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Abstract: Routines callable from FORTRAN and C are described which implement matrix–matrix
multiplication and transposition for a variety of sparse matrix formats. Conversion routines between various
formats are provided.
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1 Introduction

The routines described here perform matrix-matrix multiplies, transposes, and format conversions for sparse
matrices. There are three formats supported. These include the old and new Yale sparse matrix package
formats [5, 6, 7] and the more efficient one for square matrices advocated by Bank and Smith [1]. In each
case, only the nonzeros are stored, not the zeros (or as few as possible).

The principal use of these routines will probably be in implementing parallel computation algorithms. For
example, in one variant of parallel multigrid [2, 3], as the number of coarse grid problems per level grows, it
becomes increasingly difficult to generate the coefficient matrices based on grids, as a serial multigrid solver
does.

In §2, we describe the sparse matrix formats we support. In §3, we describe the structure of the package
and the calling sequences of each routine. In §4, we describe the algorithms implemented by the package.
Finally, in §5 are instructions for getting a copy of the code.

The routines described here differ from those in either SPARSKIT (see [9]) or the proposed sparse BLAS
(see [4] and [8]). There is some overlap with SPARSKIT, but we are more interested in a data format not
supported in SPARSKIT. The sparse BLAS have interfaces for multiplying a sparse matrix by a dense one,
but not for multiplying two sparse matrices. Also, our routines are in the public domain with absolutely no
restrictions on their use while the others are not.

2 Sparse matrix formats

In this section, we define three methods for storing a sparse matrix M . Let M = D + L+ U , where D is the
main diagonal part of M , L is the strictly lower triangular part of M , and U is the strictly upper triangular
part of M . We define the number of nonzeros of M as NZ(M).
∗To appear in Advances in Computational Mathematics, 1 (1993), first issue. The algorithms and routines described here

were developed while both authors were visiting the Center for Applied Mathematics, Department of Mathematics, Purdue
University.
†University of California at San Diego, Department of Mathematics C012, P. O. Box 109, LaJolla, CA 92093. E-mail:

rbank@ucsd.edu
‡Department of Computer Science, Yale University, P. O. Box 2158 Yale Station, New Haven, CT 06520-2158 and

Mathematical Sciences Department, IBM Research Division, Thomas J. Watson Research Center, P. O. Box 218, Yorktown
Heights, NY 10598-0218, USA. E-mail: na.cdouglas@na-net-ornl.gov.

1



The old Yale sparse matrix format [6, 7] requires three vectors:

IA : IA length N + 1

JA : JA length NZ(M)
or NZ(D + U)

A : M length NZ(M)
or NZ(D + U)

M is stored in row form. If M is symmetric, the elements of L do not have to be stored in A. The first
element of row I is A(IA(I)). The length of row I is determined by IA(I + 1) − IA(I), which is why IA
requires N + 1 elements instead of the obvious N elements. The column indices of M are stored in the JA
vector. For element A(J), its column index is JA(J). The elements in a row may be stored in any order.

The new Yale sparse matrix format [5] requires two vectors:

IJA : IA | JA length N + 1 +NZ(M −D)
or N + 1 +NZ(U)

A : D | 0 | L and U length N + 1 +NZ(M −D)
or N + 1 +NZ(U)

M is still stored in row form. The IA-JA vectors of the old format are combined into a single vector,
sometimes referred as an IJA vector. As before, the first element of row I is A(IJA(I)). In this case, the
main diagonal of M is separated out from the nonzeros of L and U . The diagonal for row I is in A(I). There
is a zero after D so that the JA and L/U parts of the IJA and A vectors are aligned properly. Technically,
the rows of A should be stored in ascending column order. However, this is not enforced.

