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We investigate the structure of primary ideals at infinity in spaces of bounded
analytic functions in the lower half-plane, having a specified degree of smoothness
on the real line (varying from very low to quasianalytic). The problem is related to
classical works of Wiener and Beurling. A new method is introduced which permits
us to treat both the non-quasianalytic and the quasianalytic cases; previous
methods could only handie the non-quasianalytic case. € 1993 Academic Press, Inc.

1. INTRODUCTION

We consider a class of Banach algebras Q(C _, w) of analytic functions on
the open lower half-plane C _, closely related to the spaces of Fourier images
of the standard weighted L' spaces on R, = [0, «o[. The space Q(C_, w)
consists of restrictions to C _ of functions f e Co(C), with df =0on C_, and
with 0f(z)/w(3z) belonging to Co(C, ). Here, C . denotes the open upper
half-plane, C,(C, ) consists of all continuous functions on the one-point
compactification C, w {oc} of C, that vanish at oo, and C4(C) is defined
analogously. The weight w is assumed to be continuous on R, = [0, + o[,
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with value w(0) =0 at the left end point, and moreover, it should be positive
and increasing on the open interval ]0, oo[; the weight w prescribes the
degree of smoothness on the real line R of the functions in Q(C_, w). For
these spaces Q(C_, w) we prove the following assertion. In the formulation,
the space H *(C_ ) occurs; it consists of all bounded analytic functions on C _.

THEOREM. Let A~ be a collection of elements in Q(C _, w), and T (KX")
be the set of all (finite) linear combinations of functions of the type

M fzy=e"" f(z), zeC_,

with fe X and xe R, . Then T, (X'), being a subset of Q(C _, w), is dense
in Q(C_, w) if and only if

(a) the functions in X" have no common zeros in C_, and

(b) there is no £>0, such that
A ce . H*(C_).

This result is an analogue of Bertil Nyman’s 1950 theorem [23] (see also
[S, pp. 196-206]) on the completeness of right translates of functions in
L'(R,), which itself is an analogue of Norbert Wiener’s classical
approximation theorem [26]. Nyman’s theorem states that the linear span
of all right translates of a collection of functions in L'(R ) (to make right
translation well defined on L'(R, ), one naturally extends the functions to
the whole real line by declaring them to vanish on ]—o0,0[) is norm
dense in L'(R ) if and only if two conditions are fulfilled: (a) the Fourier
transforms of the functions in the given collection should have no common
zero on the natural domain of definition, which in this case happens to be
the closed lower half-plane C_, and (b) the functions in the collection
should not all vanish almost everywhere on an interval of the type [0, ¢],
with £ > 0. Wiener’s theorem, which states that the linear span of all (right
and left) translates of a collection of functions in L!(R) is norm dense in
L'(R) if and only if the Fourier transforms of the functions in the given
collection have no common zeros on the real line R, was generalized by
Arne Beurling [1] in 1938 to weighted L' spaces on R, for weights of non-
quasianalytic type. To be more precise, we explain in some detail what
spaces Beurling was working with. The relevant class of weight functions is
the coliection of all continuous functions w on the real line having the
properties w(t) = 1 and w(s + 1) < w(s) w(z) (submultiplicativity), where the
parameters s and ¢ range over the whole real line; a weight function w is
said to be quasianalytic if

log w(t) = o(t), as |t] - + o0,
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and

+
j (1+2)~'log w(t) dt = + o0,

— 0

and non-quasianalytic if

+ oo
j (1+#) 'log w(?) dt < + c0.

— oo

The weighted spaces Beurling considered were the spaces L'(R, w),
consisting of all (equivalence classes of) Lebesgue measurable functions f
on R satisfying the integrability condition

jm LF(0)] (1) di < + 0.

For some reason Beurling restricted his considerations to symmetric weight
functions, w(—t)=w(?), but this condition has later been shown to be
irrelevant. Using what has been known in closer circles as the “Nyman bottle
construction,” Nyman later [23] showed that in Beurling’s theorem, the
non-quasianalyticity condition on the weight is essential; that is, for some
quasianalytic weights, the natural analogue of Wiener’s theorem is false. In
fact, more recently, Vretblad [25] and Domar [8] have shown that we
have a Wiener-type theorem if and only if the weight is non-quasianalytic.

