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1 Research Interests

• Finite Volume and Finite Element Methods

• Improving Convergence Order of these two previous Methods

• Numerical Schemes Approximating Coupled Problems with Irregular Data

• Oblique Derivative Problems and their Approximations

• Defect Correction

• Domain Decomposition

• Volume Approximation for Thermohaline Convective Problems

• Improving Converegence Order of Finite Volume Approximate Solutions of Hyperbolic

Equations

• Discontinuous Galerkin finite element method

• A Posteriori estimate in Finite Volume method

• Uses of COMSOL Multiphysics (Femblab)

• Numerical approximation for singular perturbed equations

• Higher order in finite volume methods for time–independent Navier Stokes equations
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2 Education

• December 9th 2009: Habilitation (HDR) at the departement of Mathematics–University

of Annaba, Algeria.

Experts (Referees) of my Habilitation:

– Prof. Robert Eymard, University of Marne la Vallée, Paris, France

– Prof. Fayssal Benkheldoun, University of Paris Sud, Paris, France

– Prof. Ammar Boukhmis, University of Annaba, Algeria

• November 14th 2005: Ph.D Thesis in Applied Mathematics, University of Marseille,

France. Thesis Advisor: Prof. T. Gallouët.

Title of Thesis: Improved Convergence Order in Finite Volume and Finite Elements

Methods.

Referees of my Thesis1 :

– Prof. Yvon Maday, University of Paris 6, France

– Prof. Mohand Moussaoui, University of Lyon, France

• Nov. 2002–Nov. 2005 : University of Marseille, France, Ph.D in Applied Mathematics

• July 1996 : Master in Applied Mathematics, Annaba, Algeria

• Sep. 1994–July 1996: University of Annaba, Algeria, Master in Applied Mathematics

• 1988–1993 : B.A. in Mathematics, Annaba, Algeria.

3 Scientific Activities

• Reviewer for Mathematical Reviews of American Mathematical Society (AMS) since

March 31, 2008

• Reviewer for Zentralblatt MATH since April 23, 2008

• Chairman for a session in the International Symposium on Finite Volume for Complex

Applications VI, Prague: http://fvca6.fs.cvut.cz/

• Reviewer for Journal of the Franklin Institute

• Reviewer for Journal of Mathematical Research (JMR)

• Honorary Peer Reviewer for Global Journal Science Frontier Research (GJSFR)

1In France, the Thesis must be refereed by two Referees
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4 Positions

• Present Position: Assistant Professor (Mâıtre de Conference) (rank “A”) at the Uni-

versity of Annaba, Algeria.

• Since 1999: ”Enseignant Chercheur” at the University of Annaba, Algeria.

• June 1st 07–December 31 st 2007 : Postdoc in Nečas Center of Mathematical Modeling,

Prague, Czech Rep.

• Mars 1 st 06–Mai 31 st 07 : Postdoc in WIAS: Weierstrass Institute for Applied

Analysis and Stochastics, Berlin, Germany

• Sept. 04–Aug. 05 : Teaching Assistant with T. Gallouët, University of Marseille,

France

• Sep. 99–Nov.02 : Lecturer in Mathematics, University of Annaba, Algeria

• April 99–July 99 : Lecturer in Mathematics, University of Tebessa, Algeria

• Sep. 97-Mars 99 : Military Service; Mars 15th 98–Mars 15th 99: Teacher of Mathe-

matics in ”Académie Militaire Interarmes” (AMIA) de Cherchell, Algérie

• Oct. 93-Jan.97 : Lecturer in Mathematics, University of Annaba, Algeria

5 Courses taught and supervision

• Supervising of “Sebti Habiba” in Master 2, Department of Mathematics–University

of Annaba in Algeria, in a subject on “Numerical Methods for Fractional derivative

Equations”. “Memoire” defended in June 19th 2011.

• Sept. 04–Aug. 05 : Analysis, Undergraduate

• Sept.99–Nov. 00 : Analysis, Statistics, Numerical Analysis, Algebra, Undergraduate.

• April 99–July 99 : Finite Difference methods for Partial Differential Equations, Grad-

uate.

• Oct. 93–Junuary 97 : Analysis and Algebra, Undergraduate.

