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The classical Titchmarsh convolution theorem [1] states that for functions 
with compact support the convex hull of  the support of  their convolution is equal 
to the sum of  the convex hulls of  their supports. Recently Y. Domar [2, 3] extended 
this statement. Namely, he proved that 

(1) i n f s u p p f ,  g = i n f sup p f + i n f s u p p  g, 

for functions rapidly decreasing on R_ and satistying some growth restrictions on R+. 
A similar result was obtained for functions on Z (i.e. for sequences of  complex 
numbers). But the decrease and growth conditions in Domar's theorem were only 
sufficient for (1) to hold: sharp necessary and sufficient conditions had not been 
found. Note, however, that in the case of  summable functions (or even for measures 
with finite variation) necessary and sufficient conditions were obtained by I. V. 
Ostrovskii [4]. 

In this paper we obtain, under some regularity assumptions, a condition nec- 
essary and sufficient for the validity of  (1) on the group Z of  integers. To this aim 
we use the technique of  the so-called Dyn'kin transform [5, 6]. An application to 
operator theory is also given. 

Let us first discuss Domar's theorem. Let {v.}nE z be a sequence of positive 
numbers such that, for some mEN, {log Vn}n<_ m iS convex, {log Vn}n> m is con- 
cave and 

lim l o g v ~  co _ _  - -  . 

Theorem ([2, 3]). Let  {a~}nE z and {bn}ncz be sequences such that 

(A) z ~ z  lanlV= <co, Z , e z  Ib, lv:~ <oo 

(B) a . b  = O on Z _  
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and let {v.} satisfy the condition 

(c) 
lim f log% +~logln] ]  <co 

lim flog v. + fl log n] < ~  
.-.~ t n 

where c~ > O, fl > O, ~ + fl >= 2 and at least one o f  the l imits  is equal to - ~ .  
Then 

(D) there exis ts  k E Z u { -  0% + ~ }  such that a. = O, n < k and b. = O, n < - k .  

Domar  pointed out in [3, 7] that if condition (C) does not hold then the theo- 
rem can fail. He presented an example showing that under the assumption 

lim [ logv .  +loglnl} > - ~  
1.5=-~= t n 

the implication (A) & (B)=~(D) does not hold. Namely, if we set 

v . = ( n ! )  -1, a n = 0 ,  b , , = 0 ,  n > 0 ,  

vn=2"ln l ! ,  an=( ln l ! )  -1, b n : ( - 1 ) ' ( l n ] ! )  -a, n ~ 0 ,  

then (A) and (B) hold, but not (D). 
This implies that max (~, f l )~ l  is necessary for the conclusion of  Domar's  

theorem to be valid. There is a gap between this condition and the sufficient one 
~+~_->2. 

Now, let us observe that condition (A) is rather weak: it guarantees the exist- 
ence of  the convolution a . b  only on Z_w{0}. So one can hope to move further 
when imposing stronger conditions on sequences {a.} and {b.}: 

(AD Z . e z  la.+klV. <0% Z . c z  Ibn+kl -n <o% 

(B') a . b = O  on Z_, ( a . b ) o = l .  

Now let us introduce additional regularity assumptions on {Vn}: 

(E) lim Ilog%[ > 0 ,  
1.1------~ Inllog Inl 

(F) lira (U•177 > O, where un = log Vn+l 
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Theorem 1. Suppose that (E) and (F) are satisfied. Then for some k, that depends 
only on the value of  the limit in (E), the implication (Ak) & (B ' )~(D)  holds i f  and 
only i f  

(G) lim [ l~ +logln[) . . . .  
I n r ~  k n 

Thus, under conditions (Ak), (IS), (F), (G), either (1) is fulfilled or a . b = 0 ,  on 
zu{0}.  

This theorem can be applied to the theory of  invariant subspaces. 
Define the spaces l ind and/pro: 

= U cz V(v.+D, = 

where P(w.) aof {{a.}.ez: Z . e z  la.I w.<.~}. 

