphi = u_{XXXX}$ can be approximated using the same scheme (5)–(6). Let $\varphi^{n+1} = (\varphi_i^{n+1})_{i=1}^N \in X(\mathcal{T})$ denote this application

• Time discretization: The time discretization is performed with a constant time step $k = \frac{T}{M+1}$, where $M \in \mathbb{N} \setminus \{0\}$, and we shall denote $t_n = nk$, for $n \in [0, M+1]$.

Space discretization: The spatial domain I is discretized using the admissible one-dimensional mesh of [2] which we recall here for the sake of completeness. An admissible mesh *T* of I = (0, 1) is given by a family {*K_i*; *i* ∈ [1, *N*]}, *N* ∈ ℕ^{*} of control volumes, such that *K_i* = (*x_i*−¹/₂, *x_i*+¹/₂) and a family {*x_i*; *i* ∈ [0, *N* + 1]} such that

 $x_0 = x_{\frac{1}{2}} = 0 < x_1 < x_{\frac{3}{2}} < \dots < x_{i-\frac{1}{2}} < x_i < x_{i+\frac{1}{2}} < \dots < x_N < x_{N+\frac{1}{2}} = x_{N+1} = 1$ and, for $i \in [1, N]$:

 $h_i = m(K_i) = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}, \quad h_i^- = x_i - x_{i-\frac{1}{2}} \text{ and } h_i^+ = x_{i+\frac{1}{2}} - x_i$ We set $h_{i+\frac{1}{2}} = x_{i+1} - x_i$, for all $i \in [0, N]$, and $h = \max_{i \in [1, N]} h_i$.

Notations and definitions

▶ Finite volume space: Define $X(\mathcal{T})$ as the set of functions from I to IR which are constant on each control volume K_i , $i \in [1, N]$, of the mesh. We shall sometime identify $X(\mathcal{T})$ with IR^N. For each $u \in X(\mathcal{T})$, we define the discrete H_0^1 -norm by

$$\|u\|_{1,\mathcal{T}} = (\sum_{i=1}^{N-1} \frac{(u_{i+1} - u_i)^2}{h_{i+\frac{1}{2}}} + \frac{(u_1)^2}{h_{\frac{1}{2}}} + \frac{(u_N)^2}{h_{N+\frac{1}{2}}})^{\frac{1}{2}},$$

where u_i denotes the value taken by $u \in X(\mathcal{T})$ on the control volume

application.

An approximation $\psi^{n+1} = (\psi_i^{n+1})_{i=1}^N \in X(\mathcal{T})$ for u_{xxtt} can be defined as $\psi_i^n = f_{xx}(x_i, t_n) + \varphi_i^n$.

• A convenient approximation for $v = u_{xx}$. One remarks that the unknown function $v = u_{xx}$ is a second integration in time of $\psi = u_{xxtt}$, one can attempt to look for an approximation for $v = u_{xx}$ using a *second numerical integration in time* for $\psi^n = (\psi_i^n)_{i \in [\![1,N]\!]}$ which is an approximation for $\psi = u_{xxtt}$. Let $(\alpha^n)_{n \in [\![0,M+1]\!]} \in (X(\mathcal{T}))^{M+2}$ be defined as $\partial^2 \alpha^n = \psi^n$, for all $n \in [\![2, M+1]\!]$. Some computations lead to, for $l \in [\![2, M+1]\!]$

$$\alpha' = k^2 \sum_{j=2}^{l} \sum_{n=2}^{j} \psi^n + t_j \partial^1 \alpha^1 + \alpha^0, \qquad (11)$$

where we choose $\alpha_i^0 = (u^0)_{xx}(x_i)$ and $\alpha_i^1 = k(u^1)_{xx}(x_i) + (u^0)_{xx}(x_i)$, for all $i \in [1, N]$.

