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One describes the sets of the solutions of the convolution equations g*~ =0 

(on the set Z or on Z+={~Z:~0} ) in the spaces of sequences of the 

type ~=~,~) , where X~,~)=U~<~ ~{~'I~l~c~ ,~<0,1~i~c~,,~0 ,0~<~+~ 

One proves that any l-invariant subspace E~Ec• , coincides with K~ 
A 

for some ~ and, after the Laplace transform ~-~ , ~'~ can be represented 

in the form ~ A ~K~,9~ , where K~,#)=~%:K<I%I<9} . The space [ can be 

written in the form E~s~/{ ~ L  0~: ~C}e{~E~:~k=0~ k<~ul~ ~c~, , if and 

only if the representing function ~ is a pure Weierstrass product (in the 

ring ~(a,9) , whose zeros do not accumulate to the circumference Ikl = ~ �9 

One of the fundamental problems connected with the homogeneous convolution equations 

~ ~ --0 and with systems of such equations in R ~ and Z ~ (and, in particular, with 

differential, difference, etc. equations) consists in the justification of the known 

formalism defining all the solutions: one has to consider the Laplace transform g and 

from its roots (together with the multiplicities) 

< K 

to find all the "fundamental" e~p -polynomial solutions p(x)~ <i,x> , while all the 

remaining solutions must be limits of linear combinations of these fundamental solutions. 

Preliminary information about this subject can be found in [i]. 

In this note we consider only the case of the group Z of integers and equations 

(systems of equations) on the group 

and on the semigroup ~+ 

KeZ 

The second of these cases is substantially more complicated than the first one. 

Practically, it has not been considered in the literature, although its investigation 

presents a definite interest both from an intrinsic point of view (the description of 

left-translation-invariant subspaces) and from the point of view of the possible applica- 

tions (for example, the asymptotic properties of the solutions of convolution equations 

(z) 

(2) 

(3) 
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are usually of interest only for positive times ~-~*~) . 

The problem of the completeness of the e~p -polynomial solutions of Eq. (2) (or of 

a system of equations), i.e. the completeness of the linear combinations of solutions of 

the form 

{+~K~}~EZ , 0<~.K<K(~), (4) 

in the set of all solutions depends in an essential manner on the space X in which one 

seeks these solutions. If one does not impose any constraints on the solutions and one 

considers thus the space X =~QZ) of all functions (sequences) on Z , then the 

"distribution" g must have necessarily a compact support (i.e. must be a finite sequence), 

while the description of the set of the solutions of Eq. (2) (as well as of Eq. (3)) 

becomes a purely algebraic (and entirely elementary) problem, to which we return at the 

end of Sec. 2, when the necessary notations will be introduced. 

The situation is changed in an essential manner if the space X , where one seeks 

the solutions, imposes on them some constraints in the neighborhoods of the points at 

infinity + ~ . Then the answers to the problems (2) and (3) differ in a more radical 

manner: if for the equations on ~[ everything is determined by the zeros of the charac- 

teristic equation, then the solutions of Eq. (3) depend already (through some "Hankel 

operator") on the essential singularities of the function ~ at the neighborhoods of 0 

and ~ . 

Below we give the exact description of the spaces which will be considered; now we 

note that the spaces Ke~ $ of the solutions of Eqs. (2), (3) are, respectively, transla- 

t ion-invariant 

"~K Ke~ ,5 c Ke,t,,S~ Ke77 

and left-translation-invariant T K Ke~c Ke~ ~ , K <~0 �9 A natural extension of the problem 

of the determination of all solutions of convolution equations is the problem of the 

description of all (closed) translation-invariant subspaces. Indeed, in the cases con- 

sidered below it turns out that each such subspace % E coincides with the set of solutions 

E = Ke~ $ of a certain equation G" ~ =0 (on Z or on 7/+ ). Moreover, it is clear 

that the investigations of left- and right-invariant spaces constitute equivalent problems. 

