
Rupelton layer

Abstract

In this work, we use the finite volume code pdelib/thermoha2 of Enchery and

Fuhrmann [2] to understand the influence of layers of small thichness on the

behaviour of the fluid. To this end consider the following case:

• K1 Material for bottom layer which represents the Upper Cretaceous

Layer; will be refereed to in the sequel as to the first layer

• Ru Material for Rupel layer, will be refereed to in the sequel as the second

layer

• Cz Material for top layer which represents Cenozoic Layer, will be refereed

to in the sequel as the third layer

Let us denote k2 the permeability of Rupelton, phi2 the porosity of Rupelton

and D2 the dispersion coefficient in Rupelton.

Key words : simulations, termal Rayleigh number, buoyancy ratio, Lewis

number

1 An introduction to the problem and some basic defi-

nitions and an introduction to the problem

For the sake of completness, let us recall the following basic definition:

• Salinity: is thwe saltness or dissolved salt content of a body of water.

• The salt content of most natural lakes, rivers and streams is small that these waters

are termed fresh even sweet water.

The actual amount of salt in fresh water is, by definition, less than 0.05 percent.

Otherwise, the water is regarded as brackish or defined as saline if contains 3 until 5

percent salt by volume. If the percent is over 5 percent, the water is considered brine.
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Groundwater is a source necessary for human life, therefore the studying of the mechanisms

of solute transport in aquifers is essential. Numerical simulations can lead to a better un-

derstanding of driving forces behind transport phneomenas, cf. [2]. For instance, in various

parts of the North East German Basin, sline springs occur at the surface; in addition to

this, some of the saline springs even occur in areas where no salt deposits or salt domes are

known.

A hydrochemical analysis (cf. [2]) proves that the main source of salinity in the basin is

the salt dissolution from the ”Zechstein layer”. The salt content in water increases with

depth until a staturation point of 345kg ·m−3. The chemical composition of water samples

suggests the existence of communication between aquifers characterized by upward brine

flows.

Further experimental results tend to suppose that these flows (which caracterize the com-

munication between aquifers cited before) are driven by thermal effects.

To justify this Hypothesis, a two–dimensional coupled three parabolic equation, under the

data cited above, is considered in [6]. Magri used the commercial software FEFLOW c©

(which is based on finite element method) to approximate this model.

Various numerical simulation based on this approximation, show thermal instabilities. These

lead to convection cells which make saline water rise up to the surface.

The Paper [2] gives numerical insight, based on the use of finite volume method ( [5]), on

the mechanisms which drive the saline waters up to surface.

[2] perfomed simulations, using finite volume methods, where the transport of salt by wa-

ter and no temperature was taken into account, and, in that case, they only observed the

downward flow of saline waters along the dome slopes and the progessive diffusion of

the salt through the basin. this confirms that the plumes that observed are thermally

driven.

The project is concerned with numerical simulations of thermohaline convection in the

North–East Germany Basin, and the identification of the qualitative state regime.

The tasks are:

• the developement and validation of a simulation code for thermohaline convection in

porous media on the base of a more general software framework for finite volume

methods for systems of diffusion-convection-reaction equations

• the application of this code to the aformentioned problem.

In this work,we use the finite volume code pdelib/thermoha2 of Enchery and Fuhrmann [2]

to understand the behaviour of the fluid when a thick layer is introduced (Rupelton layer)

2



Rupelton layer

between two layers.

The results of the simulations show that the convection force drives salt plumes reaching

the surface whose tips are moving apperantly randomly.

We remarke oscillations in theses simulations which confirm some known results in thermo-

haline.

2 Description of the mathematical model and the pa-

rameters

continuity equation

∂t(ρf φ) + ∇ · (ρf~v) = 0 (1)

Darcy law

~v = −
k

µ
(∇p − ρg~ez) (2)

Energy transport

∂t ((φρf cf + (1 − φ)ρscs)T ) −∇ ·
(

(φλf + (1 − φ)λs)∇T − Tρfcf~v
)

= 0 (3)

Solute transport

∂t(φC) + ∇ ·
(

C~v − Dφ∇C) = 0 (4)

The system is closed by appropriate boundary conditions and solved for p, T, C.

3 Boussinesq approximation and a dimensionless for-

mulation

In order to gather principal insight into the phenomena occuring during for this type of

problems, we regard a simplified situation, the so called Boussinesq approximation [].