In 1964, Viadimir Gurarii and Boris Levin [17] (see also {15])
extended Nyman’s theorem for the space L'(R,) to weighted spaces
L'(R ., w), but again it was necessary to assume that the weight o was of
non-quasianalytic type, which in this case is supposed to mean that it has
an extension @ to the whole real line which is a non-quasianalytic weight
function. The need for that assumption arose in the proof at the same point
as it does for Beurling’s generalization of Wiener’s theorem, if we follow the
method of proof indicated in [18, pp. 142-143], which relies on duality
and complex function theory, instead of the standard regular algebra
argument. The critical technical point in the two proofs, of the theorems of
Beurling and Gurarii-Levin, is the need to use the classical Beurling—
Levinson-Sjéberg log-log theorem [21, p. 376], which cannot be done for
quasianalytic weights, because the initial estimate is too weak. In Beurling’s
situation, the assertion fails for quasianalytic weights, which is exactly
when it is not permitted to apply the Beurling-Levinson-Sjoberg log-log
theorem. One might think that in the case of R, , a dichotomy like that
which happens for the real line R would occur as well; that is, the natural
extension of Nyman’s theorem might not be valid for quasianalytic weights
on R, . Here, we should declare what we mean by a quasianalytic weight
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on R : it should have an extension & to the wole real line that is a
quasianalytic weight function on R, and in addition, we require that the
divergence of the logarithmic integral occurs on R, that is,

+ o
j (14 12)~"log (1) dr = + oo.
o

However, the examples which show that Beurling’s theorem does not
extend to quasianalytic weights do not carry over to the half-line situation,
and Gurarii [16] now believes that Nyman’s L'(R,) theorem should
extend to the spaces L'(R,, w), no matter whether w is quasianalytic or
not.

In the context of the spaces Q(C_, w), the non-quasianalyticity
condition amounts to

d
jlgmymmnm<+w
0

for some 6 >0, chosen so that w(d)< 1/e, so as to make the integrand
nonnegative. It clearly plays no role in our main theorem stated above,
offering support for Gurarii’s conjecture. The model spaces Q(C_, w)
are in our opinion just as basic as the weighted L' spaces on R, and
they contain all the essential difficulties with quasianalyticity. Given a
function in a weighted L' space on R, or R, it is difficult to tell its
norm from its Fourier transform; this is the problem we have in extend-
ing our main theorem to the weighted L' case. In this respect, we expect
to have more success in a Hilbert space context, involving weighted L?
spaces on R .

To prove the theorem stated above without assuming that the weight w
is non-quasianalytic, a fundamentally new idea was required. In our proof,
we initially follow the by now standard approach using a resolvent
(analytic, Carleman-type; a dear child has many names, as a Swedish
saying goes) transformation on the dual side, changing the problem to one
concerning obtaining growth estimates that force a certain entire function
to vanish identically. We derive a new estimate of this function which does
the job also for quasianalytic weights w, where the traditional method
based on the log-log theorem fails, and are thus able to prove our theorem
without any additional assumption whatsover on the weight w.

We believe that our results are interesting not only for harmonic
analysis, but also for the general study of quasianalyticity.

The reader will find related material in [2, 7, 11, 18, 22, 25].

This paper is organized as follows. In Section 2, we introduce our
weighted spaces Q(C_,w) and discuss their relation to the classical
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Beurling algebras L'(R, , w). In Section 3, basic properties of the spaces
Q(C _, w) are derived, and, in Section 4, we formulate our main theorem.
In Section 5, we introduce the traditional resolvent transform of a bounded
linear functional, and show that if the functional annihilates a closed ideal
lacking common zeros in C_, then its resolvent transform extends to an
entire function. In Section 6, we derive the standard “quick” estimate of this
entire function, and in Section 7, we obtain the new estimate that is needed
to prove our main theorem in the quasianalytic case. In Section 8, we
present the technical device that lets us find a sufficiently big set where the
estimate from Section 7 applies. In Section 9, we finish the proof of our
main theorem, and in the last section, Section 10, we prove a structure
theorem for ideals lacking common zeros in C_. We thank Vladimir
Guraril for reading and correcting this manuscript, and for helping us
restructure it.

