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The aim of the present contribution is to deal with some error
estimates of an implicit finite volume scheme of a non
stationary heat equation on a general class of meshes has
been recently used to approximate stationary equations.
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Overview

Overview : References based on...

@ Bradji, A.: Some simples error estimates for finite volume
approximation of parabolic equations. Comptes Rendus de
I’Académie de Sciences, Paris, 346/9-10, 571-574 (2008 ).

@ Bradiji, A. and Fuhrmann, J.: Some error estimates in finite
volume method for parabolic equations.Proceedings of the
5th International Symposium on Finite Volume for Complex
Applications/ eds. by Eymard and Hérard, Wiley, 233-240
(2008).
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Overview : References based on...(Suite)

@ (Handbook) Eymard, R., Gallouét T., Herbin, R.: Finite
volume methods. Handbook of Numerical Analysis. P. G.
Ciarlet and J. L. Lions (eds.), VIl , 723—1020 (2000).

@ Eymard, R., Gallouét, T., Herbin, R.: Discretization of
heterogeneous and anisotropic diffusion problems on
general nonconforming meshes. IMA J. Numer. Anal.,
Advance Access published on June 16, 2009; doi:
doi:10.1093/imanum/drn084.
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Overview

Plan of the presentation

@ Motivation and statment of previous results
@ Problem to be discretized
@ Heat equation and its classical finite volume discretization,
i.e. using the classical Admissible mesh.
Error estimate of Handbook of Eymard, Gallouét, and
Herbin, i.e. L>°(L?2) error estimate

(3
O Why we looked for other error estimate? (would say in other
norms)

(5

Statment of our previous results
© Our main result
©@ What advantages of our present contribution?
@ Statement of the present result

Bradji and Fuhrmann Finite volume for prabolic equations



Motivation and statment of previous results

Non stationary Heat equation

ui(x, t) — Au(x, t) = f(x, 1), (x,t) € 2x (0, T), (1)

where, Q is an open bounded polyhedral subset in RY, with
deIN*, T >0, and f is a given function.
An initial condition is given by:

u(x,0) = u°(x), x € Q. (2)
A Dirichlet boundary condition is defined by

u(x,t)=0, (x,t) € 92 x (0, T), (3)
where, we denote by 0Q = Q \ Q the boundary of Q.
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Motivation and statment of previous results

About Heat equation?

@ (some physics): Heat equation u; — A u is typically used in
different applications, such as fluid mechanics, heat and
mass transfer,...

© (existence and uniqueness): existence and uniqueness of
a weak solution of heat equation, with (2) ( initial condition)
and (3) ( Dirichlet boundary condition) can be formulated
using Bochner spaces; see for instance Evans book of
partial differential equation
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Motivation and statment of previous results

Finite volume discretization, using classical
admissible mesh in space, for heat equation

Definition (Classical finite volume discretization, i.e. using
Admissible mesh)

There are two variables in
ur(x,t) — Au(x, t) = f(x,t), xeQ, te (0,T),Qc R?

@ domain space Q is discretized using admissible mesh, see
next for the definition of admissible mesh.

@ uniform mesh on (0, T) with constant step k = T/(N + 1).
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Aim...
Overview
Motivation and statment of previous results
Our present main contribution
Some remarks on the schemes on admissible mesh and that o

Conclusion

Definition (Admissible Mesh for Q ¢ RY)

In the sense of Handbook EGH. K € 7 are the control volumes
and o are the edges of the control volumes K.




Motivation and statment of previous results

Some properties of the classical admissible mesh

@ (orthogonality propert): ok, othogonal to o
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Motivation and statment of previous results

Definition of a classical two point finite volume
scheme, using admissible mesh, for Heat equation

Principles of the classical scheme:

@ discretization of spatial Q: performed using admissible in
the sense of EGH

@ discretization of time interval (0, T): performed using
constantstep k=T/(N+1), Ne N

© integration of us — Auon each (ty, th 1) x K, Ke T
(control volume), n =0, ..., N.
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Motivation and statment of previous results

Definition of a classical two point finite volume
scheme, using admissible mesh, for Heat equation
(suite)

@ (integration by parts): integration by parts
J(u(x, thi1) — u(x, ta))dx — tt"“ Jok V u(x, t) - ngax, dt,
hx normal to 9 K outward to K

@ (summing on the edges of K): [, (u(x, th11) — u(x, ty))dx —

_ ti"*‘ > octx [, Vu(x,t) - ngdx, dt

© (thanks to orthogonality property of admissible mesh and
implicit choice ) m(K)(u(xk, th+1) — u(xk, th)) —
> oee, (m(o)/(dk o )(U(XL, thit) — U(Xk, tid))
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Motivation and statment of previous results

Definition of a classical scheme, using admissible
mesh, for Heat equation (suite)

