University of Annaba-"M.I. Mathematiques et Informatique LMD" First year undergraduation

2011-2012

Analyse

Real numbers

Not finished yet; last update 7th Oct. 2011

Exercice 1. $(\sqrt{2} \text{ est Irrationnel: une premiere methode de preuve })$

Supposons que $\sqrt{2} = a/b$ avec a et b deux entiers premiers entre eux et $b \neq 0$, montrer que

- 1. a est paire.
- 2. b est paire.

En deduire que $\sqrt{2}$ est Irrationnel, i.e. $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Solution:

1. Preuve que a est paire: supposons que $\sqrt{2} = a/b$ avec deux naturels premiers entre eux, nous donne

$$2b^2 = a^2. (1)$$

Ceci implique que 2 devise a^2 et par consequent 2 devise a.

2. Preuve que b est paire: d'apres la question precedente, on peut donc poser a=2k dans (1), avec $k \in \mathbb{N}^*$ pour trouver

$$b^2 = 2k^2. (2)$$

Ce qui implique que 2 devise b^2 et par consequent b.

Supposons l'inverse, i.e. $\sqrt{2} \in \mathbb{Q}$, on peut alors ecrire $\sqrt{2}$ sous la forme a/b avec a et b deux entiers premiers entre eux et $b \neq 0$. On utilise les deux questions precedentes pour avoir que a et b ont 2 comme un deviseur commun; ceci est contradictoire avec le fait que a et b deux entiers premiers entre eux.

Exercice 2. $(\sqrt{2} \text{ est Irrationnel: une deuxieme methode de preuve})$ Supposons que $\sqrt{2} \in \mathbb{Q}$.

1. Justifier que l'ensemble suivant n'est pas vide:

$$\Omega = \{ n \in \mathbb{N}^*; n\sqrt{2} \in \mathbb{Z} \}. \tag{3}$$

- 2. Justifier que l'ensemble Ω a un minimum noté par n_0 .
- 3. Justifier que $n_0\sqrt{2} n_0 \in \Omega$.

En deduire que $\sqrt{2}$ est Irrationnel, i.e. $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Solution:

- 1. Comme $\sqrt{2} \in \mathbb{Q}$, alors $\sqrt{2} > 0$ alors existent deux nombres $a, b \in \mathbb{N}$ avec $b \neq 0$ tel que $b\sqrt{2} = a$ et par consequent $a \in \Omega$. D'ou $\Omega \neq \emptyset$.
- 2. Comme $\Omega \subset \mathbb{N}^* \subset \mathbb{N}$, alors Ω possede un minimum noté par n_0 .
- 3. Remarquons tout d'abord que $n_0\sqrt{2}-n_0=n_0(\sqrt{2}-1)>0$. Ceci avec le fait que $n_0\sqrt{2}-n_0\in\mathbb{Z}$ implique

$$n_0\sqrt{2} - n_0 \in \mathbb{N}^{\star}. \tag{4}$$

D'un autre part $(n_0\sqrt{2}-n_0)\sqrt{2}=2n_0-n_0\sqrt{2}\in\mathbb{Z}$, car $n_0\sqrt{2}\in\mathbb{N}^*\subset\mathbb{Z}$ et $n_0\in\mathbb{N}^*\subset\mathbb{Z}$, $n_0\sqrt{2}-n_0\in\mathbb{Z}$ et par consequent

$$(n_0\sqrt{2} - n_0)\sqrt{2} \in \mathbb{Z}. (5)$$

Ceci avec (4) implique que

$$n_0\sqrt{2} - n_0 \in \Omega. \tag{6}$$

Supposons que $\sqrt{2} \in \mathbb{Q}$ implique que l'ensemble Ω donn par (3) n'est pas vide et possede un minimum $n_0 \in \Omega$. Mais d'apres les questions precedentes $n_0\sqrt{2} - n_0 \in \Omega$. Ceci implique que $n_0\sqrt{2} - n_0 \geq n_0$ et par consequent $\sqrt{2} > 2$; contradiction.

Exercice 3. (Les nombres rationnels)

- 1. Utiliser seulement $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$ le fait que pour demontrer que $\sqrt{2} + \sqrt{3} \in \mathbb{R} \setminus \mathbb{Q}$.
- 2. En deduire que $\sqrt{\sqrt{2} + \sqrt{3}} \in \mathbb{R} \setminus \mathbb{Q}$.

