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Abstract: The aim of this note is to prove some error estimate for the truncation error for approx-
imation to fractional derivative. This estimate is useful in order to get a consistency for a finite

difference scheme approximating fractional differential equations.

The aim is to prove the following statement

THEOREM 0.1 (cf. [TAD 04]) Let f be a smooth function defined on (0, 1) such that f(0) = f(1) =
0. Let h = & and « €]1,2[. Then the following estimate holds:
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To prove Theorem, we need some preliminary Lemmata.

LeEMMA 0.2 (cf. [TAD04]) Let f € C*(R) such that f and f’ are belonging to L'(R). Then the

following estimate holds, for some constant C':
[fOI<oa+len, 3]
where f denotes the usual Fourier transform given by
f©) = [ f@)exp (iga)da, 8
and i is the complex number satisfying i> = —1.

To prove Lemmal0.2] we will use the following two Lemma which called Riemann—Lebesgue Lemma,

see for example [ALL 90, Lemme 3, Page 476]

LeEMMA 0.3 (RIEMANN-LEBESGUE LEMMA) Let f € L'(R). Then

fe)=o. [5]
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Proof of Lemma Let us consider ¢ € C*°(R) with support compact in R (it is denoted
some time by D(R)). Using an integration by parts, we find Assume that

[ ela)exp (~igado =  fla)exp (~iga) "% - ¢ [ o
® ¢ € Ja

Using then the fact that ¢ vanishes on —oco and +oo, @ implies

'(z) exp (—i€ x)d. [6]

{/ o(z) exp (i x)dz = —i/ @' (x) exp (—i€ x)dx. [7]
R R
This with the Riemann-Lebesgue Lemma with f := ¢’ in , we get
lim f/ o(z) exp (—i§ x)dz = 0. 8]
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We also have thanks to Riemann—Lebesgue Lemma with f := ¢ in

lim p(z) exp (—i€ x)dz = 0. [9]
[§]—+oo Jr
Limits and El] imply that
lim (1+4¢) / o(z) exp (—i€ z)dz = 0. [10]
[€]—+o0 R

Let then a function f € L'(R). By density, there exists ¢, € D(R) such ¢, — f as n — oco. Using

yields that
lim (1+ {)/ on(z)exp (—i€ z)dz = 0. [11]
R
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Which implies that, since @, — f

lim (1+ 5)/R f(z)exp (—i€ x)dx = 0. [12]
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This implies that(1 4+ &) / f(z) exp (—i€ z)dx is bounded. There exists a constant C' > 0 such that
R

(146 /R F(@) exp (—i€ 2)dz < C. 3]

‘Which means that
1+9f© <c, [14]

which completes the proof of Lemma [0.2
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