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MaTewi. C6OPHHK Math. USSR Sbornik
TOM 136(178)(1988), Bbin. 3 Vol. 64(1989), No. 2

BOUNDARY UNIQUENESS THEOREMS
FOR ALMOST ANALYTIC FUNCTIONS,

AND ASYMMETRIC ALGEBRAS OF SEQUENCES
UDC 517.5

A. A. BORICHEV

ABSTRACT. This article concerns algebras of C1-functions in the disk |z| < 1 such
that \df{z)\ < w{\ - |z|), where w ] and J0\oglogw~l (x) dx = +00. For these
functions a factorization theorem (on representation of each such function as the
product of an analytic function and an antianalytic function, to within a function
tending to zero as the boundary is approached) and a number of boundary uniqueness
theorems are proved. One of these theorems is equivalent to a result generalizing the
classical Levinson-Cartwright and Beurling theorems and consisting in the following.
If f{z) = Hn<oa"z"' \z\ > '. Μ < e-P", Ση>οΡη/η2 = oo, F is analytic in
the disk \z\ < 1, and |F(z)| = o(iy~'(c(l — |z|)) as \z\ - 1 for all c < 00, where
w(x) = exp(— supn(pn - nx)), then / = 0 and F = 0 if F has nontangential boundary
values equal to the values of/on some subset of the circle \z\ = 1 of positive Lebesgue
measure. Here certain regularity conditions are imposed on ρ and w. Uniqueness and
factorization theorems for almost analytic functions are applied to the description of
translation-invariant subspaces in the asymmetric algebras of sequences

21 = {{an}\ Vc 3c, :\an\< c ,e" ' ' p ", η < 0, 3c, 3cj : \an\ < c{e
cPn, η > 0}.

Bibliography: 15 titles.

New uniqueness theorems are proved here for functions analytic off the circle
Τ = {ζ € C: \z\= 1}, sufficiently smooth on one side of Τ (and up to T), and having
controlled growth on the other side.

These theorems generalize well-known assertions of Levinson and Cartwright and
of Beurling, and their proofs are independent of the latter (and elementary in a certain
sense). We use the technique of almost analytic extension (with rapid decrease of
\df\ as the boundary is approached), and the results themselves can be expressed in
the language of the algebras of almost analytic functions that arise.

These algebras are isomorphic to algebras of sequences with asymmetric asymp-
totic behavior at infinity, and we obtain a description of the translation-invariant
subspaces for them.

§1. Introduction

The first nontrivial uniqueness theorem of the type indicated above is apparently
due to Levinson and Cartwright (see [1]).
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324 Α. Α. BORICHEV

THEOREM. Let f(z) = Ση<οαηζ
η, \z\ > 1, \an\ < e^p^, where the sequence {pn}

is monotonically increasing and Ση>ιρη/η2 = oo, and let F be an analytic function

on D = f {z e C: \z\ < 1} such that \F(z)\ < ν (I - \z\), \z\ < 1, where ν Τ and
/0 log log ν (x) dx < oo. If F can be analytically extended to f across some arc of the
circle T, then / = 0 and F = 0.

Beurling [2] proved an analogous theorem for functions that can be extended across
an arbitrary set of positive measure. The symbol H2 will denote the Hardy class on
the disk D:

H2 = {feA(O): sup /" | 2 < OO

A(D) being the space of all functions analytic in D. Each function F in H2 has
nontangential boundary values almost everywhere on T; they will be denoted by the
same letter F.

THEOREM. Let f(z) = Ση<οαηζ
η, \z\ < 1, \an\ < e~pM, where {pn} is a monotoni-

cally increasing sequence with Ση>\ΡηΙηι = oo, and let F e H2. IfF — f on a subset
ofT having positive Lebesgue measure, then / = 0 and F — 0.

As will be shown below, the growth restrictions on F in these theorems can be
essentially weakened.

We shall connect the admissible growth of F with the smoothness of / . For this
we introduce the following spaces of sequences:

21+ = f{{an}n e Z:a« = 0, η < 0, 3c,c,: \an\ < cxe
cp»},

2L a={{an}neZ:an = 0, n>0, Vc3cn |a B | < c u r ^ i } ,

21 =f2l+ + 2l_,

where ρ is a quasianalytic weight, i.e.,

{Pn}n>\ is a concave sequence of positive numbers, pn = o{n),

n->oo logn ^-^ nl

To shorten the formulations it is convenient to introduce the following (fairly
strong) regularity condition on the growth of p:

3A, 0<A<oo: —(logn)·4 t . (2)

THEOREM 1. Let

f(z) = Y^anz", \z\>\, F(z) = J2a"z"' \Z\<1>
n<0 «>0

where {an} e 21, and suppose that the weight ρ satisfies condition (2). If F has
nontangential boundary values equal to the values of f on some subset ofT of positive
Lebesgue measure, then / = 0 and F = 0.