• Supervision with R. Herbin of two students of Master 2, University of Marseille I–

France, in a project entitled: Coupled System with Irregular Data.
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6 Publications

6.1 Submitted for publication

• An analysis of a second order time accurate scheme for a finite volume method for

parabolic equations on general nonconforming multidimensional spatial meshes.

• Convergence analysis of some high–order time accurate schemes for a finite volume

method for second order hyperbolic equations on general nonconforming multidimen-

sional spatial meshes.

• Some second order time accurate for a finite volume method for the wave equation

using a spatial multidimensional generic mesh.

6.2 Articles in Journals

• A theoretical analysis of a new finite volume scheme for second order hyperbolic equa-

tions on general nonconforming multidimensional spatial meshes.

Accepted, in October 2011, for publication in Numerical Methods for Partial Differ-

ential Equations.

• Some abstract error estimates of a finite volume scheme for a nonstationary heat

equation on general nonconforming multidimensional spatial meshes, 31 pages.

With J. Fuhrmann. Accepted, June 2011, for publication in the journal ”Applications

of Mathematics” of Prague.

• Error estimates of the discretization of linear parabolic equations on general noncon-

forming spatial grids.

With J. Fuhrmann. Comptes rendus - Mathématique 348/19-20 , 1119–1122, 2010.

• Some simples error estimates for finite volume approximation of parabolic equations.

Comptes Rendus de l’Académie de Sciences, Paris, 346/9-10 pp. 571-574, 2008.

• Discretization of the coupled heat and electrical diffusion problems by the finite element

and the finite volume methods.

With R. Herbin. IMA Journal of Numerical Analysis, 28 (3), 469–495, 2008.

• Optimal defect corrections on composite nonmatching finite element meshes.

With A.-S. Chibi. IMA Journal of Numerical Analysis, 27 (4), 765– 780, 2007
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• Error Estimate for Finite Volume Approximate Solutions of Some Oblique Derivative

Boundary Problems.

With T. Gallouët. International Journal on Finite Volumes. 3 (2), 35 pages (elec-

tronic), 2006

• Impropved Convergence Order for Finite Volume Solutions. Part I: 1D Problems.

With B. Atfeh. Arab Journal of Mathematical Sciences. 11 (1), 1–30, 2005.

• Impropved Convergence Order for Finite Volume Solutions. Part II: 2D Problems.

With B. Atfeh. Arab Journal of Mathematical Sciences. 11 (2), 1–53, 2005.

6.3 Articles in Proceedings

• Some abstract error estimates of a finite volume scheme for the wave equation on

general nonconforming multidimensional spatial meshes.

Accepted in Finite Volumes for Complex Applications VI, Proceedings of the 6th

International Symposium on Finite Volume for Complex Applications/ edited by J.

Fořt, J. Fürst, J. Halama, R. Herbin, and F. Hubert, Springer, 2011.

• Some Error Estimates for the Discretization of Parabolic Equations on General Mul-

tidimensional Nonconforming Spatial Meshes.

With J. Fuhrmann. Accepted for publication in LNCS (Lecture Notes in Computer

Science) “Numerical Methods and Applications”Volume 6046, eds. I. Domov, S. Di-

mova, and N. Kolkovska, 2010.

• Towards an approach to improve convergence order in finite volume and finite element

methods.

Proceedings of ICNAAM ”International Conference in Numerical Analysis and Applied

Mathematics”, Edited by T. E. Simos, G. Psihoyios, and Ch. Tsitouras, 1162–1165,

2009

• Some error estimates in finite volume methods for parabolic equations.

With J. Fuhrmann. Finite Volumes for Complex Applications V, Proceedings of the

5th International Symposium on Finite Volume for Complex Applications/ edited by

R. Eymard and J.-M. Hérard, Wiley, 233–240, 2008.

• On the discretization of Ohmic losses.

With R. Herbin. Proceedings of Tamtam, 2007,Tipaza, Algeria, 217–222. AMNEDP-

USTHB, 2007.
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• On the discretization of the coupled heat and electrical diffusion problems.