Right translation z: {a.}-~{a._l} is a bounded operator on 1 ind, /jro. 
The subspaces 

l ind = {{an}E l~na: a n = O, n < m}, 

/Pro = {{a.}E If'~ a. = 0, n < m} 

will be called standard. They are closed and invariant under z. For  a more complete 
discussion of  this topic one can refer to [8]. 

Now an application of Theorem 1 gives the following result. 

Theorem 2. Under the assumptions (E) and (F) all closed right translation-in- 
variant subspaces E of lif d and 1~ r~ with z E c E ,  zE~  E are standard if  and only i f  
the condition ((3) is fulfilled. 

The question of  existence of  2-invariant subspaces E (that is, subspaces with 
zE=E)  remains open. 

Proof of  Theorem 1. The necessity of  (G) was demonstrated in [7], the suffi- 
ciency follows immediately from the next two lemmas. 

Lemma 1. Under the assumption (E), there is a k such that i f  (Ag) and (B') do 
not imply (D) then there exists fE A ( C ) , f  r such that 

lexp f(z)l = 0 (Z ,~o  v, Izl"), 
[exp(--f(z)) I = O(~.~0v:,~lzl"),  Izl-~. 

Lemma 2. Under the assumption (F), i f  for some positive c 

then for some positive d, 
~n~_oV.r ~ > cexpcr, rER+, 

v.>d"/n!, n>O. 
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Proof of  Lemma 1. Let us introduce some auxiliary objects. To begin with, 
consider the sequence {v,}._~o. Without loss of  generality one can assume that 
{log v.}._~0 is concave. Put 

p(r) = sup (n log r+ logv , )  
n_~0 

and choose a Cl-function q such that q(expr)  is convex, p(r ) - - l<q(r )<p(r ) .  
Further, let 

q* = f o r" e-q(') dr. 

Then q* > v ~ l / ( n  + 1). Indeed, the convexity of the sequence { - l o g  v.} implies that 

--logv.+l = sup ((n+ 1)log r--p(r)). 
r  

Denote by x the point where this supremum is attained. Then 

q*~=fo  f e - q ( ~  f o  rne-P(')dr 

> f , ,  1 e(n+l)log(r/X)e(n+l)(iogx)_r(x ) dr = v,+lf  - ~  dr : v;~_x/(n+ 1). 
= ,10-- ~ 

It should be mentioned that a similar estimate is contained in a recent book of  
P. Koosis "The logarithmic integral". 

In the proof of  Lemma 1 we need the following extension of the theorem of  
Dyn'kin [5] to the case of  the plane. 

Lemma 3. In the notation introduced earlier, if  the sequence {c.}.~_a satisfies 

nc n Z . ; l  <oo 

- -  <co, zET, 

(2) 

and i f  the function u is defined by 

�9 Cn Z - n + l  
U(Z) = Zn~_I  , 

2q.+2 
then the function 

(3) 1 f u((/l(l)e -~(gD I(I 2 
f (z)  = --~ f c z - (  dm~(~) 

is well defined, fECI(C) ,  lim2~oo f(z)=O, 

(4) lOf(z)[ <= const, e -p(Izl) [z[ z 
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and the limits 

exist and satisfy 

f(n)~ Jim ~ f,Tf(~)=-.-~a~ 

0, n --> 0, 
(5) ?(n) = 

C _ n ,  n < O.  

Proof of  Lemma 3. The Ct-smoothness o f f  and the estimate (4) for 10fl fol- 
low from the C~-smoothness of  the fight-hand side of  (3). In fact, (2) implies that 
uCCi(T). The aim Of introducing the function q instead of  p was to provide the 

I~[ ~ gives the required smoothness required smoothness. At last, the multiplier 
at zero. 

We check now the equality (5): 

(6) 

Hence for 

l f ,Tf(z)z_._ldz= 1 27ri 7r I~l<r z--~ dm2(~) 

2~ u(e u) e -q(~) s ~ 
= 2Ml f2~r-"e-i"~ re i~ sd sd t  

�9 1 R k 
= r-"-le-q(S)s3 d s f f ' f 2 " u ( e ' g S - e  -'~176176 dt dO 

�9 1 0  d O  r k 

27t f R = lim ~ Jo r-n-1 e-a(s) s3 ds f~" u(e 't) f + l  e -'("+l)t dt 
R ~ r  S n + l  

- -  a(n+ 1). 2 fo ds. 

n->0 f ( n ) = 0  and for n < 0  

�9 C _  n r 
f(n)  = lira q .  +------~ fo  e-q(s' s2-" ds = c_~. 

