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Abstract: The present work is a continuation of 
the work [1] which is published in the 
Proceedings of the COMSOL Conference 2007 
held in Grenoble-France. In the work [1], we 
tested the convergence order of the COMSOL 
solutions in the so called average norm (which 
does not contain derivative), for several models. 
We observed that the convergence rate of 
COMSOL numerics is identical to the 
theoretically derived convergence rates. It is 
known that in practice, we need some times to 
compute an approximation for the gradient of the 
exact solution. Therefore, it is useful to test the 
convergence order of these approximations to the 
gradient of the exact solution. Which requires to 
test these approximation in some norms 
containing derivatives. Such norms could be the 
so called Sobolev norms of order one. In finite 
element method, there is a huge literature 
concerning the convergence order, in Sobolev 
norms of order one, of the finite element 
solutions towards the exact solution for several 
models. In the present work, we consider the 
same models of the work [1], we compute the 
convergence order of the COMSOL solutions in 
Sobolev norms of order one, and finally we 
compare the convergence order with that known 
in the finite element method. We observe that the 
convergence order, in Sobolev norms order one, 
of COMSOL solutions is identical to that known 
in finite element method. 
  
Keywords: Finite Elements, convergence order, 
adaptive meshes, Poisson equation, potential 
equation 
 
1. Introduction 
 
The convergence of a numerical solution towards 
the analytical solution of a set-up of one or 
several partial differential equations generally 
depends on various characteristics of the 
problem and of the numerical algorithm. The 
convergence order is a measure for the 
improvement of the solution as a consequence of 
mesh refinement.  

Some accuracy tests with COMSOL 
Multiphysics were already presented by Bradji & 
Holzbecher [1] and Holzbecher and Si [6]. Here 
we examine several test problems in 2D using 
classical partial differential equations (Poisson- 
and Laplace equations), and from different 
application fields, from electrostatics to fluid 
dynamics. We compare results from numerical 
experiments with theoretical results.  
The norms in which we evaluate the errors are 
the so called energy norms which are a particular 
case of Sobolev norms. Indeed, in practice we 
need often not only the solution, but also its 
gradient. Since the goal of COMSOL 
Multiphysics is to obtain finite element 
approximations for partial differential equations, 
we evaluate by which order (rate) the gradient of 
the COMSOL solutions converges to the 
gradient of the exact solutions.  
The convergence order is known theoretically in 
the finite element methods. The idea then is to 
show that the convergence order of the 
COMSOL finite element approximations is the 
same one as it is known from finite element 
theory. For illustration let us consider, for the 
sake of simplicity, the Laplace equation posed on 
a square with homogeneous boundary 
conditions. It is known, see [2], that the linear 
finite element approximate solution converges to 
the exact solution by order ‘h’  in the energy 
norm, where h denotes the mesh size, towards 
the exact solution. In test case 1, we show that 
the COMSOL solution converges by the same 
order, i.e. h, in the energy norm towards the 
exact solution.  
We show this compatibility between the 
theoretical results concerning the convergence 
order of finite element in the energy norm and 
the convergence order of COMSOL solution in 
the energy norm, on simple examples.  
 
2. Norms and Convergence Order 
 
The convergence order ϑ is defined by the 
relationship 



( )e O hϑ=  (1) 

where e denotes the error, ..  a norm, and h the 

typical element size. In the following we use the 
maximum norm  

( )max num sole u u
∞

= −  (2) 

with the numerical solution unum and the 'real' 
solution usol; and the average norm:  

( )2

2,0 num sole u u
Ω

= −∫  (3) 

where Ω denotes the model region. In our test 
cases the latter is mostly given by an analytical 
formula. The energy norm is given by  
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or, explicitly in 2D: 
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In test cases in which the integrals can not be 
evaluated, for instance if usol is not known 
explicitly, we replace the evaluation of the 
integral by the evaluation of a sum of values on a 
given fixed mesh. We evaluate the average norm 
(2) using the an approximation of the expression 
on the right hand side of (2):  