We shall consider closed right-invariant subspaces E c X , 

T K E c.E, ~ K=__.Z+ p 

which will be called l-invariant if they are not left-invariant. The subspaces E c )< for 

which ~K E c E 7 Ke Z , are said to be 2-invariant. 

i. Spaces. We shall consider spaces distinguished by conditions of exponential growth 
(or decrease) at infinity, and, in general, the conditions are different near 4~ and--~. 
For this we set 

tThe exact formulations can be found in Theorems i and 2. 
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We s h a l l  i n v e s t i g a t e  t h e  c o n v o l u t i o n  e q u a t i o n s  in  t h e  s p a c e s  

i. X[~,~=~ ~ 0<~+~, O ~ g - < +  "~ 

Each of these spaces is provided with the topology of the direct sum of projective 

and/or inductive limits (separately on each of the semiaxes [_~ Z+ ). Relative to the 

duality 

the conjugate space is given by the equality 

where the parentheses in the right- and left-hand sides for ~ and ~ have opposite 

meanings. 

In the scale of the spaces X <~,~> , the classes X = ~t~,a] 

exceptional places. Namely, one can verify that for these spaces 

a) ~ does not contain nontrivial 2-invariant subspaces. # 

and X = K ~ , z  ) 

X we h a v e :  

occupy 

b) All the closed l-lnvariant subspaces of X are exhausted by the spaces { & E ~ 

~=0 for ~K~KEZ. 

Everywhere below we shall assume that 

~p (in case I); �9 >p (in the remaining cases), (5) 

This allows us to give to the symbol <~&> the meaning of the interval with the same name 

of the real axis (which will be done in the sequel). Then 

, In addition, if ~,~ run over the pairs indicated in (5), then the spaces X<~,#> 7 

<~,~> cover in their totality the entire scale of spaces X , except the above men- 

tioned exceptional subfamily. The 2-invariant subspaces of the spaces X and X ~ are in 

a one-to-one correspondence. Similarly, to the right-invariant subspaces of X there 

correspond the right-invariant suhspaces of X * . This correspondence is realized by 

passing to the polar EI.--,-EI={~:V~E ~, ~=o} . Finally, under the mapping 

{~ ~Z --~ { K-~} ~EZ , tO the left-invariant subspaces of X <,,~> there correspond the 

%We note that at the same time we obtain an elementary example of a space K , which is 
the direct sum of a Frechet space and of a space of type LN ~ , and of an operator z~ 

which does not have common invariant subspaces with its inverse ZZ ~ = ~-~ . The 
problem of the construction of such operators in Frechet spaces is investigated in [2], 
where one has considered spaces that are similar to K . 
~In which the parentheses for ~,~ have the same meaning as in X<4~ . 

in 
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right-invariant subspaces of X<V~,V~ > (where the parentheses for ~ and ~ have the 

same meaning as in A<~,~> ). 

Thus, for the description of all i- and 2-invariant subspaces in the scale K<~,~> , 

it is sufficient to consider only the pairs (5) and the right-invariant subspaces in them. 

Since, under the assumptions (5), ~ ~,~> is an algebra with respect to convolution, 

the 2-invariant subspaces of )i<a,~> coincide with the subspaces invariant relative to the 

convolutions with elements of )<~<~,~> , while the l-invariant subspaces are those that are 

invariant with respect to the convolutions with the elements of X ~ <~> , concentrated on 

~+ �9 

2. Laplace Transform. We define the Laplace transform of the sequence {=~ as the 

formal power series 

{ (~wl k ~ 

Then X <~,~> = A (K<~,~>) 

={ z'Izl 
endowed with the natural topology. 

We set E={~:{eE.} �9 If ~EA(K) , then let E e-~(Z) 

is the algebra of all functions, analytic in the annulus K = K<~,~> , 

be an integer-valued 

function, defined on K , equal to the multiplicity of zero of the function ~ at the 

point E (the divisor of { ), while the divisor of the subset F c A (K) is defined by 

=~4~ . The set ~ is said to be divisorial if F ={{EA[K):~>~r~ . the equality ~F ~er 

The following lemma is well known in the spectral analysis of translation-invariant sub- 

spaces. 