The Bank-Smith sparse matrix format [1] requires M to be a square matrix with a symmetric (or nearly
so) zero structure. It requires two vectors:

IJA : IA | JA length N + 1 +NZ(U)

A : D | 0 | UT | L length N + 1 +NZ(M −D)
or N + 1 +NZ(U)

While M is stored strictly in row form, in a real sense it is stored in both column and row form. Since we
assume that M has a symmetric zero structure (or L and U are padded by a small number of zeros), we
need only store the row indices for U (when U is stored in column form). These are also the column indices
for L (when L is stored in row form). However, we store the transpose of U in row form instead of U . If
M is symmetric, the elements of L do not have to be stored in A. The first element of column I of U is
A(IA(I)). The length of column I is determined by IA(I + 1) − IA(I), which is why IA requires N + 1
elements instead of the obvious N elements. The row indices of U are stored in the JA vector. For element
A(J), its row index is JA(J). The elements in a column must be stored in ascending row order. We define
LSHIFT to be 0 if M is symmetric and IA(N + 1)− IA(1) if M is nonsymmetric. The first element of L is
A(IA(1)+LSHIFT ). L is stored in row format. The column index of an element A(IA(I)+J+LSHIFT )
is JA(IA(I) + J).

For all three sparse matrix formats, we can assume there are three vectors IA, JA, and A which describe
M . Except for the old Yale sparse matrix format, the vectors IA and JA are really the same vector IJA.
We also need a variable DIAGA which is one if the diagonal is separated from the rest of the nonzeros and
zero otherwise. Last, we need a variable SYMA which is one if M is stored in a symmetric manner and zero
otherwise.
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3 Calling sequences

In this section, we describe the five routines which comprise the package. These include two routines to
multiply matrices, a routine for the transpose of a matrix, and two routines to convert between various
sparse matrix formats.

For each routine in this section, the calling sequence assumes distinct IA and JA vectors for each matrix.
Suppose a matrix is actually stored using an IJA vector. Then the routine should be called with IJA as an
argument twice, once for each IA and JA. The IJA vector should not be subscripted to point to either of
the IA or JA parts; the routines will do this automatically.

We multiply two sparse matrices, resulting in a third:

C = AB.

Matrix-matrix multiplication is performed in two steps. These routines only support the Yale sparse matrix
formats. First, the nonzero structure of the resulting matrix is determined symbolically in SYMBMM :

subroutine SYMBMM (N,M,L, IA, JA,DIAGA, IB, JB,DIAGB,
IC, JC,DIAGC, INDEX)

integer N,M,L, IA(∗), JA(∗), DIAGA,
IB(∗), JB(∗), DIAGB, IC(∗), JC(∗), DIAGC,
INDEX(∗)

The number of rows and columns of the matrices are

matrix rows columns
A N M
B M L
C N L

INDEX is a scratch vector of length max{L,M,N}. It is used to store linked lists. The output of
SYMBMM is IC and JC. They are dependent on the value of DIAGC.

Once the nonzero structure for C is known, the numerical matrix-matrix multiply is computed in
NUMBMM :

subroutine NUMBMM (N,M,L, IA, JA,DIAGA,A, IB, JB,DIAGB,B,
IC, JC,DIAGC,C, TEMP )

integer N,M,L, IA(∗), JA(∗), DIAGA,
IB(∗), JB(∗), DIAGB, IC(∗), JC(∗), DIAGC

real A(∗), B(∗), C(∗)

TEMP is a scratch vector of length max{L,M,N}. It is used to store partial sums.
We may also compute the transpose of a matrix, resulting in a second:

B = AT .

We do this operation in TRANSP :

subroutine TRANSP (N,M, IA, JA,DIAGA,A, IB, JB,B, MOV E)

integer N,M, IA(∗), JA(∗), DIAGA,
IB(∗), JB(∗), MOV E

real A(∗), B(∗)
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The number of rows and columns of the matrices are
matrix rows columns
A N M
B M N

We assume that B will use the same diagonal storage method that is used for A. We do not actually move
the elements of A into B unless MOV E is one.

