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Aim and plan of presentation

Aim of the presentation

In the first part, we will present some existing results on Non-Newtonian
fluid, e.g. existence, uniqueness and the regularization methods. In
particular, we will present a new result on the existence of a weak solution
for homogeneous incompressible Bingham fluid.

The second part is to investigate finite volume approximation of a
Bingham type problem.
............................
............................
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Introduction Non Newtonian fluid

As well known, the classical form of Navier Stokes equation is
restricted to fluids whose stress-strain relationship is linear. This
category of fluids is called Newtonian fluids and they have a simple
molecular structure (e.g. water, air, and alcohol).

To study more complex fluids, such as molten plastics, synthetic
fibers, biological fluids, paints, and greases, etc., it is necessary to
consider a generalized Navier Stokes system that models the behavior
of fluids whose viscosity depends on the rate of deformation (i.e.,
non-Newtonian fluids).
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Introduction Non Newtonian fluid

This complex behavior is translated into a mathematical complexity which
gives rise to complex stress-strain laws, such as the Carreau-Yasuda,
Bingham, power law, Cross, Casson, Herschel-Bulkley, etc..

Figure: Examples of Non-Newtonian fluid models.
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Introduction Bingham rheology

Among the various classes of non-Newtonian materials, those
exhibiting viscoplastic properties are particularly interesting by their
ability to strain only if the stress rate exceeds a minimum value.

The most commonly used model to account for this particular
behavior is the Bingham model [2].

Figure: Bingham viscosity.
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Introduction **about the seconde part
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Introduction

Difficulties

From an analytical and numerical point of view, we cannot directly study
the Bingham fluid since :

the stress tensor is not explicit below the yield point (i.e. in the solid
state).

the stress tensor is a discontinuous operator.

To overcome these difficulties

Duvaut and Lions [2] exclude the stress tensor by passing to a
variational inequality for the velocity field.

Shelukhin et al. [4, 5] use Bercovier and Engelman model as an
approximation of the Bingham fluid.

We approximate the Bingham fluid using a bi-viscosity fluid.
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Bingham-Navier–Stokes equations Setting of the problem

Let Ω be a smooth domain in R2 with Lipschitz boundary and ΩT the
open set Ω× (0,T ), where T > 0 is the final time.
We consider an unsteady flow of incompressible Bingham fluid in 2D which
is governed by the following Navier-Stokes system

∂tu + (u · ∇)u −∇ · (τ(Du)) +∇p = f in ΩT ,

∇ · u = 0 in ΩT ·
(1)

Here u is the velocity vector, p is the pressure, and τ is the stress tensor
where the strain tensor is defined as

Du =
1

2
(∇u +∇ut),

and f : ΩT → R2 represents the external forces (such as gravity).
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Bingham-Navier–Stokes equations Setting of the problem

The system (1) is equipped with the following initial condition

u(·, 0) = u0 in Ω, (2)

and the homogeneous Dirichlet boundary condition

u = 0 on ∂Ω× (0,T )· (3)

The Bingham stress–strain constitutive law is defined as
τ(Du) =

(
2µ+

τy
|Du|

)
Du if | τ |> τy ,

Du = 0 if | τ |≤ τy ·
(4)

Here µ is the viscosity, τy is the yield stress and | A |2= A : A where the

inner product is defined as A : B =
∑
i ,j

AijBij .
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Bingham-Navier–Stokes equations Functional spaces

Let us choose some spaces. Let X be a Banach space, for each
1 ≤ p < ∞, we defined the following function spaces :

H =
{
v ∈ L2(Ω) : ∇ · v = 0, v|∂Ω = 0

}
,

V =
{
v ∈ H1

0 (Ω) : ∇ · v = 0
}
·

These two spaces are Hilbert space equipped with the scalar products
respectively induced by those of L2(Ω) and of H1

0 (Ω), i.e

∥ u ∥2H=
∫
Ω
| v |2 dx and ∥ u ∥2V=

∫
Ω
| ∇v |2 dx ·
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Bingham-Navier–Stokes equations Functional spaces

We also use the following spaces:

Lp(0,T ;X ) =

{
v : (0,T ) 7→ X : ∥ v ∥pLp(0,T ;X )=

∫ T

0
∥ v ∥pX< ∞

}
,

L∞(0,T ;X ) =

{
v : (0,T ) 7→ X : ∥ v ∥L∞(0,T ;X )= sup ess

t∈(0,T )
∥ v ∥X< ∞

}
·

The space

E2,2(V ) =
{
v ∈ L2(0,T ;V ) : ∂tv ∈ L2(0,T ;V ′)

}
,

is a Banach space with the following norm

∥ u ∥E2,2=∥ v ∥L2(0,T ,V ) + ∥ ∂tv ∥L2(0,T ,V ′) ·

Where V ′ is the topological dual of V , and we denote by ⟨·, ·⟩ the duality
bracket between V and V ′.
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Bingham-Navier–Stokes equations New result on the existence of solution

