University of Annaba–Department of Technology First year undergraduation

2009-2010

Analysis

Supplementary problems

Complex numbers

Exercise 1. Compute the residus of each pole of the following functions:

1.

$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)},$$

2.

$$f(z) = \frac{\exp z}{\sin^2 z},$$

3.

$$f(z) = \frac{2z+1}{z^2 - z - 2},$$

4.

$$f(z) = (\frac{z+1}{z-1})^2,$$

5.

$$f(z) = \frac{\sin z}{z^2},$$

6.

$$f(z) = \frac{1}{\operatorname{ch} z}.$$

Exercise 2. Compute the residue of the following function when z = 0::

$$f(z) = \frac{\text{cotgz cothz}}{z^3}.$$

Exercise 3. Compute the following integral:

$$\int_0^\infty \frac{dx}{x^6 + 1}$$

Exercise 4. Show that:

$$\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2+1)^2 (x^2+2x+2)} = \frac{7\pi}{50}.$$

2.

$$\int_0^{2\pi} \frac{\cos(3\theta)}{5 - 4\cos\theta} d\theta = \frac{\pi}{12}.$$

3.

$$\int_0^{2\pi} \frac{d\theta}{(5-3\sin\theta)^2} d\theta = \frac{5\pi}{32}.$$

$$\int_0^\infty \frac{\cos mx}{x^2 + 1} dx = \frac{\pi}{2} \exp(-m).$$

$$\int_{\Gamma} \frac{\operatorname{ch} \mathbf{z}}{z^3} dz = i\pi,$$

where Γ is the square of vertices $\{2,-2,2i,-2i\}$.