The proof of this theorem below is elementary in the sense that it does not use
the Fourier transform, which sometimes obscures a loss of constructive meaning in
proofs of uniqueness theorems.

The basis of the proof is the possibility, established by Dyn'kin [3], of almost
analytic extension of smooth functions. We write this result in the form we need.
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THEOREM. If the weight ρ satisfies condition (1), then for any sequence {an} in 2L
there is a function F of class C ( D ) such that

F\T = Σαηζ"\Ί, Vc3c,: \dF(z)\ < Clw'l(c(i - \z\)).

Such an F is said to be an almost analytic extension of the function Ση<0 anz".
Here the majorant w is determined from the weight ρ by means of the Legendre

transformation:

w(x) =f exp ί - sup(pn - nx) J . (3)

Further,
w T, logw~l{x) is convex/

I (4)
log log w~~x (x) = oo.

0

(See [4] about the last assertion.)
Condition (2) on the weight ρ implies a certain regularity of the majorant w.

LEMMA 1. If the majorant w is determined by (3) from a weight ρ satisfying con-
dition (2), then

ι logu^iiM

lim g i o g U ) " ' w > 0. (5)

Analogous assertions are encountered in [5] and [6].
To each sequence {an} in 21 we assign a function d*{an} continuous in D: the sum

of the function Ση>ο αηζ" a n d an almost analytic extension of Ση<ο
 α"ζ" t n a t exists

by the Dyn'kin theorem. Of course, the mapping d* is not uniquely determined due
to the arbitrariness in the choice of the almost analytic extension.

We see what functions lie in the range of d*. Let

G = {/e

3c,

LEMMA 2. a) i/*(2t) c Q.
b) For any function f in Q the following limits exist and are finite:

d{f)n =f lim ^-. f f(z)z-"-1 dz, neZ,
r-+i-o ζπι JrT

(7)

c) d(d*{an}) = {an} for any sequence {an} in 21.

We now find Kerd. Let D be the closure of D, and let

/ = { / 6 C ' ( D ) , Vc3c{:\f(z)\ + \df(z)\<cxw(c{\-\z\))}.

LEMMA 3. a) d{J) = 0.

b) / / / e Q andd(f) = 0, then / e C ' ( D ) and/|T = 0.
If the majorant w satisfies condition (5), then
c) Q is an algebra, and J an ideal of this algebra.
d) / / / eCl(D)nQ and /|T = 0, then f e J.

Theorem 1 now follows from the next assertion.
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THEOREM 2. Let f e Q, and suppose that f has nontangential boundary values
equal to zero on a set of positive Lebesgue measure. Ifw satisfies condition (5), then
fsJ.

We note that this result is the "almost analytic" analogue of the well-known Luzin-
Privalov uniqueness theorem [7].

The property
f , g e A { O ) , f - g = 0^f = 0oig = 0

of analytic functions in the disk (this is also a uniqueness theorem in essence) is
generalized to the case of almost analytic functions in Theorem 3.

THEOREM 3. If the majorant w satisfies condition (5), then f or g is in J whenever
f, geQand f- geJ.

Actually, this theorem asserts that the quotient algebra Q/J is an algebra without
divisors of zero.

Theorems 2 and 3 can easily be deduced from the following assertion "on extension
of an estimate". The assertion (Lemma 4 below) shows that the smallness of the
values of an almost analytic function on some set leads (as in the case of analytic
functions, where theorems of the two-constants theorem type are used) to an estimate
that is hardly worse, but on a considerably broader set. Let

Ew,c(f)d={zeO: | / ( Z ) | < M ( C ( 1 - | * | ) ) } , Ew{f)&=X,i(/)·

LEMMA 4 (on extension of an estimate). If the majorant w satisfies condition (5),
then for each χ sufficiently close to 1 there exists a number r(x), limx_,.i r(x) = 1, with
the property that iff e C'(D), \f{z)\ < w'l(2{l - \z\)), \df{z)\ < w{{\ - |z|)/3),
and the set xT Π Ew(f) contains an arc of length > 1 - x, then r(x)T c Ew{f).

We mention that similar assertions are also presented in [6].
To proceed further it is necessary to essentially refine the lemma on extension of

an estimate; the lemma actually asserts that if / e Q\J and c < c{f), then the set
EwAf) does not intersect the circles rT sufficiently close to Τ in arcs of length 1 - r.

LEMMA 5. If the majorant w satisfies condition (5), and if f e Q\J, then there
exist a number c > 0 and a sequence {Xk)k>u s u c n that

1 -2~k+l <xk < 1 -2~k, k>u,

It follows from the proof (see §3, below) that the set of radii of the circles inter-
secting EWtC(f) is very sparse.