Solution:

1. Supposons que

$$\sqrt{2} + \sqrt{3} \in \mathbb{Q} \tag{7}$$

implique que

$$\frac{1}{\sqrt{3} + \sqrt{2}} \in \mathbb{Q} \tag{8}$$

et par consequent

$$\sqrt{3} - \sqrt{2} \in \mathbb{Q}.\tag{9}$$

Ceci avec (7) implique que $\sqrt{2} + \sqrt{3} - (\sqrt{3} - \sqrt{2}) \in \mathbb{Q}$. Ce qui est equivalent a $\sqrt{2} \in \mathbb{Q}$; contradiction avec le fait que $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

On peut analyser d'une autre maniere. Supposons que $\sqrt{3} + \sqrt{2} = r \in \mathbb{Q}$ implique que $3 = r^2 - 2\sqrt{2}r + 2$. Par consequent $\sqrt{2} = (r^2 - 1)/(2r) \in \mathbb{Q}$; contradiction.

2. Supposons que

$$\sqrt{\sqrt{2} + \sqrt{3}} \in \mathbb{Q},\tag{10}$$

implique que

$$\sqrt{2} + \sqrt{3} = \sqrt{\sqrt{2} + \sqrt{3}}\sqrt{\sqrt{2} + \sqrt{3}} \in \mathbb{Q}. \tag{11}$$

Ce qui est contradictoire avec la question precedente.

Exercice 4. (La partie entiere d'un nombre réel)

Montrer que pour tout $x, y \in \mathbb{R}$

1. Pour tout $n \in \mathbb{Z}$

$$[x+n] = [x] + n.$$
 (12)

2.

$$[x] \le x < [x+1] = [x] + 1.$$
 (13)

3.

$$[x] + [y] < [x + y] < [x] + [y] + 1.$$
 (14)

4.

$$[x] - 1 < x < [x] + 1. (15)$$

5. Pour tout $n \in \mathbb{Z}$

$$\left[\frac{n-1}{2}\right] + \left[\frac{n+2}{4}\right] + \left[\frac{n+4}{4}\right] = n. \tag{16}$$

6. Pour tout $n \in \mathbb{N}$

$$\left[\left(\sqrt{n} + \sqrt{n+1} \right)^2 \right] = 4n + 1. \tag{17}$$

Solution:

1. En utilisant le fait que $[x] \leq \, x < [x] + 1$ pour avoir

$$[x] + n \le x + n < [x] + n + 1 \tag{18}$$

Comme $[x] + n \in \mathbb{Z}$ alors (18) entraine [x + n] = [x] + n.

- 2. En utilisant le fait que $[x] \le x < [x] + 1$ et [x] + 1 = [x+1] (posons n = 1 dans (12)) on trouve (13).
- 3. En utilisant le fait que $[x] \leq x < [x] + 1$ et $[y] \leq y < [y] + 1$ pour avoir

$$[x] + [y] \le x + y < [x] + [y] + 2.$$
 (19)

Ceci entraine que (rappelons que si $M \in \mathbb{Z}$ et $M \geq x$ alors $M \geq [x] + 1$)

$$[x] + [y] + 2 \ge [x+y] + 1 \tag{20}$$

et (rappelons que si $m \in \mathbb{Z}$ et $m \leq x$ alors $m \leq [x]$)

$$[x] + [y] \le [x + y].$$
 (21)

Les deux inegalités (20) et (21) entrainent l'inegalité demandée (14).

- 4. Le fait que $[x] \le x < [x] + 1$ entraine que [x] 1 < x < [x] + 1.
- 5. Posons n = 4k + r avec $r \in \{0, 1, 2, 3\}$ et utilisons (12) pour trouver

$$\left\lceil \frac{n-1}{2} \right\rceil + \left\lceil \frac{n+2}{4} \right\rceil + \left\lceil \frac{n+4}{4} \right\rceil = 4k + \left\lceil \frac{r-1}{2} \right\rceil + \left\lceil \frac{r+2}{4} \right\rceil + \left\lceil \frac{r+4}{4} \right\rceil. \tag{22}$$

Remplaçons r par ses valeurs $\{0, 1, 2, 3\}$, on trouve

$$\left\lceil \frac{r-1}{2} \right\rceil + \left\lceil \frac{r+2}{4} \right\rceil + \left\lceil \frac{r+4}{4} \right\rceil = r. \tag{23}$$

Utilisons maintenant (22) et (23) pour trouver (16).