► z_i^n : approximation for u_{xxt} . The unknown u_{xxt} is the time derivative of u_{xx} . We are able then to derive an approximation for u_{xxt} using the discrete time derivative ∂^1 of the approximation α^n of u_{xx} . $z_i^n = \partial^1 \alpha_i^{n+1}$

The approximations I_i^n and s_i^n can be computed the same techniques used to compute the approximation α^n of u_{xx} .

Definition of a new second order approximation

We define the new approximation $u^{n,1} = (u_i^{n,1})_{i \in [\![1,N]\!]}$, for any $n \in [\![0, M + 1]\!]$ as $h_i \partial^2 u_i^{n+1,1} - \mathbb{D}_{i+\frac{1}{2}} (u^{n+1,1}) = \frac{1}{k} \int_{nk}^{(n+1)k} \int_{K_i} f(x,t) dx dt + d_i^n, \quad \forall i \in [\![1,N]\!]$ (12) with $u_0^{n,1} = u_{N+1}^{n,1} = 0$ for all $n \in [\![0, M + 1]\!]$ and, for any $i \in [\![1,N]\!]$

 $K_i = (X_{i-\frac{1}{2}}, X_{i+\frac{1}{2}}).$

▶ Interpolation operator: For all function $\varphi \in C(\overline{I})$, we denote by $\Pi_T \varphi \in X(T)$ the function defined by $\Pi_T \varphi(x) = \varphi(x_i)$, for a.e. $x \in K_i$, for all $i \in [1, N]$.

- Numerical flux: For
$$u = (u_i)_{i=1}^N \in X(\mathcal{T})$$
, we define :
 $\mathbb{F}_{i+\frac{1}{2}}(u) = \frac{u_{i+1} - u_i}{h_{i+\frac{1}{2}}}$ and $\mathbb{D}_{i+\frac{1}{2}}(u) = \mathbb{F}_{i+\frac{1}{2}}(u) - \mathbb{F}_{i-\frac{1}{2}}(u)$. (4)

A first order scheme: old scheme of [1]

▶ Discretization of equation (1): For all $n \in [1, M]$, find $u^{n+1} = (u_i^n)_{i=1}^N \in X(\mathcal{T})$ such that

$$h_{i}\partial^{2}u_{i}^{n+1} - \mathbb{D}_{i+\frac{1}{2}}(u^{n}) = \frac{1}{k}\int_{nk}^{(n+1)k}\int_{K_{i}}f(x,t)\,dxdt, \quad \forall i \in [\![1,N]\!], \tag{5}$$

with $u_{0}^{n} = u_{N+1}^{n} = 0$, for all $n \in [\![0,M+1]\!]$

Discretization of initial conditions (2): For all $i \in [1, N]$

$$-\mathbb{D}_{i+\frac{1}{2}}(u^{0}) = -\int_{K_{i}}(u^{0})_{xx}(x)dx \text{ and } -\mathbb{D}_{i+\frac{1}{2}}(\partial^{1}u^{1}) = -\int_{K_{i}}(u^{1})_{xx}(x)dx. \quad (6)$$

where ∂^1 denotes the discrete temporal derivative:

$$\partial^1 v^n = \frac{v^n - v^{n-1}}{k},$$

and ∂^2 denotes the discrete second temporal derivative

$$-\mathbb{D}_{i+\frac{1}{2}}(u^{0,1}) = -\int_{\mathcal{K}_{i}}(u^{0})_{xx}(x)dx - \frac{1}{2}\delta_{1}\left((h_{i+1}^{-} - h_{i}^{+})\alpha_{i+1}^{0}\right), \quad (13)$$

$$-\mathbb{D}_{i+\frac{1}{2}}(u^{1,1}) = -\int_{\mathcal{K}_{i}}(u^{0} + k\bar{u}^{1})_{xx}(x)dx - \frac{1}{2}\delta_{1}\left((h_{i+1}^{-} - h_{i}^{+})\alpha_{i+1}^{1}\right), \quad (14)$$
where $\bar{u}^{1} = u^{1} + \frac{k}{2}(f(0) + (u^{0})_{xx})$ and $\delta_{1}v_{i} = v_{i} - v_{i-1}.$