REMARK. Under the conditions of Lemma 5 there exists a number c > 0 such that

if R =f {r: 0 < r < 1; rT η Ew,c(f) = 0 L t h e n

lim(l -r)\ogm(Rn(r, 1)) = -oo (8)
r—>1

(here m is linear Lebesgue measure).
Another uniqueness theorem can easily be deduced from Lemma 5—the theorem

on the integrability of the logarithm of the modulus of an almost analytic function.
We note that the first theorem of this kind was proved by Vol'berg [8]; see also [6],
where there are further references.
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Each element of the algebra Q admits an additive decomposition

f{z) = af(z)+ff(z), (9)

where a} e Α(Ό) Π Q d= Q+, and

«*!_ if
71 JJ\\c\<\

{ f f }
Using Lemma 5, we can solve the problem of the existence of a multiplicative

decomposition / = /+/_, f± € Q±. (A whole series of results of this kind are well
known, beginning with the Fejer-Riesz theorem on factorization of polynomials, up
to the analogous decompositions adapted to various algebras of functions on the
circle that arise in the theory of Toeplitz and Wiener-Hopf operators (see [9]).)

THEOREM 4 (on factorization). If the majorant w satisfies condition (5), then for
any function f in Q there exist a g e Q+ and an h e β - such that f - gh e J, and
there exist a k s N and an hi e Q- such that zkhhx - 1 e /.

It can be assumed that any function in Q is, to within an element of /, a "product"
of two functions analytic in D and C\D, respectively.

From the factorization theorem we can immediately derive the uniqueness the-
orems presented above: Theorems 2 and 3 and the result on integrability of the
logarithm of the modulus of an almost analytic function. Indeed, if, for example, a
function / in Q has nontangential limits equal to zero on a set of positive measure,
then the same is true for gh, for zkh\gh (see Theorem 4), for (zkhhy — \)g + g,
and hence for g. It remains only to use the Luzin-Privalov theorem. We note that
although there is no reference to the Luzin-Privalov theorem in the proof of The-
orem 2 in §3, this proof actually contains the classical proof of the Luzin-Privalov
theorem. Moreover, Theorem 4 can be used to solve the spectral analysis-synthesis
problem in the algebra 21.

In §2 the results on almost analytic functions are applied to the problem of de-
scribing the translation-invariant subspaces of convolution algebras.

In §3 we give proofs for the assertions formulated above, and §4 contains a brief
discussion of the sharpness of these results.

§2. Convolution equations and invariant subspaces

Problems involving almost analytic functions arise naturally in the description of
invariant subspaces of spaces of sequences with a certain asymptotic growth (de-
crease) at infinity.

If Ε is a closed proper subspace of some topological space of sequences, then Ε
will be said to be 2-invariant if τ Ε = Ε, and l-(left)-invariant if τ Ε ^ Ε, where

, ι def , ι

τ{αη} = {an+i}.
As a rule, a description of the 1-invariant subspaces requires considerably greater

efforts than a description of the 2-invariant subspaces. In this connection we can
mention the well-known Beurling-Helson theorem, the article [10], which treats the
space C°°(T) isomorphic to the sequence space

log \an = —oo
\η\->οο log ft

and the article [11], which treats spaces of functions analytic in annuli.
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We endow the set

cxe-cp\"\, η < 0, 3c, 3Cl: \an\<cxe
cp\ η > 0},

with the topology of the direct sum of the projective and the inductive limits. Since
the weight ρ satisfies condition (1), the equality 21* = 21 is valid, where the duality is
defined as

({an},{bn}) = ^2anb-n.
«ez

Then, by the Hahn-Banach theorem, the problem of the existence of nontrivial 2-
invariant subspaces of 21 turns out to be equivalent to the problem of solvability of
the convolution equation

f*g = 0, f,ge%\{0}. (10)

The convolution {an} * {bn} is defined in the standard way:

{an} * {bn} =

Indeed, if Ε is 2-invariant, then the equality (f,rkg) = 0 holds for any / e E±,

g e E, and k e Z, i.e., /*g = 0. Conversely, if / * # = 0, then f € Ed= {φ: (p*g - 0},
and Ε is a 2-invariant subspace of 21.

We show that if ρ satisfies conditions (1) and (2), then (10) does not have solutions.

THEOREM 5. If the weight ρ satisfies condition (2), then the space 21 does not contain
2-invariant subspaces.

Note that under the conditions of the theorem 21 is a convolution algebra, and the
theorem itself asserts that there are no divisors of zero in 21. Moreover, Theorem 5
can be interpreted as an assertion about the possibility of spectral analysis-synthesis in
21; more precisely, as an extreme case of such an assertion (there are no exponential-
polynomial sequences in 21, but, as Theorem 5 asserts, also no nontrivial translation-
invariant subspaces). See [12] about the spectral analysis-synthesis problem.

Theorem 5 can be derived directly from Theorem 3 with the use of the following
assertion.

LEMMA 6. If the weight ρ satisfies the condition (2), then the space 21 is isomorphic
to the quotient space Q/J.

(The natural topology of the sum of the projective and inductive limits is intro-
duced in Q; the ideal / is closed by Lemma 3.)