E is a 2-invariant subspace of <~> if and only if E is an ideal in LEMMA. I. 

2. E is a l-invariant subspace of X*<~,~> if and only if E is a submodule (but 

not an ideal) in ~<~,~> over the ring A[~[0,~>) �9 

K #% 3. The subspace Ec~<~,@> is the closure of the linear hull ~{~ ~ }) of the set of 

%~p -polynomial sequences i~}, ~ ~ [ , contained in 5 , if and only if ~ is 

divisorial. If 6~sZ#X<~,9>, then ~ $ ~  . 

Clearly, this lemma can be applied also to the space ~ =-~ ~Z) of all sequences; 

here X ~ is the algebra ~ of all polynomials in Z and I/E , while the role of 

A (K[%~)) is played by the ring ~A of the polynomials in Z . It is also clear that 

the polynomials ~,~ E ~ generate the submodule ~t ~z~p, zK% : w, K ~0) , equal to %~A 

where Q, =-H0~ (PT~) (the greatest common divisor of p and ~ over the ring ~A )" 

From here it follows that for every submodule E c~ either a) E c ZN~A for some N e Z 

and then E=~A, ~ ~ , or b) ~ ~ZN ~A for all ~4eZ and then E= ~, ~ = ~  . 
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In particular, the translation-invariant subspaces E in ~ [Z) have the form ~6 ({ +%~ ~<}~eZ: 

0 ~ K < ~ ~ (~)) ~ ~ (~ ~) i f  ~hey ~re 2- invari~nt ,  and ~h~ form 

for some N ~ Z if they are l-invariant. 

3. 2-1nvariant Subspaces in Y~<~,#> . The description of the ideals in X%#,#> is 

well known; see, for example [3]. They are divisorial and are principal ideals: ~ = 

A iK) , for some ~ s A~K). Therefore, the 2-invariant subspaces E for X*<~,~> 

have the form E = ~aX<~,#> , while for )<<~,~> they are represented in the form of 

(the closure of) a linear hull of s sequences, contained in E �9 

4�9 Description of l-lnvariant Subspaces in X* <~> . Let ~ c AiK) . By ~4 e we 

shall denote the Weierstrass product with respect to the common zeros of ~ , i�9 the 

, ~/~=W'~(ZJ are the Weierstrass products function WE =W~ where W~176 

with respect to the zeros converging to the circumferences I E 1 =~ and I ZI ~A , respective- 

ly; regarding this, see [4]. The function ~4~ also lies in A(K) . We set 

x<,,,] m { ,  'I,_ 'Iz+ - - o  }. 
THEOREM i. Let ~ be a closed subspace of the space A [ K <~,~>) 

zE ~ E , then there exist p eZ and ~ ~ A (K<~,~]) such that 

�9 If z ~ = E  

= z ~+~ e ~ W~ 
(6) 

Conversely, any subspace of the mentioned form is l-invariant in A (K<#,~>) . 

For the case <#~> =(0~) this theorem has been proved, by a different method, by 

K. Petrenko in his thesis (Leningrad State University, 1983). 

THEOR~ 2. E is a closed right-invariant subspace of the space 

if there exists a sequence ~ X* * <~,~> such that E = ~* ~[~> . 

%~<~,~> if and only 

5. Description of 1-1nvariant Subspaces in X<~,~> �9 Clearly, a certain formula for 

the l-invariant subspaces is contained implicitly in Theorems i and 2 but the determination 

of an appropriate coordinate description of the polar ~S*~ [.,~>) in the space ~ <~,~> 

is not as simple as in the case of 2-invariant subspaces (Sec. 3). Below we make use of 

the following notation. We write each sequence ~ X <~,~> as a pair of sequences 

~-{~}, ~-~Iz,~Iz,�9 In the subspace E~ T~ E c E , K > 0 , we isolate a part E o , 

having the form of a graph: {~,~]~Eo, ~=0 ~ ~=0 and, moreover, Eo!Z~ = X <~,~> I z+ 

(indeed, some shift of the space [ has these properties). This subspace has the form 

Eo= [{ [~,~: ~e ~<~,plZ+~ , while the operator is sought from the condition of in- 

variance of Eo with respect to right shifts�9 The entire space E is the sum 
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where 

in the neighborhoods of the circumference IIzl=~] . 