6. Remarquons que

$$\left(\sqrt{n} + \sqrt{n+1}\right)^2 = 2n + 1 + 2\sqrt{n(n+1)}.\tag{24}$$

Ceci avec le fait que $\sqrt{n(n+1)} \ge \sqrt{n^2} = n$ et $2\sqrt{n(n+1)} < 2n+1$ nous donnent

$$(4n+1) \le \left(\sqrt{n} + \sqrt{n+1}\right)^2 < (4n+1) + 1. \tag{25}$$

Ce qui implique que (17).

Exercice 5. (Borne sup et borne inf)

Soit \mathcal{A} et \mathcal{B} deux sous ensembles de \mathbb{R} . On definit:

$$\mathcal{A} + \mathcal{B} = \{ a + b; a \in \mathcal{A}, b \in \mathcal{B} \}. \tag{26}$$

- 1. Montrer que si \mathcal{A} et \mathcal{B} sont bornées, alors $\mathcal{A} + \mathcal{B}$ l'est aussi.
- 2. Montrer que

$$\inf(\mathcal{A} + \mathcal{B}) = \inf(\mathcal{A}) + \inf(\mathcal{B}).$$
 (27)

3. Montrer que

$$\sup(\mathcal{A} + \mathcal{B}) = \sup(\mathcal{A}) + \sup(\mathcal{B}). \tag{28}$$

Solution:

1. Supposons que \mathcal{A} et \mathcal{B} sont bornées, alors

$$\inf(\mathcal{A}) + \inf(\mathcal{B}) \le a + b \le \sup(\mathcal{A}) + \sup(\mathcal{B}), \ \forall (a, b) \in \mathcal{A} \times \mathcal{B}.$$
 (29)

2. D'apres (29), on remarque que $\inf(\mathcal{A}) + \inf(\mathcal{B})$ est un minorant; pour demontrer alors (27) il fallait prouver que $\inf(\mathcal{A}) + \inf(\mathcal{B})$ est le plus grand des minorants. Soit $\varepsilon > 0$, il existe alors $a \in \mathcal{A}$ et $b \in \mathcal{B}$ tel que

$$\inf(\mathcal{A}) + \frac{\varepsilon}{2} \ge a$$
 (30)

et

$$\inf(\mathcal{B}) + \frac{\varepsilon}{2} \ge b.$$
 (31)

Faisant la somme de (30) et (31) pour trouver

$$\inf(\mathcal{A}) + \inf(\mathcal{B}) + \varepsilon \ge a + b.$$
 (32)

Ceci equivalent de dire que $\inf(A) + \inf(B) + \varepsilon$ n'est pas un minorant pour quelque soit $\varepsilon > 0$.

Exercice 6. (Critere sequentiel d'une borne sup.) Soit $A \subset \mathbb{R}$ un ensemble borné. Montrer que les propositions suivantes sont equivalentes:

- 1. Proposition A: $M = \sup A$.
- 2. Proposition B:
 - (a) M est un majorant:

$$\forall a \in \mathcal{A}: \ a \le M. \tag{33}$$

(b) Existe une suite $\{a_n; n \in \mathbb{N}\} \subset \mathcal{A}$:

$$\lim_{n \to +\infty} a_n = M. \tag{34}$$

Solution:

- 1. Supposons que la proposition A est verifiée. Donc M est un majorant. Pour chaque $n \in \mathbb{N}^*$, comme M-(1/n) < M, alors M-(1/n) < M n'est pas un majorant. Par consequent, existe $a_n \in \mathcal{A}$ tel que $M-(1/n) < a_n < M$. Remarquons lorsque $n \to \infty$, $a_n \to M$. D'ou la proposition B.
- 2. Supposons que la proposition B est verifiée. Pour demontrer la proposition A, il suffit de demontrer que M est le plus petit des majorant, i.e. $M \varepsilon$ n'est pas majorant pour tout $\varepsilon > 0$. Comme $\lim_{n \to +\infty} a_n = M$, alors existe n_0 tel que $M a_{n_0} \le \varepsilon$. D'ou $M \varepsilon < a_{n_0}$ et par consequent $M \varepsilon$ n'est pas majorant.

Exercice 7. (Borne sup de produit)

Soit \mathcal{A} et \mathcal{B} deux sous ensembles de \mathbb{R}_+ . On definit:

$$\mathcal{AB} = \{ab; a \in \mathcal{A}, b \in \mathcal{B}\}. \tag{35}$$

- 1. Montrer que si \mathcal{A} et \mathcal{B} sont majorés, alors $\mathcal{A}\mathcal{B}$ l'est aussi.
- 2. Montrer que

$$\sup(\mathcal{AB}) = \sup(\mathcal{A})\sup(\mathcal{B}). \tag{36}$$

Est ce que ceci encore vrai si \mathcal{A} où \mathcal{B} contient des réels négatives?