( )2

2,0 num sole u u AΩ= −∑  (6) 

where AΩ is the measure of the corresponding 
mesh element. If one uses meshes with elements 
of similar size, as another approximation, 
formula (6) can be simplified to:  

( )2

2,0 num sol

A
e u u

N
= −∑  (7) 

with size of model region A and number of mesh 
nodes N. Thus, instead of equation (3) we use 
definition (7) and instead of equation (5) we 
compute the formula: 
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In order to determine the convergence order from 
numerical runs, the errors of runs with different 
refinement level have to be related. As it is 
difficult to evaluate the mean size of the 
elements h, one may alternatively use the 
degrees of freedom (DOF) for the determination 
of the convergence rate. From the property (1)
and the relation 

DOF dh−
∼  (9) 

(where { }1,2,3d ∈  denotes the dimension of the 

problem) one can easily derive the formula  

( ) ( )
( ) ( )

1 2

1 2

ln ln

ln DOF ln DOF

e e
dϑ

−
= −

−
 (10) 

where subscripts denote run number (see also: 
[7, 8]).  
 
3. Poisson Equation with 1st Type 
Boundary Condition  
 
3.1    Testcase 1 
 
The first test problem concerns the Poisson 
equation  

2 1u−∇ =  within the unit circle (11) 

with boundary condition of Dirichlet type: u = 0 
at all positions of the circle. The analytical 
solution is given by: 

2 2( , ) ( 1) / 4u x y x y= − + −  (12) 
In case of quadratic Lagrange elements, the 
COMSOL default setting, one obtains the exact 
solution in the interior (the solution is a quadratic 
function); only in the vicinity of the boundaries 
there are deviations, because the element shape 
at the boundary follows the geometry and the 
relationship between local and global coordinates 
is not linear (see also: COMSOL model library 
→ benchmarks → Poisson unit disk).  



 
Figure 1. COMSOL numerical solution for the 
testcase 1 Poisson problem for linear elements 
and for the coarse grid; the solution is depicted 
as surface plot; the color represents the error 
unum-usol (orange is zero)  
 
Figure 1 depicts the solution and the average 
error distribution for the testcase. The results in 
case of linear Lagrange elements, i.e. degrees of 
freedom (DOF), the error in the average norm 
and the resulting values for the convergence rate 
are given in Table 1. The error is evaluated 
directly with the COMSOL graphical user 
interface and, after export to the scipt program, 
on a triangular mesh of 1468 nodes. Both values 
turn out to be almost identical. We also report 
the execution time in seconds on a common PC. 
 

Table 1: Results for the Poisson testcase 1 with 
Dirichlet- boundary conditions (1st order 
elements, average norm) 

DOF Time [s] 3

2,0
10e ⋅  ϑϑϑϑ 

403 0.03-
0.094 

1.7  

1561 0.063 0.4391 

2.02 

6145 0.297 0.1107 
1.9
8 

24385 1.06-1.16 0.0277 
2.04 

97153 5.81-7.86 0.0069  
1.9
8 

For the convergence rate the theoretical value of 
2 (see: [2]) for that situation is confirmed by the 
numerical simulations.  
The results in case of linear Lagrange elements, 
i.e. degrees of freedom (DOF), the error in the 
energy norm and the resulting values for the 
convergence rate are given in Table 2. The 
convergence order shown in Table 1 is 2 in the 
average norm, which corresponds to theoretical 
findings for linear finite element approximate 
solutions [2]. 
 
Table 2: Results for the Poisson testcase 1 with 
Dirichlet-type boundary conditions (1st order 
elements, energy norm) 

DOF 
2,1

e  ϑϑϑϑ 

403 0.0283  

1561 0.0146 
0.98 

6145 0.0073 
1.01 

24385 0.0037 
0.98 

97153 0.0019  
1.00 

 
Table 2 shows that the convergence order of the 
COMSOL solution is 1, as it is known for linear 
finite element approximate solutions. 
 
