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Aim

We consider a conforming finite element method in which the discretization in
time is performed using the Crank-Nicolson method for the non stationary
heat equation (as a model for parabolic equations). We provide an error
estimate in W 1,∞(L2)-norm. This error estimate seems not to be present in
the existing literature.

Bradji, Abdallah Finite element for parabolic equations



tu-logo

ur-logo

Aim...
Overview on the references

Problem to be solved and discretization parameters
Finite element discretization

Formulation of a fully implicit discretization scheme
Some known error estimates

New error estimate
Proof of the new W1,∞(L2)–error estimate

Conclusion and perspectives

Overview : References based on...

Bradji, A.: An analysis of a second-order time accurate scheme for a
finite volume method for parabolic equations on general nonconforming
multidimensional spatial meshes. Appl. Math. Comput. 219/11 (2013),
6354–6371.

Burman, E.: Crank–Nicolson finite element methods using symmetric
stabilization with application to optimal control problems subject to
transient advection–diffusion equations. Commun. Math. Sci. 9/1
(2011), 319–329.

Bradji, Abdallah Finite element for parabolic equations



tu-logo

ur-logo

Aim...
Overview on the references

Problem to be solved and discretization parameters
Finite element discretization

Formulation of a fully implicit discretization scheme
Some known error estimates

New error estimate
Proof of the new W1,∞(L2)–error estimate

Conclusion and perspectives

Overview : References based on...(Suite)

Quarteroni, A. and Valli, A.: Numerical Approximation of Partial
Differential Equations. Springer Series in Computational Mathematics
23. Berlin: Springer. (2008)

Chatzipantelidis, P., Lazarov, R.D., and Thomée, V.: Some error
estimates for the lumped mass finite element method for a parabolic
problem. Math. Comput. 81/277 (2012), 1–20.

Raviart, P. A. and Thomas, J. M.: Introduction à l’Analyse Numérique
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Plan of the presentation

1 Problem to be discretized
2 Heat equation and a fully implicit finite element discretization using

Crank-Nicolson method as discretization in time.
3 Some known error estimates e
4 Statement of an error estimate (main result)
5 Some applications
6 Conclusion and some perspectives
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Non stationary Heat equation

ut (x , t)−∆u(x , t) = f (x , t), (x , t) ∈ Ω× (0,T ), (1)

where, Ω is an open bounded polyhedral subset in IRd , with d ∈ IN?, T > 0 ,
and f is a given function.
An initial condition is given by:

u(x , 0) = u0(x), x ∈ Ω. (2)

A Dirichlet boundary condition is defined by

u(x , t) = 0, (x , t) ∈ ∂Ω× (0,T ), (3)

where, we denote by ∂Ω = Ω \ Ω the boundary of Ω.
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About Heat equation?

1 (some physics): Heat equation ut −∆ u is typically used in different
applications, such as fluid mechanics, heat and mass transfer,...

2 (existence and uniqueness): existence and uniqueness of a weak
solution of heat equation, with (2) ( initial condition) and (3) ( Dirichlet
boundary condition) can be formulated using Bochner spaces; see for
instance Evans book of partial differential equation
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Finite element discretization

1 Let {Th; h > 0} be a family of shape regular and quasi-uniform
triangulations of the domain Ω. The elements of Th will be denoted by K .
For each triangulation Th, the subscript h refers to the level of refinement
of the triangulation, which is defined by h = maxK∈Th hK , where hK

denotes the diameter of the element K .
Let Vh

0 be the finite element space of continuous, piecewise polynomial
functions of degree k ≥ 1, and vanish on the boundary ∂Ω

2 Uniform mesh on (0,T ) with constant step τ = T/(N + 1).
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Discretization of initial conditions

The discretization of the initial condition (2), u(x , 0) = u0(x) is performed
using the orthogonal projection : Find u0

h ∈ Vh
0 such that

a(u0
h , v) = −

(
∆ u0, v

)
L2(Ω)

= a(u0, v), ∀ v ∈ Vh
0 . (4)

where a(·, ·) denotes the bilinear form defined for all (u, v) ∈ H1(Ω)× H1(Ω)
by

a(u, v) =

∫
Ω

∇ u(x) · ∇ v(x)dx .
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Discretization of the heat equation

The discretization of the heat equation (1), ut −∆u = f is performed as : for
any n ∈ J 0,MK, find un

h ∈ Vh
0 such that, for all v ∈ Vh

0(
∂1 un+1

h , v
)
L2(Ω)

+ a (u
n+ 1

2
h , v) =

(
1
τ

∫ tn+1

tn
f (t)dt , v

)
L2(Ω)