Solution:

- 1. Supposons que \mathcal{A} et \mathcal{B} sont majorés, alors \mathcal{A} et \mathcal{B} ont des bornes sup. Comme $a \leq \sup(\mathcal{A})$, pour tout $a \in \mathcal{A}$, et $b \leq \sup(\mathcal{B})$, pour tout $b \in \mathcal{B}$, alors (sachant que $a, b \geq 0$) $ab \leq \sup(\mathcal{A}) \sup(\mathcal{B})$, pour tout $a \in \mathcal{A}$ et $b \in \mathcal{B}$. Donc $\mathcal{A}\mathcal{B}$ est majoré.
- 2. D'apres la question precedente, \mathcal{AB} admet une borne sup. et

$$\sup(\mathcal{AB}) \le \sup(\mathcal{A}) \sup(\mathcal{B}). \tag{37}$$

On va demontrer que (37) par deux methodes:

1ere methode:

Existe une suite $(a_n)_n \subset \mathcal{A}$ tel que $\lim_{n\to\infty} a_n = \sup(\mathcal{A})$ et une suite $(b_n)_n \subset \mathcal{B}$ tel que $\lim_{n\to\infty} b_n = \sup(\mathcal{B})$. Par consequent $\lim_{n\to\infty} a_n b_n = \lim a_n \lim b_n = \sup(\mathcal{A}) \sup(\mathcal{B})$. Ceci avec le fait que $(a_n b_n)_n \subset \mathcal{AB}$ et $\sup(\mathcal{A}) \sup(\mathcal{B})$ est un majorant de \mathcal{AB} , voir (37), implique que $\sup(\mathcal{A}) \sup(\mathcal{B})$ est la borne sup. de \mathcal{AB} .

2eme methode:

Supposons que $\sup(\mathcal{A})\sup(\mathcal{B})$ n'est pas la borne sup. de \mathcal{AB} , existe alors $\delta > 0$ tel que $\sup(\mathcal{A})\sup(\mathcal{B}) - \delta$ est un majorant (donc $\sup(\mathcal{A})\sup(\mathcal{B}) - \delta$ est positive) de \mathcal{AB} . D'ou

$$\sup(\mathcal{A})\sup(\mathcal{B}) - \delta \ge ab, \ \forall \ (a,b) \in \mathcal{A} \times \mathcal{B}. \tag{38}$$

Supposons que $A \neq \{0\}$, (38) entraine, pour un a fixé

$$\frac{\sup(\mathcal{A})\sup(\mathcal{B}) - \delta}{a} \ge b, \ \forall \ b \in \mathcal{B}. \tag{39}$$

Donc $\frac{\sup(\mathcal{A})\sup(\mathcal{B}) - \delta}{a}$ est un majorant de \mathcal{B} , et par consequent

$$\frac{\sup(\mathcal{A})\sup(\mathcal{B}) - \delta}{a} \ge \sup(\mathcal{B}). \tag{40}$$

Ceci implique que, on suppose que $\mathcal{B} \neq \{0\}$ (equivalent de dire que $\sup(\mathcal{B}) \neq 0)$

$$\frac{\sup(\mathcal{A})\sup(\mathcal{B}) - \delta}{\sup(\mathcal{B})} \ge a. \tag{41}$$

L'inégalité entraine alors que

$$\frac{\sup(\mathcal{A})\sup(\mathcal{B}) - \delta}{\sup(\mathcal{B})} \ge \sup(\mathcal{A}). \tag{42}$$

Ce qui est equivalent de dire que

$$\sup(\mathcal{A})\sup(\mathcal{B}) - \delta \ge \sup(\mathcal{A})\sup(\mathcal{B}),\tag{43}$$

ce qui est contradiction car $\delta > 0$.

Le résultat reste pas vrai si \mathcal{A} ou \mathcal{B} contient des réels négatives. On prend $\mathcal{A} = \mathbb{R}^-$ (majoré par 0) et $\mathcal{B} = \{-1\}$ (majoré par -1) et par consequent $\mathcal{A}\mathcal{B} = \mathbb{R}^+$ qui est pas majoré.