2. THE SPACEs Q(C_, w) OF ASYMPTOTICALLY HOLOMORPHIC
ANALYTIC FUNCTIONS

The Fourier transform of an L'(R . ) function is a continuous function in
the closed lower half-plane, holomorphic in the interior, which is given by
the expression

57f(z)=j0+%e""’f(t)dt, zeC _,

We denote by 4,(C _) the space of continuous functions / on C_ that are
holomorphic on C__, and vanish at infinity; that is,

f(z)—0 as C_ sz .

Let w be a weight function on R, , non-quasianalytic or quasianalytic
(these concepts were defined in the Introduction). The Fourier image
FL' (R, ,w) of the space L'(R,,w) is a subspace of 4,(C_), and the
functions in it have a certain smoothness property. The degree of this
smoothness is, however, difficult to state in detail. For this reason, we
study a closely related class of Banach algebras, where the smoothness is
stated in a more concrete way, in terms of the functions having extensions
to the whole complex plane with small ¢-derivative near the real line, and
mention later more explicitly how this class relates to the spaces
FL'R, , )

First, let C,(C) denote the space of restrictions to C of all continuous
functions on the extended complex plane C U {oc} that vanish at the point
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oc. Let w be a bounded monotonically increasing continuous function on
R, , having w(0)=0, which is positive on R, \{0}, and introduce the
space Co(C, , w), consisting of all continuous functions f on the upper
half-plane,

C,={zeC:3z>0},

for which the function
F.(z)=f(z)w(3z), zeC,,

extends to an element in Cy(C) that vanishes on the lower half-plane C_.
The space of asymptotically holomorphic functions that we are interested
in, denoted by Q(C, w), consists of all functions fe€ Co(C) such that fis
analytic on C_, and Jf belongs to Co(C,,w) on C_ in the sense of
distribution theory [24]. Here, as usual, d = §/8z. The norm in Q(C, w) is
given by the expression

>

”f”Q(C,W):SUp |f(Z)‘ +Sup \gf(Z)‘
C

c, w(3:z

Q(C,w) is a commutative Banach algebra without unit if we define
multiplication to be ordinary pointwise multiplication of functions. The
subspace

Jw)={feQ(C,w): flc_=0}

is a closed ideal in Q(C, w), and the related restriction algebra

Q(C_,w)=0(C, w)|e =0(C, w)/J(w)

is also a commutative Banach algebra if supplied with the standard
quotient norm,

Algebras of this type on the unit disc were introduced by Evsel Dyn’kin
in [10], where he related for a C'-function on the closed unit disc D
the degree of decay of its d-derivative near the unit circle T with the
smoothness of its boundary values.

The critical condition of quasianalyticity for a weight w, which for
weights @ associated with the spaces L'(R,, w) is the divergence of the
integral

-[w log w(t) = o

o 14122
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turns out to be for these spaces Q(C_, w) the divergence of the integral
)
j log log(1/w(t)) dt = + oo,
0

for some 6 >0, chosen so that w(d)<1/e, so as to make the integrand
nonnegative. This condition should be thought of as requiring that the
functions in Q(C_, w) are extremely smooth on the real line R, and we
will say that they are quasianalytically smooth on R. The reason for this
terminology is as follows. Let w(¢) =w(|¢|) for e R, and consider the space
Q(R, #) consisting of all continuous functions f on R having continuous
extensions f to the whole complex plane with f € C,(C), and &f € C4(C\R, W);
here, Co(C\R, W) consists of all continuous functions g on C\R for which
the function

Gu(2)=g(z)/w(|3z]),  zeC\R,

extends to an element in Cy(C) that vanishes on the real line R. Then the
space Q(R, w) contains nontrivial functions with compact support if and
only if

flog log(1/w(1)) d < + oo,
0

for some & >0, chosen so that w(d) < 1/e; see [4, 10].