, (5)

where

∂1 vn+1 =
vn+1 − vn

k
and vn− 1

2 =
vn + vn−1

2
. (6)
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Some known error estimates: L∞(L2)–error estimate

Throughout this talk, the notation C stands for a positive constant which is
independent of the parameters of the discretization.
L∞(L2)–error estimate. Under some regularity assumption on the data and
on the exact solution, the following L∞(L2)–error estimate holds, see the
books of Quarteroni and Valli (2008) and Raviart and Thomas (1983), for all
n ∈ J 0,M + 1K:

‖ un
h − u(tn)‖L2(Ω) ≤ C(hk+1 + τ 2). (7)
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Some known error estimates: L2(H1)–error estimate

L2(H1)–error estimate. Under some regularity assumption on the data and
on the exact solution, the following L2(H1)–error estimate holds, see the
article of Burman (2011), for all n ∈ J 0,M + 1K:(

M∑
n=0

τ‖ e
n+ 1

2
h ‖2

H1(Ω)

) 1
2

≤ C(hk + τ 2). (8)
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New error estimate: W 1,∞(L2)–error estimate

W 1,∞(L2)–error estimate. Under some regularity assumption on the data
and on the exact solution, the following W 1,∞(L2)–error estimate holds, for all
n ∈ J 0,MK:

‖ ∂1
(

un+1
h − u(tn+1)

)
‖L2(Ω),≤ C(hk+1 + τ 2), (9)

where ∂1 is the discrete time derivative

∂1 vn+1 =
vn+1 − vn

k
. (10)
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An application of the new error estimate: approximation of the first time
derivative

∂1 un+1
h approximates the time derivative of u at t n+1

2
, i.e. ut (t n+1

2
), by order

hk+1 + τ 2 in L∞(L2)– norm, where t n+1
2

= ( tn+1 + tn) /2.
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An a priori estimate

Lemma

Assume that there exits ( ηn
h)

M+1
n=0 ∈

(
Vh

0
)M+2

such that η0
h = 0 and for all

n ∈ J 0,MK(
∂1 ηn+1

h , v
)
L2(Ω)

+ a (η
n+ 1

2
h , v) =

(
γn, v

)
L2(Ω)

, ∀ v ∈ Vh
0 . (11)

Then the following estimate holds:

‖ ∂1ηn
h‖L2(Ω) ≤ C(γ + γ̄), ∀n ∈ J 1,M + 1K, (12)

where
γ =

M
max
n=0
‖ γn‖L2(Ω) and γ̄ =

M
max
n=1
‖ ∂1γn‖L2(Ω). (13)
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Idea on the proof of Lemma 1

First step: Estimate on ∂1 ηj+1
h , j ∈ J 1,MK. Acting the discrete operator ∂1 on

(11) to get, for all n ∈ J 1,MK(
∂2 ηn+1

h , v
)
L2(Ω)

+ a( ∂1η
n+ 1

2
h , v) =

(
∂1γn, v

)
L2(Ω)

. (14)

Taking v = ∂1ηn+1
h + ∂1ηn

h in (14) to get

‖ ∂1 ηn+1
h ‖2

L2(Ω) − ‖ ∂1 ηn
h‖2

L2(Ω) +
τ

2

∣∣∣ ∂1
(
ηn+1

h + ηn
h

)∣∣∣2
1,Ω

= τ
(
∂1γn, ∂1

(
ηn+1

h + ηn
h

))
L2(Ω)

.

Summing the previous equality over n ∈ J 1, jK, where j ∈ J 1,MK and using
some technical steps with a discrete Poincaré inequality yields

‖ ∂1 ηj+1
h ‖

2
L2(Ω) ≤ ‖ ∂

1 η1
h‖2

L2(Ω) + 4T ( Cp)2 (γ̄)2 . (15)
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Idea on the proof of Lemma 1 (Suite)

Second step: Estimate on ∂1 ηj
h. Taking n = 0 in (11) to get (note that η0

h = 0)(
∂1 η1

h , v
)
L2(Ω)

+
1
2

a(η1
h , v) =

(
γ0, v

)
L2(Ω)

.