Thus, to prove the absence of 2-invariant subspaces of 21 it suffices to use the
lemma on extension of an estimate.

The factorization theorem is needed to describe 1-invariant subspaces.
It will be assumed that the majorant w satisfies condition (5).
Using Lemma 5, we find for each function / in Q\J a number c > 0 such that

1 e dosR, where R = {r: rT η £.„,,<•(/) = 0}, and

wind/ = limwind/|rT > — oo,

where wind φ on the right-hand side is the rotation (index) of a continuous function
φ with respect to the point 0. It is clear that wind/? = degp, for any polynomial p,
wind/g = wind/ + windg for any / and g in Q, and wind/z < 0 for any h in Q_.
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A canonical factorization of an element / e Q is defined as zkf - f+f- e / , where
k e N, /+ € Q+, and /_ e (1 + Q-) η (1 + g _ ) - ' .

Such a factorization exists by Theorem 4, and k + wind/ = «(/+), where «(#>) is
the number of zeros of a function φ in D.

LEMMA 7. 7/7/ze majorant w satisfies condition (5), i/ze« f & Q~ if and only if for
any canonical factorization zk f - f+f- e / the function f+ is a polynomial of degree
at most k - 1.

THEOREM 6. Λ closed proper subspace Ε of the space Q/J is l-invariant, z~lE c E,
z~lE Φ Ε, if and only if there exist a k e Ζ ώ«ί/ an f e Q+ such that f(z) / 0, ζ g D,
and Ε = zkfQ-.

Using Lemma 6, we can get the following results from Theorems 4 and 6, respec-
tively.

THEOREM 7. If the weight ρ satisfies condition {2), then for each sequence a € 21
ί/iere exwZ sequences b e 21+ fl«J c, <i e 2t_ α«ύ? α number k e Z + SWC/J ?/?a? a = b * c
and c* d = S_k. Here 6m = {Smn}nez, Smn being the Kronecker symbol.

THEOREM 8. Suppose that the weight ρ satisfies the condition (2). A subspace Ε of
21 is l-invariant if and only if there exist a k e Ζ and an a = {an} e 21+ such that

2ηζ
ηφ0, zeD, E = xka*%-.

n>0

Thus, all the 1 -invariant subspaces of 21 are generated (algebraically) by a single
element (to within a shift)—an invertible element of 21+.

Finally, we present the following necessary and sufficient condition for periodicity
in the mean (under left shifts) in 21.

COROLLARY. An element a in 21 generates (topologically) the whole space 21 under
left shifts if and only if'wind d* {a) = +oo.

§3. Proofs of the assertions

PROOF OF LEMMA 1. Let φ{χ) d= \ogw~\x) - ma.xn(pn - nx). Denote by p'n the
difference pn+\ — pn. Everywhere outside a countable set of points χ we have that
φ'{χ) = —m at χ = p'm if the maximum of pn - nx is attained at η = m.

The fact that pn(\ogA n)jn is increasing implies that

, logV+1) flog*4 η
Pn+l n + l >Pn

ι log^ η _ log^w+l
nPn > n η n+l
Pn log-^n + 1)

n+l

therefore, np'n/pn > 1 - 2Aj log η for sufficiently large n. Hence,

χφ'(χ) —Tnp'm

φ(χ) pm - mp'm 2A

We estimate χ = p'm:

Pm > ~zp~ > const —-.—.
2m log·4 m
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Then

:^-^<-const(/4)

Since φ is convex, φ (χ) > φ{2χ) — χφ'(2χ). This gives us that
i o g Ψ(2χ) ,
7 'W > I.

PROOF OF LEMMA 2. a) Since {an} lies in 21, an estimate of the growth of the
analytic function Ση>()αηζ

η can be obtained from [13], Russian p. 158, English pp.
160-161. Next, by the Dyn'kin theorem, we can extend Σ π < _ ! anz

n to a function /
in the class C'(D) with the desired estimate on \df\.

b) Let / = ay + ~6f be the decomposition (9). For η > 0

<*(/)„= lim f (af(z)+fff(z))z-n-ldz= lim /" af(z)z~n-1 dz.

The expression under the limit sign does not depend on r. Again we get the desired
estimate from [13], loc. cit. For η < 0

d(f)n = lim f (af(z) + df(z))z-"-1 dz

= lim [ ff{z)z~n-ldz= I' f}f{z)z~n~{ dz. (11)

Let

Then _

\(df-fr)(z)\< [f \df(C)\dm2(C),

Further,

ff [
Therefore, for any c > 0 there is a C\ such that for any r < 1

n<0,

η < 0.