The relation limz_~ f ( z ) =  0 is due to the fact that the numerator of  the fight-hand 
side of  (3) is summable and vanishes at infinity, Lemma 3 is proved�9 

To prove Lemma 1, let us assume that {a.}._~l and {bn}._~l satisfy (B'). The 
sequence {C.}n_~ 1= {a.+5}._~1 satisfies (2), for by (Ak) (for sufficiently large k, depend- 
ing only on the value of  the limit in (E)), we find: 

Z n ~ _ l  nan+~ q.+2 < ~__..~1 n(n+ l)a.+se '~ 

< Z.~-I a.+sv.+5-k exp (log v.+3--1og v.+5_ k + 2  log (n+  1)) -<oo. 
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Now we apply Lemma 3 to obtain the function f mentioned in this lemma. 
Recall that  it satisfies 

[Of(z)[ <- const ,  e -p(l'l) [zp, 

/0 ,  n => o, Y(,,) / C_n, rl < O. 

Let us introduce the function F, FCCI(C) ,  such that 

F(z) = Z . ~ o  a - . z " + Z ~ = l  a . z - "+ f ( z )  z-s ,  lzl >- 1. 

Then ]0F(z)I <-const.  e -pq~l) [z[-3, 

P(n) = a_ . ,  n~Z. 

The function F is called the Dyn 'k in  t ransform of  the sequence {a.}. 

Starting with the sequences {v-~.}.~0, {b,},r z and proceeding in the same way, 
we can construct functions p ' ,  q', a sequence {q'*}.-~o and a function F ' .  

Let q)=F.F ' .  Then 

(7) 

<= const �9 (e -p(') r -3 sup r"v.+e -p'(') r -3sup  r" v-__. ~) ~_ const ,  r -a, where 
n--~0 n ~ 0  

10~(z)l ~ c o n s t ,  e -p(O r -3  ~n~_o Ib - . I  : + c o n s t .  e - v ( ' )  r -3  ~'n_~o l a - . I  r" 

r = Izl >= 1. 

Thus the function a~, 

(8) 

and the moments  
7~ a C z - - g  

~(n) d e f l i m - ~ l  f ~ ( Z )  Z - n - l d Z ,  n ~ O  
, ~  2rci J ,T 

are well defined, and a~ is an entire function. 
N o w  we shall compute ~ (n), Denote  

, OF(O 
F,(z) = F(z) -  f J Ir z--~ r dma(O, 

F," (z) ~ F" ( z ) - ~  f f bF" (O rc JJj~l-, z - ~  dm,(O, 

1 Of(O drn2(O, f,(z) = -s f f1~-~, z - r  
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Besides, 

Similarly, 

as in (6). Hence for m < 0  

[(F, IrT) ̂  (m)-a_m[ = l i rn  [((F-F,)IRT) ^ (m)[ 

= lirno [((f--.f,)lRT)^ ( m +  5)[ <_-_ const,  f.e-~(')s-'-" ds. 

[(F/IrT)^ (m)-b_.] <- const, f ?  e-r s - ' - 8  ds. 

Finally, we obtain 

[ f f (n) - -Z , .ez  a,._.b_,[ <- l im (Z=~-. Ib-,~l f .  e -p(') s -"+'~-8 ds 

+ Z=<o I,.-.I f .  e - ' ' s - ' - '  as) _~ lim f 7  const s -" -s  ds 

(compare with (7)). 
This impfies that for n=~0 

{1, n = 0 
(9) ~ ( n ) = Z m c z a r ' - " b - m =  O, n > O ,  

Thus we have shown that the Dyn'kin transform has a property similar to the stand- 
ard property of  Fourier transform: it maps convolutions to products. 