Finally, we have two routines for converting between one of the Yale formats and the Bank-Smith format.
This only makes sense when the matrices are square. The routine Y TOBS will convert a Yale format sparse
matrix into the Bank-Smith format:

subroutine Y TOBS (N, IA, JA,DIAGA,SYMA,A, IB, JB,B, MOV E)

integer N, IA(∗), JA(∗), DIAGA,SYMA,
IB(∗), JB(∗), MOV E

real A(∗), B(∗)
By definition, DIAGB must be one. Hence, we do not need it as an argument. We determine whether or
not B should be stored in a symmetric or nonsymmetric manner from SYMA. We do not actually move
the elements of A into B unless MOV E is one.

The routine BSTOY will convert a Bank-Smith format sparse matrix into one of the Yale formats:

subroutine BSTOY (N, IA, JA, SYMA,A, IB, JB,DIAGB,B, MOV E)

integer N, IA(∗), JA(∗), SYMA,
IB(∗), JB(∗), DIAGB, MOV E

real A(∗), B(∗)
We determine which of the two formats by the value of DIAGB. We determine whether or not B should be
stored in a symmetric or nonsymmetric manner from SYMA. We do not actually move the elements of A
into B unless MOV E is one.

4 Algorithms

In this section, we describe the algorithms for SYMBMM , NUMBMM , and TRANSP . We use a
metalanguage rather than real code. One of the facets of these algorithms is their ability to work well
with matrices in a variety of formats.

4.1 SYMBMM

Initialization consists of setting up the first row pointer and clearing all of the links (contained in INDEX):

1 do i ∈ {1, · · · ,max{l,m, n}} {
2 indexi = 0
3 }
4 if (diagc == 0) {
5 ic1 = 1
6 }
7 else {
8 ic1 = n+ 2
9 }

INDEX is used to store links. If an entry in INDEX is nonzero, it is a pointer to the next column with a
nonzero. The links are determined as they are found, and are unordered.

4



The main loop consists of three components: initialization, a long loop that merges row lists, and code
to copy the links into the JC vector. The initialization part is as follows:

10 do i ∈ {1, · · · , n} {
11 istart = −1
12 length = 0

The start column (istart) is reset and the number of column entries for the i-th row is assumed empty. The
loop to merge row lists is as follows:

13 do jj ∈ {iai, · · · , iai+1} {
14 if (jj == iai+1) {
15 if (diaga == 0 |

i > min{m,n}) {
16 next jj
17 }
18 j = i
19 }
20 else {
21 j = jajj
22 }
23 if (indexj == 0 & diagb == 1 &

j ≤ min{l,m}) {
24 indexj = istart
25 istart = j
26 length = length+ 1
27 }
28 do k ∈ {ibj , · · · , ibj+1 − 1} {
29 if (indexjbk == 0) {
30 indexjbk = istart
31 istart = jbk
32 length = length+ 1
33 }
34 } (end of k loop)
35 } (end of jj loop)

Lines 14-22 determine if the jj loop has to execute an “extra” iteration when A is stored in the new Yale
sparse matrix format. Lines 23-27 add column j to the linked list. Lines 28-34 determine the intersection of
this row i with the nonzeros in column j of B. Finally, we copy the links into the JC vector as the column
indices:

36 if (diagc == 1 & indexi 6= 0) {
37 length = length− 1
38 }
39 ici+1 = ici + length
40 do j ∈ {ici, · · · , ici+1 − 1} {
41 if (diagc == 1 & istart == i) {
42 istart = indexistart
43 indexi = 0
44 }
45 jcj = istart
46 istart = indexistart
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47 indexjcj = 0
48 } (end of j loop)
49 indexi = 0
50 } (end of i loop)

Lines 36-38 remove the diagonal element from the row if C is stored in the new Yale sparse matrix format.
Note that in lines 43 and 47 the nonzero links are cleared. Due to the small number of links (with respect
to N), it would be extremely inefficient to clear the entire vector. The resulting vectors IC and JC contain
the nonzero structure of C = AB.