Statement of Convergence results

Le us the error by $e_{\mathcal{T}}^{n,1}(x) = u(x_i, t_n) - u_i^{n,1}$, for a.e. $x \in K_i$, for all $K_i \in \mathcal{T}$. • Discrete $\mathbb{L}^{\infty}(0, T; H_0^1(\mathbf{I}))$ -estimate: for all $n \in [0, M + 1]$ $\| e_{\mathcal{T}}^{n,1} \|_{1,\mathcal{T}} \leq C(h+k)^2 \| u \|_{\mathcal{C}^4([0,T]; \mathcal{C}^6(\bar{\mathbf{I}}))}$. (15) • $\mathcal{W}^{1,\infty}(0, T; \mathbb{L}^2(\mathbf{I}))$ -estimate: for all $n \in [1, M + 1]$ $\| \partial^1 e_{\mathcal{T}}^{n,1} \|_{\mathbb{L}^2(\mathbf{I})} \leq C(h+k)^2 \| u \|_{\mathcal{C}^4([0,T]; \mathcal{C}^6(\bar{\mathbf{I}}))}$. (16)

Idea on the Proof of Statement of (15)–(16)

• Convergence of α^n of u_{xx}

An a priori estimate for the discrete problem

Numerical tests

$$\partial^2 v^n = \partial^1 (\partial^1 v^n).$$

It is proved in [1] that scheme (5)–(6) is of first order. This contribution deals with a new second order finite volume approximation for problem (1)–(3). This second order approximation can be computed using the same scheme (5)–(6).

An auxiliary helpful term

Let us consider the expression

$$d_{i}^{n} = -h_{i}\frac{h_{i}^{+} - h_{i}^{-}}{2}l_{i}^{n} - k\frac{h_{i}}{2}z_{i}^{n} - k\frac{h_{i}}{2}s_{i}^{n} - \frac{h_{i+1}^{-} - h_{i}^{+}}{2}\alpha_{i+1}^{n+1} + \frac{h_{i}^{-} - h_{i-1}^{+}}{2}\alpha_{i}^{n+1}, \quad (7)$$

where

- α_i^n is an approximation for u_{XX}
- $rightarrow z_i^n$ is an approximation for u_{xxt}
- I_i^n is an approximation for u_{ttx}
- s_i^n is an approximation for u_{ttt}

We $u(x, t) = \sin(\pi x) \cos(\pi t)$, $(x, t) \in (0, 1) \times (0, 1)$. We set $h_i = h$ for even i, $h_i = h/2$ for odd i, and $x_i = (x_{i-\frac{1}{2}} + x_{i+\frac{1}{2}})/2$, for $i \in [1, N]$. The step is taken as k = h/2. The following table shows that the order of scheme (12)–(14) is two:

h	Error in $W^{1,\infty}(L^2)$		Error in $L^{\infty}(H_0^1)$	
	Error	Order	Error	Order
1/225	0.0000946		0.0000770	
	0.0000533			
	0.0000341			
1/450	0.0000237	1.9954982	0.0000193	2.0015786

References

- Bradji, A.: A theoretical analysis of a new finite volume scheme for second order hyperbolic equations on general nonconforming multidimensional spatial meshes. Numer. Methods Partial Differ. Eq., 29/1, 1–39, 2013.
- [2] Eymard R., Gallouët T. and Herbin R.: Finite Volume Methods, Handbook for Numerical Analysis, Ph. Ciarlet J.L. Lions (Eds.), North Holland, 2000, vol. VII pp. 715-1022.

Presented at FVCA7, WIAS–Berlin in Germany, June 15–20, 2014

Contact: abdallah.bradji@univ-annaba.dz, bradji@cmi.univ-mrs.fr