(F, lrT)^(m) = a-m, (F,'lrT)^(m) = b-m, 

1 2zci f ,T z - " - l  dz" 1 [ [  u(Ul~l) e-~(Icl)I~1 ~ 7r a a r<gl<R Z--~ dm~(O 

= 2a(n+  1) f ?  e -~(s) s 2-" ds, 

Then 

I~-~1 IrT ~- IF(F'-Fr')I[rT+[F'(F-Fr)[ I rT+o(1)  

<= const.  (Z._~0 lb-,1 r " f ?  e -p(') s -~ ds+ Z.~_o la-,I r" f~* e - r ' ' ) s  -2 ds) + o (1) 

<---- const. ~- (e - ' ( ' )  sup r " % + e  -p'c') sup r"v-_. 1) +o(1 )  = o(1), r -~ ~ .  
n~O n~O 

Hence 

~(,) = )ira ~ f .T ~'(~)z-"-I dz = }ira Z-~z (F.IrW) ~ (n--m).  (F,'IrT) ~ (m), 

On the last expression ^ denotes the usual Fourier transform of  a continuous func- 
tion on the circle). Further, for m_~0 
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It follows from (8) and (9) that 

a ~ - - l ,  l i m ~ ( z ) = l .  

Let the disk K, K =  {z: [z[ < c}, be such that 

I~(z)l > 1/2 for zCg. 

Taking into account that 

IOF. F'I, IOF'. FI~ L~(C)c~La(C) 

(this follows from (7)), we can define functions 

F* (z) ,rer F(z, exp ( - 1 .  fflzl>" ( ~ = ~ 1  (0 ~ dm,(~)), 

1 OF �9 F 1 
f '*(z)  =def F'(z)exp --~-. lzl>~ (0 ~ dm,.(~) . 

Then 
F*(z) F'*(z) 

F*, F'*CA(C",,K), lim, ~ = z-~lim F'(z) = 1. 

Thus limz_~** F*(z)F'*(z)= 1. 
If the singularities of the functions F* and F'* at ~ are at most poles, then 

the same is valid for F and F'. Hence the sequences {a-,},~_o, {b-~},~a are finite, 
and this implies (D). 

If not, then both F* and F'* have essential singularities at infinity. Further, 
since F* and F'* have no roots in some neighbourhood of ~o, one can factorize 
them as follows: 

F* gigs, F'* " ' = -~ gig2, 

where gx, glCA(C), g~., g2EA(C",,,K), g~(z)#0, ga(z)r zE C, and there is an m->_0 
such that (z-mg2g~)(oo)=l. 

Then '--  g~g~=l, gxr and 

()1 ()1 IF(z)l Z v-* " Iglz  <_-constlF* z _-<const  ~cons t  ._~o - . Iz[ ,  

Igi-X(z)[ <= constZ,_~0v . [z[". 

Thus Lemma 1 is proved (the function f = l o g  gl is the one we need). 

Proof of  Lemma 2. If for each d > 0  there exists e>0  such that the inequalities 

v, .<-  d " l m ! ,  u,.-u2,,,  > ~ 
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hold  for  arbitrari ly large rn's, then for  r - - e x p  ( -urn)  

c exp (c exp ( -  urn)) = c exp cr < ~n~_0 exp (log vn + n log r) 

< 2rn exp (log vrn + m log r) + Z~>v~ exp (log v. + n log r) 

< (2rn + ~,>~.~ exp ((n--  2rn) (u2- -- urn))) exp (log vrn -}- m log r). 

F o r  m sufficiently large, 

c exp (c exp (-/2m) ) <z exp (m + m log d -  m log ( m / e ) -  mum), 

m log m < m (3 + log d) + ( -  m u  m - c exp ( -  urn)). 

The  max imum value o f  the expression r e x -  ce x for  x ~ 0  is m log (m/ce),  therefore 

m log m < m (3 + l o g  d) + m log (m/ce) .  

Then  3 + l o g  d - l o g  ce>O. This leads to a contradict ion,  if  d is small. L e m m a  2 is 

proved.  
The au thor  wishes to  thank  N. K.  Nikol 'ski i  fo r  helpful discussion. 
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