4.2 NUMBMM

Initialization consists of clearing all of the partial sums:

1 do i ∈ {1, · · · ,max{l,m, n}} {
2 tempi = 0
3 }

The main loop forms the partial sums and then copies the completed sums into the correct locations in
the sparse matrix structure:
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4 do i ∈ {1, · · · , n} {
5 do jj ∈ {iai, · · · , iai+1} {
6 if (jj == iai+1) {
7 if (diaga == 0 |

i > min{m,n}) {
8 next jj
9 }
10 j = i
11 ajj = ai
12 }
13 else {
14 j = jajj
15 ajj = ajj
16 }
17 if (diagb == 1 & j ≤ min{l,m}) {
18 tempj = tempj + ajj ∗ bj
19 }
20 do k ∈ {ibj , · · · , ibj+1 − 1} {
21 tempjbk = tempjbk + ajj ∗ bk
22 } (end of k loop)
23 } (end of jj loop)
24 if (diagc == 1 & i ≤ min{l, n}) {
25 ci = tempi
26 tempi = 0
27 }
28 do j ∈ {ici, · · · , ici+1 − 1} {
29 cj = tempjcj
30 tempjcj = 0.
31 } (end of j loop)
32 } (end of i loop)

Lines 6-16 determine if the jj loop has to execute an “extra” iteration when A is stored in the new Yale
sparse matrix format. Lines 20-22 accumulate the product for row j, and store it in lines 28-31. Lines
17-19 and 24-27 deal with special cases when a matrix is stored in the new Yale sparse matrix format. The
resulting vector C contains the numerical product AB.

4.3 TRANSP

We begin by constructing ib. This requires setting up the first row pointer and counting indices for each
column:
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1 do i ∈ {1, · · · ,m+ 1} {
2 ibi = 0
3 }
4 if (move == 1) {
5 do i ∈ {1, · · · ,m+ 1} {
6 bi = 0
7 }
8 }
9 if (diaga == 1) {
10 ib1 = m+ 2
11 }
12 else {
13 ib1 = 1
14 }
15 do i ∈ {1, · · · , n} {
16 do j ∈ {iai, · · · , iai+1 − 1}
17 ibjaj+1 = ibjaj+1 + 1
18 }
19 }
20 do i ∈ {1, · · · ,m} {
21 ibi+1 = ibi + ibi+1

22 }

Lines 1-3 clear IB. If we are constructing B at the same time, then lines 4-8 clear the main diagonal of
B. Lines 9-14 determine where the rows of B are stored. Lines 15-18 count the number of indices in each
column and lines 20-22 converts this information into row pointers.

Next, we construct jb:

23 do i ∈ {1, · · · , n} {
24 do j ∈ {iai, · · · , iai+1 − 1} {
25 jj = jaj
26 jbibjj = i
27 if (move == 1) }
28 bibjj = aj
29 }
30 ibjj = ibjj + 1
31 }
32 }

Lines 23-32 put i as a column index into row JA(j) in the first possible position (pointed to by IB(jj)) and
increment the pointer. If we are constructing B at the same time, then lines 27-29 do the copy.

Finally, we have to restore IB:
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33 do i ∈ {m,m− 1, · · · , 2} {
34 ibi = ibi−1

35 }
36 if (diaga == 1) {
37 if (move == 1) {
38 j = min(n,m)
39 do i ∈ {1, j} {
40 bi = ai
41 }
42 }
43 ib1 = m+ 2
44 }
45 else {
46 ib1 = 1
47 }

Lines 34, 43, and 46 do the real work in restoring IB. Lines 36-42 finish copying the main diagonal of A
when it is stored in the new Yale sparse matrix format.

5 Fortran source code

The Fortran source code for this package is freely available from Netlib as the file linalg/smmp.shar.
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