Taking v = ∂1 η1
h in the previous equality and using some technical steps

leads to

‖ ∂1 η1
h‖L2(Ω) ≤ γ. (16)

This with (15) implies the desired estimate of Lemma 1.
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Idea on the proof of the new W 1,∞(L2)–error estimate

The proof of the new W 1,∞(L2)–error estimate is based essentially on the
comparison with the following finite element scheme:
For each n ∈ J 0,M + 1K, we compute ūn

h ∈ Vh
0 such that

a(ūn
h , v) = − ( ∆ u(tn), v)L2(Ω) = a(u(tn), v), ∀ v ∈ Vh

0 . (17)

The following convergence result can be shown using the classical error
estimates in finite element methods∣∣ūn

h − u(tn)
∣∣
1,Ω ≤ Chk , (18)

and, for all j ∈ {1, 2}

‖∂ j ūn
h − ∂ ju(tn)‖L2(Ω) ≤ Chk+1. (19)

Bradji, Abdallah Finite element for parabolic equations



tu-logo

ur-logo

Aim...
Overview on the references

Problem to be solved and discretization parameters
Finite element discretization

Formulation of a fully implicit discretization scheme
Some known error estimates

New error estimate
Proof of the new W1,∞(L2)–error estimate

Conclusion and perspectives

Idea on the proof of the new W 1,∞(L2)–error estimate (Suite)

We write the error between the exact solution u and its finite element
approximate solution as

u(tn)− un
h =

(
u(tn)− ūn

h
)

+
(

ūn
h − un

h
)
. (20)

The error ( u(tn)− ūn
h ) is already estimated in (17)–(18). It remains now to

estimate ηn
h =: ūn

h − un
h . Using the schemes satisfied by ūn

h and un
h , we get(

∂1 ηn+1
h , v

)
L2(Ω)

+ a (η
n+ 1

2
h , v) =

(
Kn,1 −Kn,2, v

)
L2(Ω)

, (21)

where

Kn,1 = −∂1
(

u(tn+1)− ūn+1
h

)
and Kn,2 = −1

τ

∫ tn+1

tn
∆ u(t)dt+

∆ u(tn+1) + ∆ u(tn)

2
.
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Idea on the proof of the new W 1,∞(L2)–error estimate (Suite)

Recall that(
∂1 ηn+1

h , v
)
L2(Ω)

+ a (η
n+ 1

2
h , v) =

(
Kn,1 −Kn,2, v

)
L2(Ω)

. (22)

Using Lemma 1 to obtain

‖ ∂1ηn
h‖L2(Ω) ≤ C(γ + γ̄), ∀n ∈ J 1,M + 1K, (23)

where

γ =
M

max
n=0
‖Kn,1 −Kn,2‖L2(Ω) and γ̄ =

M
max
n=1
‖ ∂1

(
Kn,1 −Kn,2

)
‖L2(Ω). (24)

Error estimates (17)–(18) imply that, for j ∈ {0, 1}

‖∂ jKn,1‖L2(Ω) ≤ Chk+1. (25)
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Idea on the proof of the new W 1,∞(L2)–error estimate (Suite)

Recall that

Kn,2 = −1
τ

∫ tn+1

tn
∆ u(t)dt +

∆ u(tn+1) + ∆ u(tn)

2
.

We use

Kn,2 = −1
τ

∫ τ

0

( (
t − τ

2

)2

2
− τ 2

8

)
∆ utt (t + tn)dt . (26)

We can easily check that

(
t − τ

2

)2

2
− τ 2

8
is non–positive for t ∈ [0, τ ] and by

some elementary calculations, we get∫ τ

0

( (
t − τ

2

)2

2
− τ 2

8

)
dt = − τ

3

12
.

This with allows us to get, for j ∈ {0, 1}
‖∂ jKn,2‖L2(Ω) ≤ Cτ 2. (27)
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Idea on the proof of the new W 1,∞(L2)–error estimate (Suite)

Recall that

γ =
M

max
n=0
‖Kn,1 −Kn,2‖L2(Ω) and γ̄ =

M
max
n=1
‖ ∂1

(
Kn,1 −Kn,2

)
‖L2(Ω), (28)

and the following estimates have been obtained

‖∂ jKn,1‖L2(Ω) ≤ Chk+1 and ‖∂ jKn,2‖L2(Ω) ≤ Cτ 2. (29)

Consequently, with (28)

‖γ‖L2(Ω) ≤ Chk+1 and ‖γ̄‖L2(Ω) ≤ Cτ 2. (30)

This with (23) implies that

‖ ∂1ηn
h‖L2(Ω) ≤ C(hk+1 + τ 2), ∀n ∈ J 1,M + 1K. (31)

This completes the proof of new W 1,∞(L2)–error estimate.
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Conclusion

We considered the heat equation (as model), with initial and homogeneous
boundary conditions in any space dimension. A new error error estimate in
W 1,∞(L2)-norm is derived for an implicit Crank-Nicolson finite element
scheme.
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Perspectives

Is it possible to prove a convergence in W 1,∞(L2)-norm under a
weak-regularity ?

Is it possible to extend the obtained error estimate to other complex
equations (or systems), e.g. time dependent incompressible
Navier-Stokes equations, in which heat equation is involved?
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