With R. Herbin. Numerical Methods and Applications. 6 th International Conference,

NMA 2006, Borovets, Bulgaria, Aug. 20–24, 2006. Lecture Notes in Computer Science

4310 Springer 2007, pp. 1–15.

• Finite volume approximation for an oblique derivative boundary problem.

with T. Gallouët. Finite Volumes for Complex Applications IV, Proceeding of the

4th International Symposium on Finite Volume for Complex Applications/edited by

F. Benkhaldoun, D. Ouazar, and S. Raghay, Hermes-Penton, pp. 143–152, 2005.

• Improved convergence order of finite solutions and application in finite elements meth-

ods. Proceedings of ICNAAM: International Conference in Numerical Analysis and

Applied Mathematics, Simos, G. Psihoyios and C. Tsitouras (eds), Wiley -VCH, pp.

94-98, 2005.

7 Contributions using COMSOL Multiphysics

• Convergence rates for models with coupled 1D/2D subdomains.

With E. Holzbecher and M.-S. Litz. COMSOL Conference of Paris, 2010.

• On the convergence order of the COMSOL solutions in Sobolev norms.

With Holzbecher. CD Proceedings of the COMSOL Conference of Budapest, Novem-

ber 2008.

• On the convergence order of the COMSOL solutions.

With Holzbecher. CD Proceedings of the COMSOL Conference of Grenoble, October

2007.

7.1 Technical Reports and Preprints

• Numerical schemes to a non linear elliptic system with irregular data. Preprint.

With R. Herbin.

• Some improvements of convergence order of finite volume solutions. Preprint of LATP

n 04-13 .

with B. Atfeh.

• Improved Convergence Order of Finite Element Solutions on Non-Uniform Meshes.

Part I: 1D Problems.
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• Improved Convergence Order of Finite Element Solutions on Non-Uniform Meshes.

Part II: Bilinear Finite Elements on Rectangular Region.

• Improved Convergence Order of Finite Volume Solutions for Unstructured Meshes on

Rectangle.

• Improved Convergence Order of Finite Volume Solutions for some Nonlinear and

Parabolic Equations.

• Defect correction and discrete Schwarz method for second order boundary value prob-

lems. Preprint of the Department of Mathematics, Annaba, Algeria, 2001.

With A.-S. Chibi.

• Une contribution à l’amélioration de convergence de la méthode des éléments finis sur

une région circulaire. Preprint of the Department of Mathematics, Annaba, Algeria

n26, 1998.

With A.-S. Chibi.

8 Talks and Workshops

• Towards an approach to improve convergence order in finite volume and finite element

methods. In “International Conference in Numerical Analysis and Applied Mathemat-

ics”, Greece, September, 2009.

• On the convergence order of the COMSOL solutions.

Presented by E. Holzbecher in the COMSOL Conference of Grenoble, October 2007.

• On the discretization of ohmic losses.

Oral Presentation by R. Herbin in ” TAMTAM07, 3 éme Colloque sur les Tendances

dans les Applications Mathématiques en Tunisie, Algerie, Maroc”. 14–15 Avril 2007.

• Numerical Schemes for Ohmic Losses.

With Raphaele Herbin. Oral Presentation in the Workshop of ”Modelling and Simu-

lation of PEM Fuel Cells”, September 18-20, 2006. WIAS, Berlin, Germany.

• Improved Convergence Order of Finite Solutions and Application in Finite Elements

Methods.

Oral Presentation in International Conference on Numerical Analysis and Applied

Mathematics, ICNAAM , September 16-20, 2005, Rhodes, Greece.
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• Finite Volume Approximation for an Oblique Derivative Boundary Probem.

With Thierry Gallouët. Oral Presentation In the Fourth International Symposium in

Finite Volumes for Complex Applications-Problems and Perspectives, July 4-8, 2005,

Morocco.

• Towards highly accurate approximations through defect correction and discrete Schwarz

method.

With A.-S. Chibi. Oral Presentation by A. -S. Chibi in the Second International

Conference on Mathematical Sciences ICM December 2004, United Arab Emirates

University.

• Amélioration de l’Ordre de Convergence pour l’Approximation de Problèmes ellip-

tiques.