Table 3: Results for the Poisson testcase 1 with 
Dirichlet- boundary conditions (1st order 
elements, maximum norm) 

DOF 610e
∞

⋅  ϑϑϑϑ 

403 360  

1561 267.5 
0.44 

6145 85.89 
1.66 

24385 2.614 
5.07 

97153 0.7688  
1.77 

 
Results of Table 3 do not provide a clear 
conclusion concerning the convergence rate. The 
reason is still unclear.  
The results in case of quadratic Lagrange 
elements, i.e. degrees of freedom (DOF), the 
error in the average norm and the resulting 
values for the convergence rate are given in 
Tables 4 and 5.  



Table 4: Results for the Poisson testcase 1 with 
Dirichlet- boundary conditions (2nd order 
elements, average norm) 

 

Table 5: Results for the Poisson testcase 1 with 
Dirichlet- boundary conditions (2nd order 
elements, energy norm) 

 
 
 
 
 
 
 
 
 
 

 
Table 6: Results for the Poisson testcase 1 with 
Dirichlet- boundary conditions (2nd order 
elements, maximum norm) 

 
DOF 610e

∞
⋅  ϑϑϑϑ 

1561 13.82  

6145 1.735 
3.03 

24385 0.2174 
3.01 

97153 0.0272 
3.00 

387841 0.0034  
3.00 

 
It has to be noted that there are errors of 2nd order 
elements only on the boundary, as the boundary 
line is not approximated exactly by the elements. 
In the interior the second order approximation 
fits exactly with the second order solution of the 
test problem.  

 

 

Figure 2. COMSOL numerical solution for the 
testcase 1 Poisson problem for quadratic 
elements and for the 2 x refined mesh; the 
solution is depicted as surface plot; the color 
represents the error unum-usol (blue is zero)  
 
3.2    Testcase 2 
 
Another testcase, tackled in the literature [9], 
concerns the function  

( ) ( )( , ) sin sin (1 )(1 )u x y xy x y= − −  (13) 

in the unit square, which is depicted in Figure 3. 
It is a solution of the Poisson equation: 

( )2 2 (1 ) (1 )u x x y y−∇ = − + −  (14) 

The results for linear and quadratic elements are 
given in the following tables. The execution time 
(in seconds) for linear elements was: 0.062, 0.11, 
0.39, 1.735, 10.2, 271 for the respective runs; 
and for quadratic elements: 0.125, 0.344, 1.61, 
7.6, 279. Default UMFPACK was chosen as a 
solver in all runs, except for the run for the finest 
mesh, for which GMRES was used (because of 
memory problems). The iterative solver 
obviously converges much slower than 
UMFPACK. 
In maximum norm as well as in the average 
norm the convergence order for linear elements 
is 2, the convergence order for quadratic 
elements is 3. In the energy norm the 
convergence order is reduced to 1 for linear 
elements and to 2 for quadratic elements. 
 

DOF time 6

2,0
10e ⋅

 

ϑϑϑϑ 

1561 0.05-0.09 3.712  

6145 0.250 0.3192 
3.58 

24383 1.094 0.0368 
3.14 

97163 5.438 0.00417 
3.15 

387841 98.0 0.00059  
2.83 

DOF 
6

2,1
10e ⋅  ϑϑϑϑ 

1561 0.3871  

6145 0.0876 

2.17 

24383 0.0215 
2.04 

97153 0.0054 
2.00 

387841 0.0012  

2.15 



Table 7: Results for the Poisson testcase 2 with 
Dirichlet- boundary conditions for the maximum 
norm e

∞
; norm superscripts and convergence 

order ϑ subscripts for element order 

DOF 1
e

∞ 1 ϑϑϑϑ1 
2

e
∞  ϑϑϑϑ2 

520 4.1 
10-4 

   

2017 1.2 
10-4 

1.81 

9.4 
10-6 

 