In order to realize this plan, we shall represent each sequence ~ ~ ~ <~,~> 

form of a pair of functions 

is some explicitly written subspace, depending on the values of the divisor 

in the 

the first of which lies in A (K>~,~) , and the second in A (KE0,~<) ; here (and in 

the sequel) the parentheses for ~,~ have the same meaning as the corresponding paren- 

theses in ~ >~,~4 . The inverse mapping (in fact, the mapping inverse to the Laplace 
,)V 

transform) is denoted by i', so that (~)v=~ In the sequel, for a function ~ , 

regular at the point ~ of the extended complex plane, by the symbol ~ ~ we shall denote 

the germ of the function ~ at this point, while for formal power series ~ = 7-2 ~s we 

set 

p_ ~ = r~, ~ z .  
�9 1~, '< 0 

Finally, we consider a l-invariant subspace E , ~ c X <~,~>. By Theorem 2, its 

polar can be written in the form E =i ~ X ~,,~> , where ~ ~ A (K<p,~>) ; moreover (see (6)) 

= Z Pt t~ ' l~ ) -,here p e Z, (7) 

e A ; �9 : ( 8 )  

s A(K<~,,:]); ~(t)~-0, ,)',=---.<~,~'=]. (9) 
Let E be a (closed) l-invariant subspace of the space X <~,~> . Then 

and functions ~ , possessing the properties (8), (9) and such that 

THEOREM 3. 

there exist peZ 

where ~ =-~-'p_ (~))- . Conversely, any p,~,~ of the indicated form define by 

formula (I0) a l-invariant subspace E . 

COROLLARY. If E is a l-invariant subspace in X <~j~> , then there exists p ~ Z 

such that 

~p E Iz+ = X<~,~> I z.,.. 

6. Discussion. First we note that the linear hull from formula (i0) is necessarily 

closed (for the same reason for which the linear hull ~({~}) in part 3 of the lemma is 

closed). It is also clear that the decomposition (10) is not uniquely determined by the 

space E but depends also on the factorization (7). In particular, if such a factorize- 

tion is possible with �9 "~ (or, in other words, the divisor E is trivial in the neigh- 

borhood of the circumference {JiJ =A} ), then it is possible to have also a representa- 

tion (i0) in which the second term is equal to zero. 
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It is natural to attempt to write a l-invariant subspace E in the form EI~E~ , 

where E z is 2-invariant while ~ is l-invariant and does not contain 2-invariant sub- 

spaces. This is possible if and only if ~ ~ 0 in the neighborhood of the circumference 

Another natural question is the following: for which l-invariant subspaces E is it 

possible to have a representation 

similar to the representation for the spaces E c~ (Z) ? The answer: only for those 

E c ~ <~,p for which ~ ~o in the neighborhood of the circumference i l&l = ~ , while 

the representing function ~ is a pure Weierstrass product (i.e. ~ . o in formula (6)). 

As an illustration to the formula (i0) we consider the case when the function ~ is 

rational. (It is clear that in this case the space E has the form (Ii) but in this model 

case we wish to compute the operator r and the second term ~ in the formula (I0)). 

Let . 

~ 2i ) 0  

7. Concluding Remark. With appropriate modifications, Theorems 1-3 can be carried 

over to certain sequence spaces of superexponential growth (decrease), for example, defined 

like ~ <,,~> with the aid of weight sequences of the form 

�9 > l  i z > o .  

In these cases one has to consider analytic functions in ~\~0~ , having a prescribed 

growth around zero and infinity. 

The author expresses his sincere gratitude to N. K. Nikol'skii for the formulation of 

the problem and for his interest in the paper. 
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