@ The discretization thenof uy — Au = fis
m(K)(ug" = ug) = > (m(o)/(dk o)t —uR) ()

o€k
© (discretization of initial condition used in EGH)
ul = W(xk), YKeT (5)

© (discretization of the homogeneous Dirichlet boundary
condition): in (4), U™ = 0if o € Ex N Eexe.
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Motivation and statment of previous results

Known result of convergence given in EGH

Result given EGH: The scheme (4)—(5) given before is well
posed (has a unique solution) and the following error estimate
holds, for a constant C only dependingon Q, T, and u :

> m(K)(u(xk, tn) — ug)? < C(h+k)?,¥Yn=0,...,N, (6)
KeT

where h is the mesh size of the space discretization, that is
h = sup{diam(K), K € 7}
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Motivation and statment of previous results

Why we look for other error estimates?

So, it is obtained
> ker m(K)(u(xk, ta) — uR)?> < C(h+ k)2,¥yn=0,...,N.
Some comments on this estimate:

@ (approximation for spatial derivatives of the exact solution):
the stated estimate allows only to approximate u(x, t,)
(would say the solution itself only), K € 7 and
n=0,...,N+ 1; what about the approximation of the
spatial derivatives. Indeed, it is some time interesting (in
practice) to look for the approximation of the flux given by
fa Vu- Nk

© (approximation for time derivative of exact solution?).
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Motivation and statment of previous results

An answer for our previous wishes!

The following two contributions, in finite volume, give an answer
for previous wishes (would say a finite volume scheme allows
us to approximate the exact solution and its first derivatives)

@ Bradiji, A.: Some simples error estimates for finite volume
approximation of parabolic equations. Comptes Rendus de
I’Académie de Sciences, Paris, 346/9-10, 571-574 (2008 ).

© Bradiji, A. and Fuhrmann, J.: Some error estimates in finite
volume method for parabolic equations. Proceedings of the
5th International Symposium on Finite Volume for Complex
Applications/ Eymard and Hérard (ed.), Wiley, 233—-240
(2008).
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Motivation and statment of previous results

How we could obtain previous wishes?

To obtain our wishes, i.e. finite volume scheme allows us to
approximate the exact solution and its first derivatives, we have
just modified the the approximation of the initial condition. This
point will be detailed when we move to explain our NMA
(present) contribution.
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Motivation and statment of previous results

Some disadvantages of our previous works: mesh and
space dimension

In our previous two contributions, we obtained an implicit finite
volume scheme in which the solution and its first derivatives of
the exact solution can be approximation, but,

@ (othogonality property in the mesh): there exists a family of
points (xx)ke7, such that for a given edge ok, the line
segment xx x; is orthogonal to this edge.
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Motivation and statment of previous results

A new finite volume mesh: any space dimension and
orthogonality property is not required

A new mesh recenly used in the following reference which
deals with stationary equation:

@ Eymard, R., Gallouét, T., Herbin, R.: Discretization of
heterogeneous and anisotropic diffusion problems on
general nonconforming meshes. IMA J. Numer. Anal.,
Advance Access published on June 16, 2009; doi:
doi:10.1093/imanum/drn084.
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Motivation and statment of previous results

Some advantages of the new mesh

Advantages of this new spatial mesh
@ (mesh defined at any space dimension): Q c RY, d e N

© (othogonality property is not required): the othogonality
property is not required in this new mesh. But, additional
discrete unknowns are required.

© (convexity): the classical admissible mesh should satisfy
that the control volumes are convexe, whereas the
convexity property is not required in this new mesh.
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Motivation and statment of previous results

Figure for the mesh
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Our present main contribution

Discretization of the domain Q and time interval (0, T)

Discretization is performed as:

@ Spatial domain Q c RY, d € N, is discretized using the
new class of meshhes.

@ The time interval (0, T) constant step k = T/(N + 1),
N € IN.
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Our present main contribution

Principles of our scheme

Principles of our scheme

@ discretization of heat equation: the discretization of
ut — A u = f stems from weak formulation (like in finite
element method)

fQutxt) v(x)dx — [ Vu(x, t)-Vv(x)dx =
o f( x)dx for all v e H}(Q)

Q (dlscretlzatlon of initial condition u(x, 0) = u°(x)): will be
given later

© (discretization of boundary condition u(x, t) = 0, x € 9Q
and t € (0, T)): will be given later
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Our present main contribution

Discretization of the equation u; — Au = f

recall
Jo ut(x, tyv(x)dx — [ Vu(x,t) - Vv(x)dx = [, f(x,t)v(x)dx,
for all v e H}(Q)

@ (Discrete unknowns): the space of solution as well as the
space of test functions are in

XD,O = {((VK)KGM ) (VO')O-eg) ) Va’ = 07 VO' S 5ext}

© (discretization of the gradient): the discretization of V can
be performed using a stabilized discrete gradient denoted
by Vp, see EGH (IMAJNA).