With Bilal Atfeh. Oral Presentation in ”Congré National d’Analyse Numérique”, June

2004.

• Some Improvements of Convergence Order of Finite Volume solution.

Work-Shop of Volumes finis/Galerkin Discontinu , organized by Pr. R. Herbin in CMI,

Marseille.

• Defect Correction Technique through Domain Decomposition Method.

”Séminaire d’Analyse Appliquée e au CMI, univ. de Provence, Marseille,

http://www.latp.univ-mrs.fr/equipes/analyse appliquee/eqANAP-seminaire.html

• On the Dependence of the Convergence of the Corrections on Subdomains on the

Degree of the Interpolation Operators.

With Ahmed Salah Chibi. Oral Presentation in the Third Mathematical Colloque in

Analysis and its Applications, 2002, Algeria.

• ”Sur la Convergence de l’Alternative de Schwarz Discrete Accelerée”.

With Ahmed Salah Chibi. Oral Presentation in the Meeting of Algerian Mathemati-

ciens RMA, 2000, Algeria.

• ”Une Contribution à l’Amélioration de Convergence de la Méthode des Eléments Finis

sur une Région Circulaire”.

With Ahmed Salah Chibi. Oral Presentation in the ”Congré National de Mathématiques”,

Annaba, Algeria, 1999.

Bradji 8



Curriculum Vitae

9 Invitation and Lectures

• March 10th 2009 at 11 AM: Invited for an interview for scientific research position

in the scientific French organization CNRS. Unfortunately I could not reach ”Institut

Henri Poincaré” (IHP) in Paris, where my interview is scheduled, because I had no

ticket flight from Algeria to Paris.

• Colloquium Tuesday, January 15th, 2008, in the Department of Mathematics and

Statistics of Memorial University, St Johns, Newfoundland–Canada.

• Lecture in Necas Center of Mathematical Modeling, June 2007.

• Invited to do a Seminar, by Departamento de Matematica, Instituto Superior Tecnico,

Lisboa, Portugal (June 2006).

• Invited by the Weierstrass Institute for Applied Analysis and Stochastics of Berlin

WIAS , February 2006.

Title of the talk: Finite Volume Methods for Elliptic Problems.

10 Funded projects

• Chef of PNR project ”Etude Mathématique et numériques de quelques modeles de

dynamique de Gaz, exemple systeme des equation d’Euler de la dynamique de Gaz”.

• Chef of the CNEPRU project ”L’ Analyse mathématique et numérique de la récupération

assistée des hydrocarbures” (Mathematical and numerical analysis of enhanced oil re-

covery).

11 Summary of my Research

11.1 Introduction

My principal subject is to ”improve” convergence order (in some sense given below) of the

finite element and finite volume solutions, and some related to topics (which are expected

to help us to ”improve” convergence order of numerical solutions).

I’m also interested with Numerical Approximation of Coupled Problems with Irregular Data.

In my short Postdoctoral position, between First April 2006–End February 2007, in (WIAS)

Weierstrass Institute of Applied Analysis ans Stochastics, Berlin (Germany), I had a beau-

tiful apportunity to:
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• to learn some basic aspects in the Geology of salt water,

• to do some simulation, using codes of C++, in order to justify some gelogical hypothe-

ses, and also to compare the results obtained by these codes and other results in the

literature.

• to use Femlab in order to justify some results obtained for Double Diffusive Convection

Problems in Porous media.

11.2 Improved convergence order of Finite Element/Finite Volume

solutions

Finite volume method have been widely used for the numerical simulation of various types

(elliptic, parabolic or hyperbolic equations) of conservation laws. Some of the important

features of finite volume method are similar to those of finite element method: it may be

used on arbitrary geometries, using structured or unstructured meshes, and leads to robust

schemes. An additional feature is the local conservativity of the numerical fluxes.

The convergence order of the finite volume solution depends on the degree of the finite

volume scheme used in the discretization of the equation to be solved.

To be more precise, we consider, for instance,

Lu = f, (1)

be an elliptic equation posed on a sufficiently smooth domain Ω of IRd, d = 1, 2 or 3 .