7945 3.1 
10-5 

1.97 

1.2 
10-6 

3.00 

31537 8.0 
10-6 

1.97 

1.5 
10-7 

2.98 

1.25 
105 

2.0 
10-6 

2.01 

1.8 
10-8 

3.11 

5 105 5.0 
10-7 

2.00 

 2.3 
10-9 

2.97 

 

 
 
Table 8: Results for the Poisson testcase 2 with 
Dirichlet- boundary conditions for the average 
norm 

2,0
e ; norm superscripts and convergence 

order ϑ subscripts for element order 

DOF 1

2,0
e  ϑϑϑϑ1 

2

2,0
e  ϑϑϑϑ2 

520 1.3  
10-4 

   

2017 3.16 
10-5 

2.09 

1.33 
10-6 

 

7945 7.99 
10-6 

2.0 

1.67 
10-7 

3.03 

31537 2.00 
10-6 

2.0 

2.09 
10-8 

3.02 

1.25 
105 

5.02 
10-7 

2.01 

2.62 
10-9 

3.02 

5 105 1.25 
10-7 

2.01 

 3.3 
10-10 

2.99 

 

 
For coarse meshes the error for quadratic 
elements is much less than for linear elements, 
even if compared for the same DOF.  
 
 
 

 
 
Figure 3. COMSOL numerical solution for the 
testcase 2 Poisson problem for quadratic 
elements and for the 2 x refined mesh; the 
solution is depicted as surface plot; the color 
represents the error unum-usol (green is zero, red 
and blue show positive and negative deviations 
in the numerical solution)  
 
 
Table 9: Results for the Poisson testcase 2 with 
Dirichlet- boundary conditions for the energy 
norm 

2,1
e ; norm superscripts and convergence 

order ϑ subscripts for element order 

DOF 1

2,1
e  ϑϑϑϑ1 

2

2,1
e  ϑϑϑϑ2 

520 8.6 
10-3 

   

2017 4.3 
10-3 

1.0 

2.29 
10-4 

 

7945 2.2 
10-3 

1.01 

5.60 
10-5 

2.05 

31537 1.1 
10-3 

1.0 

1.45 
10-5 

1.96 

1.25 
105 

5.5 
10-4 

1.0 

3.63 
10-6 

2.01 

5 105 2.73 
10-4 

1.01 

 9.06 
10-7 

2.00 

 

 
 



4. Poisson Equation with Dirac Right 
Hand Side 
 
The third test problem concerns the differential 
equation  

2 (0)u δ−∇ =  within the unit circle (15) 

with Dirac's δ-function on the right hand side. 
The boundary conditions are again of Dirichlet 
type: u = 0 on all positions of the unit circle. The 
analytical solution is given by the logarithmic 
function: 

2( , ) ln( ) / 2 ln( ) / 4u x y r rπ π= − = −  (16) 

(see also: 'Implementing a point source' in the 
COMSOL Users Guide and the point-source 
benchmark example). The solution is visualized 
in Figure 4. 

 

Figure 4: COMSOL numerical solution for the 
Poisson problem with Dirac right hand side; the 
figure shows the solution as surface, error as 
grey scale (dark: small; light: high), selected 
streamlines  
 

As the right hand side of the equation is has a 
singularity, the classical results for regular right 
hand sides are not valid and a lower convergence 
rate can be expected. Bradji & Holzbecher [1] 
already showed that COMSOL solutions show 
the expected behavior with a convergence rate 
reduced to 1 (for quadratic elements and average 
norm).  

Here we chose the linear and quadratic 
elements, in the average norm. Table 10 lists the 

results. It is again confirmed that the cubic 
convergence, which is valid for the smooth right 
hand side, can obviously not be reached for the 
singular right hand side. The theoretical result of 
first order convergence for 2nd order elements [3] 
is confirmed. 

For 1st order elements the convergence rate is 
obviously better, but it is strongly decreasing. 
Comparison of the results for the same DOF 
shows the better performance of the higher order 
elements, which are also better with respect to 
the execution time. 