Exercice 8. (Point fixe et borne sup.)

Soit $f:[0,1] \to [0,1]$ une application croissante.

1. Considerons l'ensemble suivant

$$\Omega = \{ x \in [0, 1]; \ x \le f(x) \}. \tag{44}$$

Montrer que Ω possede une borne superieure α verifiant $\alpha \leq f(\alpha)$.

2. Montrer que $\alpha \geq f(\alpha)$.

En deduire que f laisse invariant au moins un point de [0,1].

Solution:

- 1. Remarquons tout d'abord que $f(0) \geq 0$ et par consequent $0 \in \Omega$. En deduit que Ω est non vide. Comme $\Omega \subset [0,1]$, alors Ω est borné. L'ensemble Ω possede une borne superieure α . Comme, pour tout $x \in \Omega$: $x \leq \alpha$, alors (f est croissante) $x \leq f(x) \leq f(\alpha)$. Ce qui implique que $f(\alpha)$ est un majorant de Ω . D'ou $\alpha \leq f(\alpha)$.
- 2. Comme $\alpha \leq f(\alpha)$ (la question precedente), alors (f est croissante) $f(\alpha) \leq f(f(\alpha))$. Donc $f(\alpha) \in \Omega$. Mais α est la borne sup., d'ou $f(\alpha) \leq \alpha$.

On utilises alors les resultats precendents pour avoir $f(\alpha) = \alpha$.

Exercice 9. (Definition axiomatique de \mathbb{R})

En utilisant la definition axiomatique de \mathbb{R} , montrer que

$$1 > 0. (45)$$

Solution:

Supposons que

$$1 \le 0. \tag{46}$$

Nous avons alors deux cas possibles

1. 1er cas

$$1 = 0. (47)$$

Ceci nous conduit au cas

$$\forall x \in \mathbb{R} : x = 0. \tag{48}$$

Donc \mathbb{R} n'est pas un corps; contradiction avec le fait que \mathbb{R} est un corps (d'apres les axiomes de \mathbb{R}).

2. 2eme cas

$$1 < 0. \tag{49}$$

Donc

$$-1 > 0. \tag{50}$$

Et par consequent (notons que 1 + (-1) = 0 entraine que 1 = (-1)(-1))

$$1 = (-1)(-1) > 0. (51)$$

Contradiction avec (49).

Exercice 10. (Exemple d'une partie non majoré de \mathbb{R})

- 1. Montrer que l'ensemble N des nombres naturels n'est pas majoré.
- 2. En deduire que l'ensemble $\mathbb Q$ des rationnels n'est pas majoré

Solution:

1. Supposons que $\mathbb N$ est majoré. Donc $\mathbb N$ possede une borne superieure $S\in\mathbb R$. Soit Ω l'ensemble donné par

$$\Omega = \{ n \in \mathbb{N} : n \le S \}. \tag{52}$$

Comme $\Omega \subset \mathbb{N}$ alors possede un maximum $m \in \mathbb{N}$ verfiant S < m+1. Comme $m+2 \in \mathbb{N}$ alors $m+2 \le S < m+1$. Contradiction.

On peut demontrer que $\mathbb N$ n'est pas majoré par une autre façon. Supposons que $\mathbb N$ est majoré. Donc $\mathbb N$ possede une borne superieure $S \in \mathbb R$. Comme pour tout $n \in \mathbb N$, $n+1 \in \mathbb N$, on a alors $n+1 \leq S$. D'ou, $n \leq S-1$, pour tout $n \in \mathbb N$. S-1 est alors majorant de $\mathbb N$ et par consequent $S \leq S-1$. Contradiction.

2. Comme $\mathbb{N}\subset\mathbb{Q}$ et \mathbb{N} n'est pas majoré alors \mathbb{Q} n'est pas majoré.

Problèmes supplémentaires

Problème 1 (Representation decimale des nombres rationnels)

- 1. Montrer que la representation decimale d'un nombres rationnel ou bien est finie où periodique a partir ce certain rang.
- 2. Montrer que toute epresentation decimale finie où periodique a partir ce certain rang est une nombre rationnel.

Problème 2 (exp (1) est Irrationnel)

En utilisant le fait que

$$\exp(1) = \lim_{n \to +\infty} \left(1 + \sum_{k=1}^{n} \frac{1}{k!} \right)$$
 (53)

montrer que

$$\exp\left(1\right) \in \mathbb{R} \setminus \mathbb{Q}.\tag{54}$$