This yields the desired estimate.
c) This obviously follows from the definitions of d and d* and Dyn'kin's theorem.
PROOF OF LEMMA 3. a) Since lirti|z|_^j \f{z)\ = 0, d(f)n is equal to zero for

each η. ^
b) As already mentioned, d{f)n = «/(«) for η > 0, and rf(/)n = /T9/(z)z~ / !~ 1 c/z

for η < 0. Therefore, if rf(/) = 0, then af = 0,f = df, and df\T = 0.
c) It suffices to verify that C\,w2{cx) > w(x) for some c,c\ > 0. But this follows

from (5).
d) If fr is defined as in Lemma 2, then

\(f-fr)(z)\<
' ' r < | f | < l
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Therefore, Vc3c\: \fr{z)\ < C\w(c(l - r)) for \z\> 1.
Further,

\Mz)\< if \Β/(ζ)\άηΐ2(ζ), zet.
JJ\z\<\

Using the logarithmic convexity of the function

suplog|/r(z)|, r < ? < + o o ,
\z\ = t

we get that
Vc3c,: log|/r|V^T| < ±(ci + logw(c(l -r)) + const).

Using (5), we get that Vc3c,: Vr \fr\y/rT\ < cxw(c{\ - r)). Therefore, Vc3c2: Vr
|/|rT| < c2w(c(l - r)). The desired estimate is proved.

PROOF OF LEMMA 4. It follows from (5) that

logiu~'(l - x 2 ) 1
logiu-Hl - x ) 20*>

for all χ sufficiently close to 1, χ > x*. We set xn = x2" and define for χ > χ* the
sequence of numbers

"'(l-I
J ) , ι, > 0.

It is clear that yn > 1 - xn for xn > x». We prove by induction that

for xn > χ* the set x j n £,„ (/) contains Ί

an arc of length at least yn. j '

If this has already been proved, then by using the monotonicity of the majorant
w, we get that in fact y^ — 1 if x̂  > x*, and

ι r2"'1^'
- loglogw l(x)dx > 1 + (1 -χ*.) log log ίο
1 h-x

+ 2 f c + 1 ( l - x ) l o g 2 0 . (13)
Indeed, if y^ φ 1, then yn < 1 for all η — 0, ...,k, and so

k

Y^{Xn-\ ~ Xn)\og\OgW-\\ -Xn)
n=\

k

- (1 -xk)\og\ogurx{\ -x* + 1 )- log20£)(l -xn).

Further,
k k

Σ(χη-\ -xn)\og\ogw-\\ -xn) > ^ 2 " - 2 ( l - x)loglogw~l(2"( 1 -x))
n=\ «—1

1 ,~ 1 |*2 (1 —. '

> χ Γ ( 1 -x)loglogw~'(«(l -X))>TJ I
1 n=\ Z h ~ x
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Therefore, from (13) and the fact that yk Φ 1 it follows that yk > 1, which is
impossible. Hence yk = \.

Thus, by using the condition /0 log log ^ " ' ( x ) dx = oo we get that for any fixed
x» < 1 and for all χ sufficiently close to 1 there is a number k such that xk > x* and
(13) holds, and therefore yk — 1 and x^T c Ew(f). This gives us the lemma.

We return to the proof of (12). The induction base is obvious. We prove the
induction step.

Suppose that Ω = {xl < \z\ < xn} and g = a}• + fxi e Α(Ω). Denote by / an arc
of the circle x«T of length yn such that / c Ew(f). Then

\g\I\ <w(l-xn) + w ( i ^ ) , \g\dQ\ < w"1(2(l - Xn)) + w

For the points ζ of the circle x^T such that

ω(ί Ι Ω) > 2 — — (14)

the quantity log|g(£)| can be estimated as

< \og{2w{\ - xn))2l^W"{\ Xjl+2\ogw-l(2(\-xn))
-Xn)

\ ' ( 1 - x 2

n ) ,

since the function log |# | is subharmonic in Ω. Therefore, |/(C)| < w(\ - \ζ\) for all
ζ in x^T satisfying (14). It remains to estimate the measure of the set I\ of such
points ζ. (Obviously, /[ is an arc.) Using the fact that yn > 1 -xn, we choose the arc

h = {xne'e, α<θ<α + (\~ χ η ) } c /.

If ζ = x%e", t > a + (1 - xn), then a simple computation of the harmonic measure
shows that

This implies that the length /] is at least yn+\. The induction step for (12) is
proved, and with it the whole lemma.

PROOF OF THEOREM 2. We use the sawtooth construction of Luzin and Privalov
(see [7]). Suppose that the nontangential boundary values of / are equal to zero on a
set e with me > 0. Then there exists a set e\ c e with me χ > 0 such that the domain

Ω = ( J { C G D : | C - Z | < 2 ( 1 - | C | ) } ,

zee,

has the properties ||/|Ω||οο < oo and \\m.zeil!\z\^\ f(z) = 0. We assume without loss
of generality that

| / ( z ) | < ± , Ζ&Ω; \f(z)\<W-l(2(l-\z\)), ζ e D.