In our context, this approximation consists in the assumptions, that all solid properties
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are constant and that

ρ = ρ(p, T, C) = ρ0(1 − α(T − T0) + β(C − C0)) (5)

ρf = ρ0 (6)

µ = µ0 (7)

As ρf is now constant, the time derivative vanishes, and we can divide the energy trans-

port equation by ρf cf , leading to

∇ ·~v = 0 (8)

~v = −
k

µ
(∇p − ρg∇z) (9)

∂t(σT ) −∇ ·
(

κ∇T − T~v
)

= 0 (10)

∂t(φC) + ∇ ·
(

C~v − Dφ∇C) = 0, (11)

where

σ =
φρf cf + (1 − φ)ρscs

ρf cf

(12)

κ =
φλf + (1 − φ)λs

ρf cf

(13)

We will use the accent in order to mark dimensionless quantities. In order to introduce

dimensionless quantities, we make the following substitutions [8]:

x = hx̂, z = hẑ (14)

t =
h2σ

κ
t̂ (15)

p =
µκ

k
p̂ + ρ0gz (16)

T = T0 + (T1 − T0)T̂ (17)

C = C0 + (C1 − C0)Ĉ (18)

~v =
κ

h
~̂v, (19)

which imply ∇ = 1
h
∇̂,∇ · = 1

h
∇̂ · and ∂t =

κ

h2σ
∂
t̂
.

Inserting these substitutions leads to the dimensionless equations

∇̂ · ~̂v = 0 (20)

~̂v = −∇̂p̂ − (RaT T̂ − RaS Ĉ)∇̂ẑ (21)

∂
t̂
T̂ − ∇̂ ·

(

∇̂T̂ − T̂ ~̂v
)

= 0 (22)

∂
t̂
(φ?Ĉ) + ∇̂ ·

(

Ĉ~̂v −
1

Le
∇̂Ĉ

)

= 0. (23)
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They are controlled by four dimensionless numbers:

RaT =
khgρ0

µκ
α(T1 − T0) Thermal Rayleigh number

RaS =
khgρ0

µκ
β(C1 − C0) Solutal Rayleigh number

Le =
κ

D φ
Lewis number

φ∗ =
φ

κ
Some authors substitute RaS for the bouyancy ratio Rρ = β(C1−C0)

α(T1−T0)

In the sequal, when the context is clear, we will omit the ˆ in the dimensionless equations.
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A Symbols and their units

p Pa Fluid pressure

T K Temperature

C kg/m3 Salt concentration

T0 K Reference temperature

C0 kg/m3 Reference concentration

T1 K Maximal temperature

C1 kg/m3 Maximal concentration

~v m/s Volumetric flux

ρ kg/m3 Density of fluid

ρf kg/m3 Approximate density of fluid

ρ0 kg/m3 Reference density of fluid

cf J/kg ·K Heat capacity of fluid

λf J/K ·m · s Heat conductivity of fluid

λs J/K ·m · s Heat conductivity of solid

g m/s2 Gravity acceleration

φ 1 Porosity

k m2 Permeability

D m2/s Diffusivity

µ0 Pa · s Reference viscosity

µ Pa · s Viscosity

ρs kg/m3 Density of solid matrix

cs J/kg ·K Heat capacity of solid matrix

α K−1 Heat expansion coefficient of fluid

β m3/kg Solutal expansion coefficient of fluid

z m Coordinate function

h m Characteristic length

κ Thermal diffusivity of saturated porous medium
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Figure 1: Solution in temperature for

(K2, phi2, D2) = (1.0e−12, 0.05, 1.0e−10)
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Figure 2: Solution in concentration for

(K2, phi2, D2) = (1.0e−12, 0.05, 1.0e−10)
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Figure 3: Solution in temperature for

(K2, phi2, D2) = (1.0e−13, 0.05, 1.0e−10)
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Figure 4: Solution in concentration for

(K2, phi2, D2) = (1.0e−13, 0.05, 1.0e−10)
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Figure 5: Solution in temperature for

(K2, phi2, D2) = (1.0e−13, 0.05, 1.0e−15)
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Figure 6: Solution in concentration for

(K2, phi2, D2) = (1.0e−13, 0.05, 1.0e−15)
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