 
Table 10: Results for the Poisson problem with 
Dirac right hand side (1st and 2nd order elements, 
average norm) 
 

First order elements 
DOF time 

3

2,0
10e ⋅  ϑϑϑϑ1 

777 0.046-
0.06 

0.9784  

3041 0.125 0.2557 

1.97 

12033 0.5-
0.547 

0.0692 
1.90 

47873 2.344 0.0214 

1.69 

190977 18.11 0.0083  
1.37 

Second order elements 
DOF time 

3

2,0
10e ⋅  ϑϑϑϑ2 

3041 0.141 0.0601 
 

12033 0.515 0.0277 

1.13 

47873 2.563 0.0138 
1.01 

190977 13.95 0.0069 
1.00 

 
 

5. Conclusions and Outlook 
 
For two test cases of the classical Poisson 

equation with regular right hand side we found 
convergence rates of 2 (for linear elements) and 
3 (for quadratic elements) for  average norm. For 
the Sobolev norm, in which also the derivatives 
are considered, the convergence rate is reduced 
to 1 in case of linear, and 2 in case of quadratic 
elements.     



In addition to the simulations in the energy 
norms (Sobolev norms of order one),  we also 
have attempted to compute the convergence 
order of the COMSOL solutions in the maximum 
norm. Simulation results showed that 
convergence order is three in the maximum norm   
when we use quadratic elements (2nd order 
elements), see Table 6 of Test case 1 and Tables 
6 and 7 of Test case 2.    This is the same order  
as in the theory of finite element methods when 
we use quadratic elements.  
Whereas, we did not observe the known 
theoretical order 2 log( )h h  for linear finite 

element (1st order elements) , see Table 3 of Test 
case 1 and Table 7 in the Test case 2.   
This perhaps could be a nice path to be followed 
in the future. 
 We also examined the situation with a 
degenerated right hand side and confirmed that 
that also leads to a significant reduction of the 
convergence rate.  
This present work and its previous work [1] are 
intended as an introduction to study the behavior 
of COMSOL Multiphysics finite element 
solutions in the light of theoretical results.  
In the future work we will focus on the 
convergence order of the COMSOL solution of 
more complicated models in the higher order 
Sobolev norms. We will focus for instance on 
the convergence order of the COMSOL 
approximations of both the steady state and non 
steady state of Navier Stokes equations.  
Another topic to study is at which level the  
maximum principle is satisfied by the COMSOL 
finite element solutions.    
 
 
7. References  
 
1. Bradji, A. and Holzbecher, E.: On the 
convergence order of COMSOL Solutions, 
COMSOL Conference 2007, 23.-24. Oct., 
Grenoble, France. 
2. Ciarlet Ph. P., Basic error estimates for 
elliptic problems, in: Handbook of Numerical 
Analysis II, Finite Element Methods (Part 1), 
P.G. Ciarlet & J.L. Lions (eds.), North-Holand, 
Amsterdam, 17-352, 1991 
3. Clain, S., Finite element approximation for 
the Laplace operator with right-hand side 
measure, Math. Models Methods Appl. Sci. 6, 
713-719, 1995.  

4. Holzbecher E. & Si H., Accuracy Tests for 
COMSOL - and Delaunay Meshes, European 
COMSOL Conf. 2008, Hannover 
5. Jänicke L. & Kost A., Convergence 
Properties of the Finite Element Method, IEEE 
Transactions on Magnetics 35 (3), 1414-1417, 
1999 
6. Jänicke L. & Kost A., Error Estimation and 
Adaptive Mesh Generation in the 2D and 3D 
Finite Element Method, IEEE Transactions on 
Magnetics 32 (3), 1334-1337, 1996 
7. Köster M. & Turek S., The influence of 
higher order FEM discretisations on multigrid 
convergence, Intern. Math. Journ. 6(2), 221-232, 
2006 
8. Scott, L.R.: Finite element convergence for 
singular data. Numer. Math. 21, 317-327, 1973 
 