We consider an admissible mesh T in the sense of the Definition 9.1 of [26]. Thus the finite

volume approximation of the equation (1) leads to a system to be solved:

LT uT = fT , (2)

where LT is a ”good” matrix (in terms of computational cost) and uT is the finite volume

approximate solution.

In general, the convergence order of the finite volume solution uT is O (size(T )).

To get highly convergence order, we have to use, in general, high order schemes (see, for

instance, [28]).

This leads to complex systems to be solved.

Nevertheless, we can use the ”basic” finite volume solution uT to get new finite volume

approximations of higher convergence orders, successively. These new approximation can be

computed using the same matrix LT and changing only the second members of the systems

we resolve. Thus the computational costs of these approximations are ”comparable” to that
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of the basic finite volume solution uT .

Some of my reserach interests are concerned with the techniques which allow us to ob-

tain these approximations on arbitrary admissible meshes in the sense of the Definition 9.1

of [26]. Note that, in case of some restricted Meshes (for instance, uniform Meshes in finite

difference/element methods) we can obtain some improvements, (using some known tech-

niques in the context of finite element and finite difference methods). Therefore, the results

we obtained are new from the following points of view:

• Such ”improvements” are done in finite volume method, which is not classical in the

literature.

• The techniques we use to obtain such ”improvements” are new. These techniques take

into consideration the convergence order of the basic finite volume solution uT , namely

the convergence order of the finite volume solutions is O (size(T )) in the both norms

of H1 and L2.

11.3 Outline of my Achievements to Improve Convergence Order

• In the Paper [1], we are interested with improving convergence order of finite volume

solutions arising from arbitrary admissible mesh in 1D Problems.

We consider linear elliptic equaton with Dirichlet boundary condition

−uxx + αux + βu = f, (3)

where (α, β) ∈ IR+× IR+ (but this can be extended to the case α ∈ IR, it suffices only

to change the scheme).

We consider the finite volume scheme of three points on an admissible mesh T .

This leads to a finite volume solution uT which can be computed using the system (2)

where LT is a tridiagonal matrix.

We prove that finite volume approximations uTk of orders (size(T ))
k+1

, k is integer,

can be obtained, successively. These approximations can be computed using the same

matrix LT and changing the second member of the the algebraic systems we resolve.

• In the Paper [2], we consider an homogeneous linear elliptic equation in two dimensinal

space, without convection term:

L(u) = −∆u+ pu = f, on Ω = (0, 1)2. (4)
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We introduce an admissible mesh T on Ω and we consider a finite volume scheme of

five points (cartesian mesh).

The finite volume approximation of (4) leads to the system (2) where LT is a block

tridiagonal matrix.

The convergence order of uT is in general O(h) in both discrete L2 and H1
0 -norms. This

allows, as in first dimensional space, to approximate u of (4) and its first derivatives,

in a discrete L2-norm.

We prove that finite volume approximations uTk of orders (size(T ))
k+1

can be obtained,

successively. These approximations can be computed using the same matrix LT and

changing the second member of the the algebraic systems we resolve.

• An Abstract of [6] extends our results to some non-linear equations. We consider the

following semi-linear equation with homogeneous boundary conditions −uxx(x) = f(x, u(x)), x ∈ I = (0, 1),

u(0) = u(1) = 0,
(5)

here f is smooth function satisfies

(f(x, s)− f(x, t)) (s− t) ≤ γ(s− t)2, (6)

where 0 < γ < 1.

Note that the condition (6) does not imply that f is a contraction.

A motivation for improving the convergence order of the finite volume approximate

solution uT is that the problems (5) arise when applying a method of line procedure

for solving parabolic partial differential equations in one space dimensional or partial

differential equations in two variables (cf. [21]). In [21], the authors developed a new

finite difference formulae of arbitrary order on the so called superconvergent meshes

under some mild conditions which differs from the condition (6).

Note that, the condition (6) allow us to obtain convergence Rate O(h) (cf. [26], Remark

8.1 ).

The finite volume solution uT can be computed using the non-linear equation

LT uT = fT (uT ), (7)

We prove that, for each integer k, a finite volume approximations uTk , called kth

correction, of order O(hk+1) can be obtained. In addition to this, each kth correction

can be computed using the matrix LT , i.e. uTk is defined by

LT uTk = fT (uTk ) + dTk , (8)
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where dTk is a convenient defect defined in terms of the (k − 1)st correction.