We call function u ∈ E2,2 a weak solution of the problem (1)-(4) if∫ T

0
⟨∂tu, φ⟩dt+

∫
ΩT

τ(Du) : Dφ dxdt+

∫
ΩT

(u·∇)u·φ dxdt =

∫ T

0
⟨f , φ⟩dt,

(5)
for all φ ∈ L2(0,T ;V )·

Theorem 1

Assume that f ∈ L2(0,T ;V ′) and u0 ∈ H, then the Navier Stokes
equation for a Bingham fluid (1)-(4) has a weak solution such that

u ∈ L2(0,T ;V ) ∩ L∞(0,T ;H), ∂tu ∈ L2(0,T ;V ′), τ(Du) ∈ L2(ΩT ).
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Bingham-Navier–Stokes equations New result on the existence of solution

Remarks

Theorem 1 ensure the existence of a classical weak solution
(u, p) ∈ E2,2 ×D′(ΩT ) for the system (1)-(4).

The solution u is more then a classical weak solution. In fact, we have
u ∈ C 0([0,T ];H), moreover u satisfies the following energy equality

1

2
∥ u(s2) ∥2L2(Ω) +

∫ s2

s1

∫
Ω
τ(Du) : Du =

∫ s2

s1

⟨f , u⟩dt+1

2
∥ u(s1) ∥2L2(Ω),

(6)
for all s1, s2 ∈ [0,T ]·
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Bingham-Navier–Stokes equations Proof strategy

Proof strategy

Step 1 : Build an approximate problem by regularizing the Bingham
tensor.

Step 2 : Prove some estimation on the approximate solutions built in
the first step.

Step 3 : Construct a weak solution of Navier-Stokes-Bingham system
by passing to the limit in the approximate problem.

Step 4 : Prove the uniqueness of solutions.
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Bingham-Navier–Stokes equations Proof strategy

Step 1: Approximate solutions

In this step, we build an approximate problem by regularizing the Bingham
tensor (4) with another operator that approximates the physical behavior
of Bingham fluids and has some analytical properties.

bi-viscosity model

The regularizing tensor chosen is the bi-viscosity tensor:

τm(A) =


2mµA if | A |≤ γm,(

2µ+
τy
|A|

)
A if | A |> γm·

(7)

Where A ∈ M2 and γm =
τy

2µ(m − 1)
, m ≥ 2.
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Bingham-Navier–Stokes equations Proof strategy

Why the bi-viscosity model ?

It approximate the physical behavior of Bingham fluid :
The idea is to consider the Bingham fluid when | τ |≤ τy (which is
practically solid) as highly viscous Newtonian fluid, by involving a
second artificial viscosity µm = mµ.

The bi-viscosity model is coercive, growing, monotonic and
continuous, which are the conditions of an existence theorem.
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Bingham-Navier–Stokes equations Proof strategy

Other regularization methods

Other regularisation choices are possible, such as the Papanastasiou and
Bercovier and Engelman model :

Figure: Different viscosity regularization models and Bingham model.
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Bingham-Navier–Stokes equations Proof strategy

Lemma 1

Assume that f ∈ L2(0,T ;V ′) and u0 ∈ H, then the approximate problem
(1)-(3), (7), has at least a solution um ∈ E2,2 in the following sense :∫ T

0
⟨∂tum, φ⟩+

∫
ΩT

τm(Dum) : Dφ+

∫
ΩT

(um ·∇)um ·φ =

∫ T

0
⟨f , φ⟩, (8)

for all φ ∈ L2(0,T ;V )·

Proof
This Lemma is an application of Theorem 1 proved by Dreyfuss and
Hungerbühler in [3].
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Bingham-Navier–Stokes equations Proof strategy

Step 2: Compactness results

Lemma 2

The approximate solution um, constructed in Step 1 satisfied the following
estimations

(i) The sequence um is bounded in L2(0,T ;V ) ∩ L∞(0,T ;H).

(ii) The sequence (um · ∇)um is bounded in L2(0,T ;V ′).

(iii) The sequence τm(Dum) is bounded in L2(ΩT ).

(iv) The sequence ∂tum is bounded in L2(0,T ;V ′).
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Bingham-Navier–Stokes equations Proof strategy

Step 3: Passing to the limit

Lemma 3

The following convergence are proved for subsequences which are denoted
by um.

(i) um → u weakly in L2(0,T ;V ) and *-weakly in L∞(0,T ;H).

(ii) ∂tum → ∂tu weakly in L2(0,T ;V ′).

(iii) (um · ∇)um → (u · ∇)u weakly in L2(0,T ;V ′).

(iv) τm(Dum) → τ(Du) weakly in L2(ΩT ).
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Bingham-Navier–Stokes equations Proof strategy

Step 4: Uniqueness of solutions

To prove that the problem (1)-(4) has a unique solution, We consider u1
and u2 to be two weak solutions of (5) and introduce u = u1 − u2.
Outline of the proof

We take the function φ = u1(0,t], t ∈ (0,T ), as a test function.

We use Lions-Magenes theorem and the following inequality

(τ(A)− τ(B)) : (A− B) ≥ 2µ | A− B |2, ∀A,B ∈ M2· (9)

Finlay, we obtain uniqueness using Gronwall lemma.
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