We should indicate the relationship between the spaces #L'(R ., w) and
QO(C_, w). As before w is a weight function on R, quasianalytic or non-
quasianalytic, and let us make the additional requirement that log w be
strictly concave on R . Suppose f is a function belonging to the weighted
space L'(R, , w). Following an idea of Domar [9], we consider a cut-off
Fourier transform

F=[" s d

(4]
where for x > 0, v(x) is by definition the point 7, where the infimum of the
expression

w(x)=inf{e™/w(t):teR _}, xeR,,
is attained, and for x <0, we put v(x) = + oo. Under inessential additional

assumptions on the function f and the weight w, this transform £ f is an
asymptotically holomorphic function, in the sense that

IHF NN <C ey w((1+6)3z),  Iz>0,
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holds for every ¢ > 0. On the other hand, given a weight w, associated with
the spaces of type Q(C,w), and a function F belonging to Q(C_, w),
satisfying the size condition that some extension Fe Q(C, w) of F has z°F
in Q(C, w), then by using Green’s formula one can prove that F belongs to
FLYR ,,w,), where the weight w, is given by the formula w,(t)=
o(1)/(1 + 1), and w is related to w in the way previously indicated; a direct
formula is as follows:

w(t)=inf{e"/w(x): x>0}, reR,.

We do not want to spend a lot of energy here proving the above assertions,
especially since they are not really essential to this work; they only serve
to motivate it. Related results can be found in [3].

In conclusion, we note that the spaces Q(C _, w) and the Fourier images
of the Beurling spaces #L'(R, , w) are quite similar.

3. BasiC PROPERTIES OF THE SPACES Q(C_, w)

We need to identify the maximal ideal space of the algebra Q(C _, w);
however, since this algebra lacks a unit, it is preferable to consider instead
the unitization Q,(C_, w) of Q(C_, w), which consists of all sums a + f,
where « is a C-valued constant function on C_, and fe Q(C _, w); normed
suitably, this is a Banach algebra with unit. The following lemma will help
us to show that the maximal ideal space of Q.(C_,w) coincides with
C_ U {oc} in the obvious way. At this point in time, it is convenient also
to introduce the unitization Q.(C,w) of Q(C, w), defined analogously.
Recall that C_ denotes the upper half-plane.

LemMa 3.1, For A€ C _, introduce the functions
b,(z)=1/(A—2), zeC_.

The functions b;, with LeC,, belong to the algebra Q(C_,w), and
any function in Q(C_,w) can be approximated in norm by finite linear
combinations of these functions.

Proof. Let us first check that b; belongs to Q(C_, w) for all 1eC,.
Fors,t, 0<s<t<l, let ¢, , be a C™ function on R, such that 0< ¢, , <1
onR,, ¢,,=0o0n [0,s], and ¢,,=1 on [, oc[; note that it is possible
to find a ¢, , which also meets the condition

2
|<P§,;(x)|<;‘_—s, xeR,. (3.1)
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Now, for each ieC_, and 5,1, O0<s<t<1, let us denote by B}’ the
function

|z — 4]
34

1
Bi"(2)=<ps,,< )—_— zeC\{4},

A

extended continuously to C by declaring B%'(A)=0. We note that the
support of JB%" is contained in the annulus

{zeC:s3A<|z— Al <134},
and that B3’ itself is supported in the region
{zeC:s3A |z~ A1}

The functions B3 belong to Q(C, w), and by (3.1) they enjoy the estimate

\(’TB‘ $z) S { 1
zeC,,
3z) t—s R7 A —z w(3z)
and since we know where 0B’ is supported, we get
EBy(z)| 1 1 1
= , zeC,.
w(3z) s(t—v) (34)* w((1—1)34)

We also have the a priori estimate

|B;'(2)l < ze C\{4},

so that since we know where B$' is supported, we have

1
5t <— zeC.
| B3 (z)'\SSA’ eC

The above estimates lead to the norm control

1 1 1 Ry
I8 HQ(c,w,ss(I_s)-(M)z-w(“ T (3.2)

Note that no matter what admissible choice of the parameters s and ¢ is
made, we always have B%'|. =b,, so that if we choose s=1/2 in (3.2), we
have the estimate

4 1
b 4 S .
16:loce. (134) w((1—=1)34)

2
teg <, (3.3)
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for all AeC_ and all ¢, O<t<1. As a byproduct, we see that
b,e@Q(C_,w)forall ieC,.

