A new analysis for a super-convergence result

in the divergence norm for $\mathbb{R} \mathbb{T}_{0}$-MFEs combined with the C.-N. method applied to 1D Parabolic Eqs F. Benkhaldoun ${ }^{a}$ and A. Bradji ${ }^{b, c}$
${ }^{2}$ LAGA, Université Sorbonne Paris Nord (USPN), France ${ }^{b}$ Department of Mathematics, Annaba-university, Algeria
${ }^{\text {c }}$ Professeur Invité au LAGA, Paris Nord-France

Problem to be solved

One dimensional non-stationary heat equation:

$$
\begin{equation*}
u_{t}(\boldsymbol{x}, t)-u_{x x}(\boldsymbol{x}, t)=f(\boldsymbol{x}, t), \quad(\boldsymbol{x}, t) \in \mathrm{I} \times(0, T) \tag{1}
\end{equation*}
$$

where $\mathrm{I}=(0,1), T>0$, and f is a given function defined on $\mathrm{I} \times(0, T)$. This equation is equipped with an initial condition given by:

$$
\begin{equation*}
u(\boldsymbol{x}, 0)=u^{0}(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathrm{I} \tag{2}
\end{equation*}
$$

where u^{0} is a given function defined on I , and the homogeneous Dirichlet boundary conditions:

$$
\begin{equation*}
u(0, t)=u(1, t)=0, \quad t \in(0, T) \tag{3}
\end{equation*}
$$

A mixed formulation and a MFE approximation

As a "formal" mixed formulation for (1)-(3) is (see for instance [7]), for each $t \in(0, T)$, find $(p(t), u(t)) \in H_{\text {div }}(\mathrm{I}) \times L^{2}(\mathrm{I})$ such that, for all $(\varphi, \psi) \in L^{2}(\mathrm{I}) \times H_{\text {div }}(\mathrm{I})$

$$
\begin{equation*}
\left(u_{t}(t), \varphi\right)_{L^{2}(\mathrm{I})}+(\varphi, \operatorname{div} p(t))_{L^{2}(\mathrm{I})}=(\varphi, f(t))_{L^{2}(\mathrm{I})} \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
(\psi, p(t))_{L^{2}(\mathrm{I})}=(\operatorname{div} \psi, u(t))_{L^{2}(\mathrm{I})} \tag{5}
\end{equation*}
$$

and

$$
u(0)=u^{0}
$$

The space $H_{\text {div }}(\mathrm{I})$ in the case of one dimension is given by the Sobolev space $H_{\text {div }}(\mathrm{I})=\boldsymbol{H}^{1}(\mathrm{I})$. The mesh points of $\mathrm{I}=(0,1)$ are denoted by $0=\boldsymbol{x}_{0}<\boldsymbol{x}_{1} \ldots<\boldsymbol{x}_{M+1}=1$, with $M \in \mathbb{N} \backslash\{0\}$, and the constant step is given by $h=x_{i+1}-x_{i}=1 /(M+1)$. We consider the sub-intervals $\mathrm{I}_{i}=\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{i+1}\right)$, for $i \in\left[0, M \rrbracket\right.$. The discretization of the spaces $H_{\text {div }}(\mathrm{I})$ and $L^{2}(\mathrm{I})$ is performed using the $\mathbb{R} \mathbb{T}_{0}$-MFEs (see [8])

$$
\begin{equation*}
V_{h}^{\text {div }}=\left\{v \in H_{\text {div }}(\mathrm{I}):\left.\quad v\right|_{\mathrm{I}_{i}} \in \mathbb{D}_{0}, \quad \forall i \in \llbracket 0, M \rrbracket\right\} \tag{7}
\end{equation*}
$$ and

$$
\begin{equation*}
W_{h}=\left\{u \in L^{2}(\mathrm{I}):\left.\quad u\right|_{\mathrm{I}_{i}} \in \mathbb{P}_{0}, \quad \forall i \in \mathbb{[0}, M \rrbracket\right\} \tag{8}
\end{equation*}
$$

where \mathbb{P}_{0} is the space of constant functions and

$$
\mathbb{D}_{0}=\mathbb{P}_{0} \oplus \boldsymbol{x} \mathbb{P}_{0}
$$

The space $V_{h}^{\text {div }}$ (resp. W_{h}) can be defined as the set of continuous functions (resp. functions of $L^{2}(\mathrm{I})$) which are linear (resp. constant) over each I_{i}, see [8]). The basis of $V_{h}^{\text {div }}$ is the set of usual piece-wise linear shape functions.