• Our technique can be extended to some parabolic equations and some partial results

are given in [6], [15], and [16].

We can improve the convergence order of finite volume solutions approximating the

linear parabolic equations

ut(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ), (9)

An initial condition is given by:

u(x, 0) = u0, x ∈ Ω, (10)

and an homogeneous boundary condition (for the sake of simplicity) is given by:

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (11)

where Ω is the either an interval in IR or rectangle in IR2.

We introduce an admissible mesh in the sense of the Definition 5.1 of [26], in case of

Ω is an interval, and an admissible mesh with rectangles in case of Ω is a rectangle.

Let {K, K ∈ T } denote the control volumes and h denote the mesh size of the space

discretization. The time discretization may be performed with a variable time step;

in Order to simplify the notations, we choose a constant time step k ∈ (0, T ). Let

Nk = max{n ∈ N, nk < T}, and we denote tn = nk, for n ∈ {0, ..., Nk + 1}.

Let uT = (unK){K∈T ;n∈N} be the finite volume approximate solution (see equation

(17.1) in [26]).

Eymard et al. [26] (cf. Theorem 17.1) proved that the following Error Estimate holds:( ∑
K∈Tt

m(K) (enK)
2

) 1
2

≤ C(h+ k), ∀n ∈ {1, ..., Nk + 1}, (12)

where C is a constant independent of (h, k) and enK = u(xK , tn)− unK .

To improve the convergence order of uT , we justify at first the following Error Estimate

(which allow us to approximate the derviative, in space direction, of u):(
Nk+1∑
n=1

k‖eTn ‖21,T

) 1
2

≤ C(h+ k), (13)

where ‖ · ‖1,T is the discrete H1
0 -norm defined in the Definition 9.3 of [26]; and

eTn ∈ X (T ) defined by eTn (x) = u(xK , tn)− unK a.e. x ∈ K, for all K ∈ T .
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Remark 2 We can prove also the following Error Estimate(
Nk+1∑
n=1

∑
K∈Tt

m(K)(
en+1
K − enK

k
)2

) 1
2

≤ Ch+ k√
k
. (14)

Remark 3 Note that the Error Estimates (13) and (14) are not given in [26].

We prove, provided that the solution u is smooth enough, that finite volume approx-

imations uTm, with m is an integer, of Order O((h + k)m), can be obtained using the

same matrix that was used to compute uT .

• In the Paper [8], we discretize the following Oblique Boundary Value Problem −∆u(x) = f(x),x ∈ Ω

uη(x) + αut(x) = g(x), x ∈ ∂Ω,
(15)

where vη = ∇v · n and vt = ∇v · t, with n = (nx,ny)t (resp. t = (−ny,nx)t) is the

normal vector to the boundary ∂Ω and outward to Ω (resp. is a tangential derivative),

and α is a constant on each line of the polygone.

And we assume that ∫
Ω

u(x)dx = 0. (16)

We present a finite volume scheme to approximate (15)-(16) and we prove that the

finite volume solutions arising from this scheme converge to the weak Solution of the

Problem, when the mesh size tends to 0.

• In the Paper [9], we extend the previous result to some other cases:

– We consider the case −∆u(x) = f(x),x ∈ Ω

uη(x) + (αu)t(x) = g(x), x ∈ ∂Ω,
(17)

where α is a smooth function satisfing the following conditions:

α ∈ C1(Ω) and αt ≥ −δ, (18)

where δ is a given positive constant only depending on Ω. Note the conditions

(18) allows us to use the classical Lax-Milgram theorem.

We present a finite volume scheme to approximate the Problem (17)-(16) and we

prove that the finite volume solutions arising from this scheme converge to the

weak solution of the Problem (17)-(16), when the mesh size tends to 0.

Bradji 14



Curriculum Vitae

In addition to this, we prove an Error Estimate of Order O
(√

size(T )
)

, when

the solution u of (16)-(17) is belonging to C2(Ω).

– We study also the case α is constant on each line of the boundary ∂Ω.