Let us turn our attention to the assertion concerning approximation.
As a first step, we observe that every function fe @Q(C,w) can be
approximated in norm (as ¢ » +0, a » + o0 by the functions f, ,, defined
by the formula

fouz)=flz—ie)ia)* (B;***(2))’,  zeC.

The restrictions of these functions to C_ + i¢ belong to H'(C _ + i¢), and
in Q(C_,w) they can, in their turn, be approximated by finite linear
combinations of b;, A€ R + i, because by the Cauchy formula we have,
for a function ge H'(C_ + &),

1 g(4) 1 ~

I)= —— = - b, A, zeC_,
ge)= 5| = o[ b ehdn zeC

and this integral converges in Q(C_, w), because of (3.3). The proof of
Lemma 3.1 is complete. |

LEMMA 3.2. The maximal ideal space of Q.(C_,w) coincides with
C_u{w}, in the sense that every nontrivial complex homomorphism
1: Q(C_, w)—> C has the form

W)=Sz0)  feQAC_,w)

Sfor some zye C_ U {0}

Proof. Clearly, every point evaluation in C_ u {oc} gives rise to a
nontrivial complex homomorphism, and that these homomorphisms are
different for different points is easy to see, because we have a sufficiently
large collection of functions in Q_(C _, w), by Lemma 3.1. Let 7 be a non-
trivial complex homomorphism on Q,(C_, w), and suppose that we have,
for the value A=/, ©(b;) = 1/(i—z,), for some number z,e C\{i} L {0},
where we declare that 1(b,) =0 if z, = o0. The formula

biz)=(1+(A-i)b(z)) " b(z), zeC_, (3.4)

shows that for those AeC for which 1+ (4—1i)b;(z) is invertible in
Q.(C_,w), we have

1(b,)=1/(A — zy). (3.5)
On the other hand,

(1+ (A=) b(2)(1 —(A—i)by(z))=1, zeC_,
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so that by Lemma 3.1, 1+ (A~1i) b,(z) is invertible in Q,(C_, w) for all
AeC,. Since 7 is not allowed to attain the value oo on Q.(C_, w),
formula (3.5) requires z, to belong to the set C_u {cc}. But then t
coincides with the point evaluation at z, on the dense subset of Q(C_, w)
consisting of finite linear combinations of the functions b,, AeC,, so
being continuous, T must coincide with the point evaluation at z, on all of
Q(C _, w). Concerning the constant functions, it is clear that t(1)=1 (this
is a general Banach algebra fact), so that 7 is also the point evaluation at
zg on @.(C _, w). This completes the proof of the lemma. [

We shall now see that for xe R, and fe Q(C_, w), the function
Mx(f)(z)zefixz'f(zx ZEC_,

belongs to Q(C_, w). Let £ be a function in Q(C, w) such that f = f on
C_. Moreover, let i be a C™ function on R, such that 0 < (1)< 1 for all
teR, y(1)=1 for all 1< 1, and Y(¢)=0 for all r=2. Then, for each £¢>0,
the function

MiF)z)=y(e3z)-e ™ f(z), zeC, (3.6)

belongs to Q(C, w), and provides an extension of the function M (f).

LemMma 3.3. Let A be a collection of elements in Q(C_, w), and T (A")
be the set of all (finite) linear combinations of functions of the type

M. f(z)=e""f(z), zeC_,

with f e X and xe R . Denote by I(X") the closure of T (H") in Q(C_, w).
Furthermore, let &, (X") denote the set of finite linear combinations of
Sfunctions of the type b, f, with AeC, and fe X, and write J(X) for the
closure in Q(C _, w) of &, (X'). Then I(X") and J(H') both coincide with the
closure of the ideal in Q(C_, w) generated by X"