An existing MFE scheme, see [2]

Find $\left(p_{h}^{n}, u_{h}^{n}\right) \in V_{h}^{\text {div }} \times W_{h}$ such that

- For any $n \in \llbracket 0, N \rrbracket$ and for all $\varphi \in W_{h}$:

$$
\begin{equation*}
\left(\partial^{1} u_{h}^{n+1}, \varphi\right)_{L^{2}(\mathrm{I})}+\left(\left(p_{h}^{n+\frac{1}{2}}\right)_{\boldsymbol{x}}, \varphi\right)_{L^{2}(\mathrm{I})}=\left(f\left(t_{n+\frac{1}{2}}\right), \varphi\right)_{L^{2}(\mathrm{I})}, \tag{9}
\end{equation*}
$$

- For any $n \in \llbracket 0, N+1 \rrbracket$:

$$
\begin{equation*}
\left(p_{h}^{n}, \psi\right)_{L^{2}(\mathrm{I})}=\left(u_{h}^{n}, \psi_{\mathbf{x}}\right)_{L^{2}(\mathrm{I})}, \quad \forall \psi \in V_{h}^{\mathrm{div}} \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
p_{h}^{0}=-\Pi_{h}\left(u^{0}\right)_{\boldsymbol{x}} \tag{11}
\end{equation*}
$$

Known convergence result, see [2]

$$
\begin{equation*}
\max _{n=0}^{N}\left\|u_{x}\left(t_{n+\frac{1}{2}}\right)+p_{h}^{n+\frac{1}{2}}\right\|_{H^{\prime}(\mathrm{I})} \leq C\left(h+k^{2}\right) \tag{12}
\end{equation*}
$$

Definition of interpolation operators, see [9]

We shall use the following interpolation operators over the spaces $V_{h}^{\text {div }}$ and W_{h}, see [9]:

- The usual linear interpolation operator Π_{h} over $V_{h}^{\text {div }}$
- The interpolation operator J_{h} over W_{h} given by $J_{h} u(\boldsymbol{x})=J_{i}$, for $\boldsymbol{x} \in \mathrm{I}_{i}$ with J_{i} is given by the mean value over I_{i}

$$
\begin{equation*}
J_{i}=\frac{1}{h} \int_{\mathbf{I}_{i}} u(\boldsymbol{x}) d \boldsymbol{x} . \tag{13}
\end{equation*}
$$

Our aim: Super-convergence phenomenon

The aim is bi-fold:

- We improve the order in space (which is only h) in (12) to order h^{2} by comparing the discrete solution $p_{h}^{n+\frac{1}{2}}$ with the linear interpolation Π_{h} of $p=-u_{\boldsymbol{x}}$, i.e. that is a super-convergence for the MFE scheme (9)-(11) (see $p=$
[9]).
- Prove the order two in space stated in the previous item in the divergence norm (in space), i.e. H^{1}-norm. More precise, we shall prove this super-convergence result in $L^{2}\left(H^{1}\right)$-norm.

