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Problem to be solved

One dimensional non-stationary heat equation:
ui( X, t) — Uxx(X, t) = f(x, 1), (x,t) €1 x (0, T),

whereI = (0,1), T > 0, and f is a given function defined on I x (0O, T).
his equation is equipped with an initial condition given by:

u(x,0) = uo(x), xel,

where u° is a given function defined on I, and the homogeneous
Dirichlet boundary conditions:

u(0,t) = u(1,t)=0, tec(0,T).

A mixed formulation and a MFE approximation

As a “formal” mixed formulation for (1)—(3) is (see for instance [7]), for
each t € (0, T), find (p(t), u(t)) € Hgy(I) x L3(I) such that, for all
(¢, 0) € L3(I) x Hey(T)

(Ut(t), )2y + (9, div P(1)) 2y = (5 F(E)) 121y

(0, P(1)) 2y = (div b, U(1)) 21y 5
and
u(0) = u°.

The space Hjgy (1) in the case of one dimension is given by the Sobolev
space Hy,(I) = H'(I). The mesh points of I = (0, 1) are denoted by
0=Xxy < Xq...<Xpy.1=1,with M € N\ {0}, and the constant step is
givenby h=x;.1 — x;=1/(M + 1). We consider the sub-intervals
I; = (xj, X;.1), for i € [0, M]. The discretization of the spaces Hg,(I) and
(1) is performed using the RTy-MFEs (see [8]):

VIV = {v € Hy(I) 1 V|, €Dg, Vie [0, M}
and

W,={uecl?1): ul,ePy, Viecl0, M},
where Py Is the space of constant functions and
Do =Py & xP.

The space V" (resp. W},) can be defined as the set of continuous

functions (resp. functions of L2(I)) which are linear (resp. constant) over

each I;, see [8]). The basis of Vi is the set of usual piece-wise linear
shape functions.

An existing MFE scheme, see [2]

Find (p7, ul) € Vi x W}, such that:
» For any n € [0, N] and for all ¢ € W

» Forany ne [0, N + 17:

(Phs )12y = (U
where

Known convergence result, see [2]

N 1
max || Ux(ty, 1) + Py gy < C (h+ K%).

Definition of interpolation operators, see [9]

We shall use the following interpolation operators over the spaces V"
and W, see [9]:
» The usual linear interpolation operator M, over V.

» The interpolation operator J,, over W, given by Jyu(x) = J;, for x € 1; with J; is

given by the mean value over I;
1

Ji = - /1 u(x)dx.

Our aim: Super-convergence phenomenon

The aim is bi-fold:
» We improve the order in space (whi1ch is only h) in (12) to order h? by

comparing the discrete solution pT? with the linear interpolation I, of

p = —Uy, I.e. that is a super-convergence for the MFE scheme (9)—(11) (see

[9]).

» Prove the order two in space stated in the previous item in the divergence
norm (in space), i.e. H'-norm. More precise, we shall prove this
super-convergence result in L2(H')—norm.
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(13)

Main result: Super-convergence result

The following L2(Hy;,(I))—error estimate holds:

N
1
(Zk Mtyy) + Py
n=0 ’

Super-convergence for elliptic equations is not stated explicitly

Let us consider the following second order elliptic equation in 1D:
—wxx(X) = F(x), xel1=(0,1) and u(0)=u(1)=0. (15)

The MFE scheme for the problem (15) is: Find (pp, wp) € VEY x W}, such
that, for all (¢, v) € W) x VI

((Pn)x SO)LZ(I) = (F,¥)zqy and  (Pn V)20 = (wh, ¥x) 120) - (16)
Using the error estimates [8, Page 237] yields the following first order
estimate for the MFE scheme (16)

1Pn + Ux||11+ ||wn — wl2qy < Ch. (17)
We are able to prove the following super-convergence result::
1Pn + Matxl11 + [|wn — I 12y < CHP.

Main idea behind in the proof

Developed a new discrete a priori estime

In Progress

» Extension to multi-dimensional Parabolic equations.
» Extension to Non-Linear Parabolic equations.
» Extension to Evolutionary Navier Stokes equation.
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