By the lemma on extension of an estimate, it suffices to show that there is a sequence
rn —> 1 such that the circles rnT intersect Ew{f) in arcs of length at least \—rn. Then
the values |/(z) | turn out to be small on entire circles with radii tending to 1. If we
take the limit in (7) with respect to this sequence of radii, then we get that d(f) = 0
for feJ.
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Thus, let ζ be a point of density of the set e\,

^^nue- iei<s}) = L

e-*o m{ze'e: \θ\ < ε} y '

We compute ω(ζ,ει,Ω\(1 - 2e)D) for ζ e {(1 - e)ewz: \θ\ < ε}. It is clear that

<u(C,<?i,fl\(l - 2e)D) > Χ ί , ^ , Ω ) > ±((o(f,e,,D) - © ( ^ l y ^ D ) )
(since the values of the harmonic function ω(ζ,β\,Ό) — ω(ζ,Ύ\β\,Ό) on <9Ω are not
greater than the values of ω(ζ, eu Ω)). Therefore,

ω(£ί?,,Ω\(1 - 2e)D) > to(f,e,,D) - f

Using (15), we get that ω(£,£i,D) > 3/4 for sufficiently small ε. Then

ω(ζ,βι,Ω\(1-2ε)Ό)> 1/4.

Since

/i_ 2 e + aj € J(D\(1 - 2e)D), K/i-^ + α/)|Ω\(1 - 2e)D| < 1,

and |(/i_2e + fl/)ki I < ciu(e) for some c < oo independent of ε, we get that

log |(/i-2« + a/)(OI < 3 logcw(e) for £ € {(1 - e)ei9z, |0| < ε}.

Therefore, | (/,_ 2 e + ay-)(i)| < (<:ω(ε))4 and |/(C)| < iw(l - |C|) for ζ in an arc of
length 1 - \ζ\. Applying the lemma on extension of an estimate, we conclude the
proof of the theorem.

PROOF OF THEOREM 3. It can be assumed without loss of generality that

| / (z ) |<«r ' (2(1-1*1)) , z e D , \df(z)\<w((i-\z\)/3), z e D ,

and there exists a sequence rn —*• 1 such that m(rnT Π Ew(f)) > \. It follows from
(5) that

'q-yfl 1
g ! ( l - r « ) 100

for sufficiently large «.
We prove that the intersections r^T η Ew (f) contain arcs of length 1 - r\ for large

n. After this, as in Theorem 2, ifremains only to use the lemma on extension of an
estimate.

We choose an arc / c r , T such that ml = \ - r\ and ml\ > ^ ( 1 - rn), where

I{

 ά= InEw(f). Then /, = f rnl c r2

nT. We prove that /, c Ew(f). Let

a = {r*<\z\<rn},

Then

| ^ | / , \ < w ( l - r n ) +

Since ω(^,/ι,Ω) > 1/30 for each ζ in J\, we get that for ζ e J\

Thus, |/(C)| < w{\ - rl) = w{\ - |f|) for any f e /,.
The theorem is proved.
PROOF OF LEMMA 5. It follows from (5) that for some c > 0 and sufficiently

small χ
x~l logw~l(x) < logw~l(cx).
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It can be assumed without loss of generality that

\z\)), (16)

\df{z)\<w((l-\z\)/3). (17)

Using the lemma on extension of an estimate, each r sufficiently close to 1 we can
distinguish a collection {xk} c r T n Ew(f) of points that separate the circle rT into

segments/such that (1—r)/3 < |/| < |(1—r). For a given r we introduce g = aj+fri.
Define ga = /aTlog|g| dm, 0 < a < 1. We prove that

ga>\ogw{(l-r)/2) forr7/9 < a < r2'3 and for r4/3 <a<arnl\ (18)

Suppose first that r7/9 < a < r2/3. Let Ω = {r2 < \z\ < r2^}. It follows from (16)
and (17) that

2

If (18) does not hold, i.e., ga < \ogw((\ - r)/2), then there is an arc / of length 1 - r
on the circle aT such that

\dm < (1 -r)logw;((l -
Ji

All the more so,
riog" \g\ dm < (1 - r)logu;((l - r)/2).

(Here log~ χ is 0 if log χ > 0, and it is log χ if log χ < 0.) Let xk be the point among
those marked that is closest to the arc /, /(Λ*) > ιυ(1 - r). Then

log ̂ (1 -r)-w ( ^ ) ) j

sup log+ |g(z)|+ /
zeoa Jaa

< \og2w~[(l(\ - r)) + /"log" \8(ζ)\ω(χ,Λζ,Ω)

- r)) + ί ^ ω ( Χ ^ ' Ω ) / ^ g " \g\dm

- r)) + ±w{[q - r)/2) < logtu(f (1 - r)),

which is impossible for r sufficiently close to 1.
Consequently, condition (18) holds for r7/9 < α < r2/3. The proof is analogous for