Main result: Super-convergence result

The following $L^{2}\left(H_{\text {div }}(\mathrm{I})\right)$-error estimate holds:

$$
\left(\sum_{n=0}^{N} k\left\|\Pi_{h} u_{x}\left(t_{n+\frac{1}{2}}\right)+p_{h}^{n+\frac{1}{2}}\right\|_{1, \mathrm{I}}^{2}\right)^{\frac{1}{2}} \leq C(h+k)^{2}
$$

Super-convergence for elliptic equations is not stated explicitly

Let us consider the following second order elliptic equation in 1D:

$$
\begin{equation*}
-\omega_{\boldsymbol{x} \boldsymbol{x}}(\boldsymbol{x})=F(\boldsymbol{x}), \quad \boldsymbol{x} \in \mathrm{I}=(0,1) \quad \text { and } \quad u(0)=u(1)=0 . \tag{15}
\end{equation*}
$$

The MFE scheme for the problem (15) is: Find $\left(p_{h}, \omega_{h}\right) \in V_{h}^{\text {div }} \times W_{h}$ such that, for all $(\varphi, \psi) \in W_{h} \times V_{h}^{\text {div }}$
$\left(\left(p_{h}\right)_{\boldsymbol{x}}, \varphi\right)_{L^{2}(\mathrm{I})}=(F, \varphi)_{L^{2}(\mathrm{I})} \quad$ and $\quad\left(p_{h}, \psi\right)_{L^{2}(\mathrm{I})}=\left(\omega_{h}, \psi_{\boldsymbol{x}}\right)_{L^{2}(\mathrm{I})}$. Using the error estimates [8, Page 237] yields the following first order estimate for the MFE scheme (16)

$$
\begin{equation*}
\left\|p_{h}+u_{x}\right\|_{1, \mathrm{I}}+\left\|\omega_{h}-\omega\right\|_{L^{2}(\mathrm{I})} \leq C h . \tag{17}
\end{equation*}
$$

We are able to prove the following super-convergence result::

$$
\left\|p_{h}+\Pi_{h} u_{x}\right\|_{1, \mathrm{I}}+\left\|\omega_{h}-J_{h} \omega\right\|_{L^{2}(\mathrm{I})} \leq C h^{2}
$$

Main idea behind in the proof

Developed a new discrete a priori estime

In Progress

- Extension to multi-dimensional Parabolic equations.
- Extension to Non-Linear Parabolic equations
- Extension to Evolutionary Navier Stokes equation

References

.F. Benkhaldoun and A. Bradji: A new generic super-convergence result in the divergence norm for primal dual mixed finite element schemes applied to parabolic equations and examples. In preparation
2. F. Benkhaldoun and A. Bradji: Novel analysis approach for the convergence of a second order time accurate mixed finite element scheme for parabolic equations. Comput. Math. Appl. 133, 85-103 (2023).
3. F. Benkhaldoun and A. Bradji: Two new error estimates of a fully discrete primal-dual mixed finite element scheme for parabolic equations in any space dimension. Results Math. 76/4, Paper No. 182 (2021).
4. F. Benkhaldoun and A. Bradji: A new error estimate for a primal-dual Crank-Nicolson mixed finite element using lowest degree Raviart-Thomas spaces for parabolic equations. Large-Scale Scientific Computing, 489-497, Lecture Notes in Comput. Sci., 13127, Springer, Cham, 2022
5. H. Chen, R. Ewing, R. Lazarov: Superconvergence of mixed finite element methods for parabolic problems with nonsmooth initial data. Numer. Math. 78/4, 495-521 (1998).
6. R. E. Ewing and R. D Lazarov: Superconvergence of the mixed finite element approximations of parabolic problems using rectangular finite elements. East-West J. Numer. Math. 1/3, 199-212 (1993)
. C. Johnson and V. Thomee, Error estimates for some mixed finite element methods for parabolic type problems. RAIRO Anal. Numér. 15/1, 41-78 (1981).
8. A. Quarteroni and A. Valli: Numerical Approximation of Partial Differential Equations. Springer Series in Computational Mathematics 23. Berlin Springer. (2008).
9. H. Yang, D. Shi: Superconvergence analysis of the lowest order rectangular Raviart-Thomas element for semilinear parabolic equation. Appl. Math. Lett 105, 106280, 9 pp (2020).

Acknowledgments

Supported by MCS team (LAGA Laboratory) of the "Université
Sorbonne- Paris Nord".