Bradji and Fuhrmann Finite volume for prabolic equations



Our present main contribution

Formulation for the discretization of the equation
Uy — Au=f

recall

Jo ut(x, t)v(x)dx — [o Vu(x,t)- Vv(x)dx = [, f(x,t)v(x)dx,
for all v € H}(Q).

So a discretization can be done as : For any n € [0, NJ, find
up € Xp o such that

(01 Mg u1”>+1 Mg v)

n+1
* (VoY) gy

= Y m(K)fgvk, Vv € Xpo(7)
KeM

L2(Q)
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Our present main contribution

Discretization boundary condition and initial condition

@ (discretization of initial condition u(x,0) = u%(x)): as
follows (it is discrete projection for u): find u% € Xp o such
that

(vpu%,vp v) ——(AUO,HM V)LZ(Q)’ Vv € Xpy,

(L2@)”
(8)

n__ y,n— I+
where 9'v" = Y= 1 / /fxtdxdt
tn

© (discretization of boundary condltlon u(x,t) =0, x € 92
and t € (0, T)): is included by the fact that v = 0, for all
edges on the boundary 0Q
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Our present main contribution

Remark on the discretization of the initial condition

@ The discretization of initial condition u(x,0) = u°(x) can be
also performed as

U = u’(x), VK, 9)

but this choice seems not optimal in the point of wiew of
the error estimate.

© The choice used in our contribution is based on the
obvious equation that u° is the solution of —Aw = g,
where g = —A u®. We will see why this choice is useful
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A main result: error estimates

Foreachn € [0, N+ 1], let us define the error e}, € Ha(Q2) by:

e = Pmu(:, t) — Mpq Up. (10)
Then, the following error estimates hold
@ discrete L>°(0, T; H}(Q))—estimate: for alln € [0, N + 1]

leXll2.0 < Clhp + K)| Ullczgpo, Tyic2@))- (11)
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A main result: error estimates (Suite)

@ W'>(0, T;1L?(Q))—estimate: foralln € [1,N + 1]
|| 81 e?\/lH]LZ(Q) < C(hD + k)” U“c2([o77'];c2(§))- (12)

where 0'v, = =1,

@ error estimate in the gradient approximation: for all
ne[0,N+1]

IVo up = Vu, tn)H(LZ‘(Q))d < Clho + K| “”02([0,T]:62(§))'
1
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Our present main contribution

Theorem is useful

@ Estimate (12) allows us to approximate (the time

2)
derivative) ui(xk, tn), all K and n
3)a

)u
© Estimate (13) allows us to approximate the first spatial
derivatives g—(xK, t,), all K and n.
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Our present main contribution

An idea on the proof

Comparson with the scheme: for any n € [0, N + 1], find
up € Xp o such that

(VpUp, Vpv) (@)’ =~ KZ;VI vK/KA u(x, th)dx, Yv € Xpy.
€
(14)

We will use mainly the two facts: (U3) <[ n.1p IS @n usual
approximation for u (for each n, it is like an approximation of
elliptic equation) and u% = T2,
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Some remarks on the schemes on admissible mesh and that o

Some remarks

@ (maximum priciple): the classical two finite volume scheme
satisfies the maximum principle, whereas this property
(maximum principle) is not satified by the schemes
generating by the general class of meshes, see Handbook
EGH (Proposition 9.4, Page 769).

@ (approximation of the gradient): in finite element methods
the approximation of the gradient is straigtforward which is
not the case of finite volume methods.
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Some remarks on the schemes on admissible mesh and that o

Some remarks (suite)

@ (the new mesh and fe element mesh): the general class of
meshes of EGH (IMAJNA) allowed the case that the
interface between two control volumes can be two straight
lines which is not the case in finite element meshes; so for
this reason that the meshes of EGH (IMAJNA) are
considered as nonconforming meshes.

@ (orthogonality property): in the new general class of
meshes, the orthogonality property is not required but
addtional discrete unknowns are required, i.e. the
addtional discrete unknowns are those located on the
interfaces of the control volumes.
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Some remarks on the schemes on admissible mesh and that o

Some remarks (suite)

@ (discontinuous matrix diffusion coefficients): the mesh in
the classical discretization of elliptic problems
discontinuous matrix diffusion coefficients should be
adapted to fit the discontinuities of the data, see Hanbook
EGH, pages 815-817. This adaptation of the mesh for
such problems is not required when we use the general
class meshes.
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Conclusion

Conclusion

We considered the heat equation (as model), with initial and
homogeneous boundary conditions in any space dimension.
An implicit finite volume scheme using a general class of
meshes is provided. Thanks to special attention in the
discretization of the initial condition, we obtain error estimates
of order h+ k in several norms which allow us to get
approximations for the first derivatives of order h + k
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