, 4 / 3 < a < r l l / 9 ^

We now estimate the number of zeros of g. The union of the disks of radii | (1 - r)
about the points xk contains the annulus Κ = (r4//3, r2^)T. In each of these disks the
number of zeros of the analytic function g can be estimated with the help of Jensen's
formula:

/•3/4(l-r) tts r

/ ^-dt< \og\gU)\dm(Q-los\g(xk)\
JO l 7|i-xt| = 3/4(l-r)

< \og\w-x(\{\ - r)) + w{\{\ - r))] - log[u;(l - r) - w{\(1 - r))],

where n(t) is the number of zeros of g in the disk \z - xk\ < t. Further,
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Therefore, if Ν is the number of zeros of g in K, then

1 ( c 3 / 2 ( l - r ) ) . (19)

Let h{z) — Y\(z - zn), where {zn} is the sequence of zeros of g in the annulus K,
taken according to multiplicity; then

sup\h(z)\<(sup\z-zn\) < w~l(c2(l -r)). (20)

A lower estimate of h(z) can be obtained according to Cartan's theorem (see [14]),
namely, there is a set Β—a union of at most Ν disks with sum of radii (1 - r)/12—
such that

\h{z)\ > ((l-r)/24ef >w(c3(l - r)), zeK\B. (21)

Let F = g/h. Then log \F\ is a harmonic function on the annulus K. We choose
numbers a and b in the respective intervals (r7 / 9, r2^) and (r4/3, r 1 1 / 9) such that αΤπ
B = bTnB = 0. Then it follows from (18), (20), and (21) that

/ log\F\dm >21ogw(c2(l - r)), [ \og\F\ dm > 2logw(c2{l - r)),
JaT JbT

f log~ \F\dm >2logw(c\l - r)), [ log~ \F\dm > 2logw(c3(l - r)).
JaT JbT

f
aT

Now let Ω, d^f {r10/9 < \z\ < r 8/ 9}. For ζ e Ω,

\og\F(z)\= ( \og\F(C)\aj(z,dC,a)> [ log~ \F(C)\w(z,dζ,Ω)
Jon, Jan

> sup ω ^ ' ς ί ) f log~\F(C)\dm>-^4logw(c\l--r))
ζ&Ω dm Jan 1 - r

> Iogw(c5(l - r)).

For z e Q i \ 5

\g(z)\ > w{c\\ - r))w{c\\ - r)) > w{c\\ - \z\)).

Thus, for ζ e Ωι\5 (for r sufficiently close to 1)

|/(z)|>Xc6(l-|z|)). (22)

It follows from the properties of Β mentioned above that the set {x e [ r l o / 9 ,r 8 / 9 ] :
xT Π Β = 0} has length at least (1 — r)/4 and consists of at most Ν segments.
Therefore, it follows from (19) that for some χ in the segment |>10/9,r8/9]

[x,x + (logw;-'(c3(l -ή))~ι]ΎηΒ = 0.

Letting r go to 1 and using (22), we get the desired result.
PROOF OF THEOREM 4. Applying Lemma 5 to the given function / , we get that

for some c > 0 there exist a sequence {ΧΑΓ}̂ >Ο and a number u such that

\-2~k+x <xk<\-2~k, x o = O, [xk,yk]TnElvAf) = 0, k>u,

where yk = xk + (logw-l{c(l -xk)))~l.

We expand d in the sum

Σ
k>0
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Let

^ ^ ^ ^ α - Λ ζ ) . k > ο,

k>0

It is clear that

\hk(z)\<{logw-l(c{l-\z\)))-ll sup

Therefore,

Since

for jz| > χ > xk+\, it follows that

/ /
J J\n

' ICI<i Δ ~ *»

for z € C \ D . Further, \(df-h){z)\ < \hk(z) + fk(z)\, for xk < \z\ <xk+x. Hence,

for ζ sufficiently close to the circle T.
Let fl= af + h. Then / - / i s / , and | / (z) | > w(c(l - |z|)) for xfc < \z\ < yk,

|/ i(z) | > ^w(c(l - |z|)) if k > ν is sufficiently large; hence |/i(z) | > iio(c(l - |z|))
for χ^ < \z\ < yk. Moreover, df\{z) = 0 for ζ ^ [)k>o[xk>ykYT. Therefore, we can
define

\ JO\X,,O J\
/2(z)d=lfexpf-/ ψ(ζ)ά-^ψ), f2el+Q-,

\ J J Ζ - L, J

It is easy to see that f$ = /1/2 € A(D\xvD) η Q. We decompose β into a product
h — /t/5, Λ € ^4(D) η β, /s e ^(C\Xt,D). Further, it can be assumed without loss
of generality that fs(z) / 0 for r = (1 + χν)β < \z\ < 00. In the disk D we define a
function f(, of class C1 coinciding with β on D\rD. Then f(, £ Q~, β — f4f(, s /. It
is clear that for some m (m is the order of the zero of /5 at infinity) it is possible to
define a function /} of class C 1 in the disk that coincides with z~m~1/5(z) on D\rD.
Further, fi s β- and fefizm+l - I s / .