We assume that u satisfies:

∗ u ∈ C2(Ω).

∗ u(Sj) = 0, for any corner of ∂Ω.

We prove in this case that a finite volume solution approximates u by Order

O
(√

size(T )
)

, can be obtained.

• Since the meshes in finite volume method are admissible, hence our technique (which

allowed to improve the convergence order of the finite volume solutions) can be applied

in order to improve convergence order of finite element solutions on nonuniform meshes

(which is not classical in the literature).

Indeed

– In the Paper [17], we consider an elliptic equation in one dimensional space: −(pux)x + qu = f, in I = (0, 1),

+homogeneous Dirichlet conditions.
(19)

We introduce a nonuniform mesh T of mesh size h and we consider linear finite

element uT to approximate u.

We prove that finite element approximations of order O(h2k+2), with k is integer,

can be obtained successively. These new approximations can be computed using

the same matrix that used to compute uT .

– In the Paper [18], we consider the following model −∆u = f, on Ω = (0, 1)2

u|∂Ω = 0.
(20)

We introduce a triangulation Th = {e} by rectangles. Let (he × ke) denote the

size of the rectangle e and we assume that there exists some ζ > 0 independent of

the discretization such that min(he, ke) ≥ ζ max(he, ke), for all e ∈ Th (see [23]).

The convergence order of the bilinear finite element solution uh isO(h2) in discrete

H1 norm.

We prove that a finite element approximation of order O(h4) can obtained using

the same matrix that used to compute uh.
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• Defect Correction method (A huge study of this technique can be found in [5] and

in the references therein.), is one of the well known methods to obtain, successively,

using the same matrix and changing only the second member, linear (or bilinear) finite

element approximations of higher order. An approach for defect correction technique,

in finite element methods, was suggested by [34]. The Moore’s approach is based on

some ”higher order interpolatory” mappings. Roughly speaking, among the conditions

required to apply the ”classical” defect correction, in the context of finite element

method, is the uniformity of the mesh and the regularity of the exact solutions. Some

results are achieved in the case of one dimensional case, and on rectangular region in

the case of two space dimensions , see [20], [21], [22] and the references therein.

Our aim in the work [14], is to generalize the previous results of defect correction for

more general smooth domain problems. Since, theoretically, smooth regions can be

mapped, using conformal mappings, into the unit disque, we present in [14] an idea

which allows us to apply the so called ”defect correction” on the a disque Ω , and then to

obtain, using the first iteration of the defect correction process, a linear finite element

approximation uh1 of order O(h4) in discrete H1
0 norm. According to the literature of

defect correction, we should have first a ”basic” linear finite element approximation

uh of order O(h2) in the different higher order ”discrete Sobolov norms”.

The idea is to decompose the whole domain Ω into overlapping sub–domains; the first

one is an annulus Ω1 and the second is a rectanglar region Ω2 . Linear finite elements

are introduced on each sub– region, with uniform meshes, in the cartesian coordinates.

To compute a finite element solution on the whole region, we use a discrete Schwarz

alternating. On each sub-region, there is a linear finite element approximation. These

two approximations are coupled on the interior boundaries. To obtain the order O(h2)

in discrete Sobolev norms for these two approximations, we introduce higher order

interpolatory mappings on the interior boundaries and then we use these mappings

to relate these two approximations on these boundaries. We give explict relations

between the orders of these higher order interpolatory mappings such that each finite

elements approximation on the the two sub–region are of order O(h2) in the different

”discrete Sobolev norms”. This entitles, as we explained before, to define on each

sub–region, via the first iteration of defect correction process combined with a discrete

Schwarz alternating, a new lineae finite element approximation of order O(h4).
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12 Numerical Approximations of a Coupled Problem

with an Irregular Data

In a collaboration [10]–[11] with Prof. Herbin, we provided with Finite Volume and Finite

Element schemes for a Coupled System of Elliptic Equations, modelling electrical conduction

and heat diffision with ohmic losses. The ”Ohmic Losses” generate an L1 right hand side,

which requires an adequate procedure, adapted from L1 theory of Boccardo and Gallouët.