In summary:

/ - Λί/β/Γ1) e /, Λ e β + , Μ " 1 e β_,

which is what was required.
PROOF OF LEMMA 6. If in (9 we introduce the topology of the sum of the projective

and inductive limits, then it follows from the proof of Lemma 2b) that the mapping
d acts continuously from Q to 21. By Lemma 3a), / = Kerd is a closed ideal of
Q. The linearity of d is obvious. Therefore, it can be assumed that d acts from
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Q/J to 21. The bijectivity of d follows from Lemma 2a), c). Consequently, d is a
homeomorphism of Q/J onto 21; it suffices to verify the multiplicativity of d on the
set of polynomials, where it is obvious. Thus, d is an isomorphism of topological
algebras. The lemma is proved.

PROOF OF LEMMA 7. a) If f+ is a polynomial of degree at most k — \ and /_ g
1 + Q-, then /+/_ g zkQ^; therefore, zkf g zkQ_ and / g β-.

b) Conversely, if / g £>_, then /./_ g zkQ- and f+ e zkQ- nQ+; consequently,
f+ is a polynomial of degree at most k - 1.

PROOF OF THEOREM 6. It follows from the Hahn-Banach theorem that if / €
Ex c (Q/J)* = Q/J and g € £, then fg e Q-/J. Conversely, if fE c β_//, then
/ g Bx. It follows from Lemma 7 that wind / < +oo for any representative / of an
element in Ε U Ex. Therefore, they can be factored as follows:

zkf-pfof-eJ, (23)

where ρ is a polynomial formed from the zeros of /+ in D, and f0 is a function in
Q+ nonvanishing in the disk and hence invertible in Q+ (this can easily be proved by
using the Caratheodory inequality (see [14]), and /_ g (1 + β_) Π (1 + β - ) " 1 . Now

f &E, g eE± => fogo = 1, wind/ + wind,? <0^> fg &Q-.

Therefore, if
k\ = sup wind/, ki = sup windg,

f€E geE1-

then kx + k2 = -l,foz
kzQ-/J c E, and f^xzklzQ_/J c Ex, where f0 is the

function in the decomposition of a representative of some element / g Ε according
to (23). But

ι f .k\ ~n ι j\±- / f— ι _/c2 ~r% ι ι\ ι f~' τ^2 τ η / τλ-L if -7^\ η ι τ\
\JQZ Z^/_ / J J — \JQ Ζ\£—Ι^)·, \JCj Z Z^J—fJ) — \JOZ ^s^/JJ,

and therefore Ε = fozkl Q-/J. Arguing in the same way, we get that, also conversely,
every subspace Ε of the form zk fQ-/J is 1-invariant.

§4. Discussion of the results

The Levinson-Cartwright results and Theorem 1 forbid the extension of a function
analytic in C\D and quasianalytically smooth in C\D to an analytic function in the
disk with certain growth restrictions. V. P. Khavin has constructed an example
showing that these restrictions cannot be completely removed.

Here is a sketch of Khavin's construction. We construct a function / g ^4(C\{1})
that is quasianalytically smooth in C\D. Let ψ(χ) be a positive function with suf-
ficiently rapid decrease as |x| —• oo, and let F(z) be an entire function such that
|.F(;c)| < ψ(χ) and F ̂ 0 (F exists by Carleman's theorem (see [15]).

We map the upper half-plane C+ conformally onto the disk D: ζ = z/(z + i). Let
φ (ζ) = F(z(C)), D = j + jD, and γ = 3D. Then the desired function / is defined as
the Cauchy integral of φ:

Γ α>{ζ) ,„ ι , ,
- ^ άζ, \ζ\ > 1.

By contracting the contour γ, we can see that / € A(C\{1}); f becomes arbitrarily
smooth in C\D if ψ decreases rapidly enough. The function / is not identically equal
to zero, because φ φ Η1 if ψ decreases rapidly enough.

The above theorems use a fairly strong regularity condition. In some of them
(Theorems 2, 3, and 5) these conditions are excessive in order to simplify the proofs,
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while in others (Theorems 4, 7, and 8) they are best possible of those known to the
author. At the same time the classical theorems (for example the Beurling theorem)
do not contain conditions of this kind. The question arises as to how essential these
conditions are here. Vol'berg constructed an example showing that the theorem on
integrability of the logarithm of the modulus of an almost analytic function ceases
to be valid if the condition A: log it;"'(χ) | °° is violated. Consequently, Lemma 5
and the factorization theorem cease to be valid.

A description of l-(left)-invariant subspaces of the algebra 21 was obtained in §2.
A similar result can be obtained also for l-(right)-invariant subspaces.

The author thanks Ν. Κ. Nikol'skii for his undivided attention to this work, and
A. L. Vol'berg, V. P. Khavin, and D. V. Yakubovich for useful discussions.
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