We are interested with is the following:

−∇(κ(x, u(x)) · ∇φ(x)) = f(x, u(x)), x ∈ Ω (21)

φ(x) = 0, x ∈ ∂Ω, (22)

−∇(λ(x, u(x)) · ∇u(x)) = κ(x, u(x))|∇φ|2(x), x ∈ Ω, (23)

u(x) = 0, x ∈ ∂Ω, (24)

where Ω, of boundary ∂Ω, is a convex polygonal open subset of IRd; the functions f , κ and

λ are given bounded functions from Ω× IR to IR, continuous with respect to y ∈ IR for a.e.

x ∈ IR, and measurable with respect to x ∈ Ω for any y ∈ IR. These three functions have

to be satisfied (which implies that Problem 21, for a given function u, is H1–elliptic), there

exists α ∈ IR+ such that:

α ≤ κ(x, y) and α ≤ λ(x, y), ∀y ∈ IR, for a.e. x ∈ Ω. (25)

The domain Ω of may be seen as a domain made up of a thermally and electronically

conducting material; u (resp. φ) denotes the temperature (resp. electrical potential); κ

(resp. λ) is electrical conductivity (resp. thermal conductivity).Diffusion of electricity in a

resistive medium induces some heating knows as ”Ohmic Losses”. The ”Ohmic Losses” may

be written as κ|∇φ|2.

It is expected, thanks to the fact that f ∈ L2(Ω×IR, IR) and κ satisfies (25), that φ ∈ H1(Ω)

(of course when φ exists), and then the second member κ(·, u(·)|∇φ|2(·) is only in L1(Ω).

Hence there is no ”classical” variational formulation for Problem (24), for a given φ.

The existence of a weak solution to the Problem (21)- (24) is given in the article [30].

Note that |∇φ|2 belongs to L1(Ω). Hence there is no ”classical” variational formulation

to this Problem. Therefore, there are no ”classical” numerical schemes to this nonlinear

coupled Problem.

We present two numerical schemes to approximate (21)- (24).

The first one is a linear finite element scheme. The existence of such approximation is

ensured thanks to the fact that all the norms in a finite dimensional spaces are equivalent
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and the closed balls are compact.

The convergence of a finite element solution can be done using results of [29].

The second one is a finite volume scheme. The idea of a this scheme is inspired from the

article [27].

The existence of such approximation is ensured thanks to the fact that all the norms in a

finite dimensional spaces are equivalent and the closed balls are compact.

The convergence of a finite volume solution can be done using the weak convergence of [29].

13 Simulations on some thermhaline (double-diffusive)

problems

In my Postodoctoral position in WIAS (Weierstrass Institute of Applied Analysis and

Stochastics), in Berlin–Germany, I was interested with the finite volume approximations

of a thermohaline problem.

13.1 A description of the problem and some achievement

A full description of the Thermohaline Problem I worked on, with Dr. J. Fuhrmann, can be

found in the Thesis [33]. For the sake of completeness, we give here some basic concepts for

this Problem.

The project is concerned with numerical simulations of Thermohaline convection in the

North–East Germany Basin, and the identification of the qualitative state of the flow regim.

The tasks are:

• the developement and validation of a simulation code for thermohaline convection in

porous media on the base of a more general software framework for finite volume

methods for systems of diffusion-convection -reaction equations,

• the application of this code to aformentioned problem.

Our achievement is that we introduced a small thickness between two layers and to see the

behaviour of the fluid, namely ”Rupelton Layer”.

The result of simulations show that the convection force drives salt plumes reaching the

surface whose tipes are moving apperantly randomly.

In addition to this, we remarked oscillations in these simulations which confirm some known

results in thermohaline (see, for instance, [35] and [36]).
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14 Simulation using COMSOL Multiphysics

Under the influence of my colleague of WIAS Dr. E. Holzbecker, I became very interested to

use COMSOL Multiphysics in some goals of the numerical simulation. In [12]–[13], we use

COMSOL Multiphysics, to justify numerically some known theoretical results concerning

the convergence order of finite element solutions.
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[29] T. Gallouët and R. Herbin: Convergence of linear finite element for diffusion

equations with measure data. CRAS , 338, issue 1, pp 81-84, 2004.
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