Proof. First note that by Lemma 3.1, J(#") equals the closure of the
ideal in Q(C_, w) generated by . For an fe Q(C_, w) with extension
fin Q(C,w), a>0, xeR,, and £>0, the restriction to C_ of the
function

ia- B2 (z)- M(f)(z) = (ia- B> (z) - y(e3z) - e ™) - f(z), zeC,
where B3 is as in the proof of Lemma 3.1, belongs to the ideal generated
A

by ) in Q(C_, w), and as a — + o0, it converges to M, (f) in the norm
of Q(C_, w). Consequently, I(2¢") is contained in the closed ideal in )¢
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generated by . On the other hand, if we make a simple norm estimate of
the function M, (f), using (3.6), we see that for 1 C_, the integral

ijx Mf)z)-edx, zeC_,
0

is norm convergent, so that it defines an element of /(¢"), and a trivial
computation shows that it equals b, f, and consequently, /(f") contains
J(¢). This completes the proof of the lemma. |

4. THE APPROXIMATION THEOREM

We now state the Nyman—Gurarii-Levin-type approximation theorem
for the asymptotically holomorphic space Q(C_, w), mentioned in the
introduction.

THEOREM 4.1. Let X be a collection of elements in Q(C_,w), and
T (A be the set of all (finite) linear combinations of functions of the type

fo(z)=e—ixz_f(z)’ ZEC?,

with fe X and xeR .. Then T, (X"), being a subset of Q(C_, w), is dense
in Q(C_, w) if and only if

(a) the functions in X" have no common zeros in C __, and
(b) there is no €>0, such that

A ce ™ H*(C ).

For the spaces Q(C _, w), the standard approach, using the Beurling—
Levinson-Sjoberg log—log theorem [21, p.376] as the main vehicle to
carry out the proof of the denseness of the set 7, (X"), fails utterly
beyond the border of quasianalyticity, just as it does for the weighted L'
spaces on R . Our proof resembles to a substantial degree that of Nyman
[23], and Gurarii and Levin [17], where the main objective is to prove
that a certain entire function vanishes identically; what makes our proof
work also in the quasianalytic case is the fact that we can use the
asymptotically holomorphic extensions of the functions in " to the upper
half-plane C ,

C,={zeC:3z>0},

to produce a better estimate of the entire function in C_, which then
allows us to prove that it actually has to vanish identically. The proof of
Theorem 4.1 is given in Section 9.
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The above result has the following consequence, the proof of which we
will postpone until Section 10.

COROLLARY 4.2. For every collection A of elemements in Q(C_,w)
lacking common zeros in C _, the closure of 7, (A") in Q(C _, w) coincides
with the subspace

eiie('[)z'Q(C,, W),
where e( A )=sup{x=0: A ce " -H>(C_)}.

We believe that our method of proof will generalize to certain classes of
Hilbert spaces, which are also Banach algebras, of analytic functions on
C _ with quasianalytic smoothness up to the boundary. These may then,
via the Fourier transform, be viewed as weighted L? spaces on R , , so that
the Gurarii-Levin theorem concerning weighted L' spaces on R, , which
was stated in the introduction, should remain valid beyond the border of
quasianalyticity in an L? setting.

5. THE RESOLVENT TRANSFORM OF A FUNCTIONAL

For a functional ¢ in the dual Banach space Q(C_, w)* to Q(C _, w), let
us associate with it what we shall call its resolvent transform,

R¢UA)=<b,, 8>, AeC,, (5.1)

which is a holomorphic function on C,, because the functions b, vary
analytically with A€ C . By the density of the linear span of the functions
{b,:4eC, .} in Q(C_,w) (Lemma 3.1), the functional ¢ and its resolvent
transform are in a one-to-one correspondence. The idea to use such a
transform to gather information about the structure of closed ideals in a
Banach algebra goes back to Beurling, Carleman, and Gelfand [14]; as far
as we know, Gelfand’s paper is the earliest publication using this method,
and he also has, in a simple special case, the elegant way of getting the
analytic continuation which was later rediscovered and elaborated upon by
Domar [7].

If Iis a closed ideal in Q,(C_, w), then it is standard to identify the
maximal ideal space of the quotient algebra Q.(C_, w)/I with the hull
Z (I)of I [12, p.12]:

Z. (I)={zeC_u{ow}: flz)=0forall feT};

note that here we use the identification of the maximal ideal space of
0.(C_, w) obtained in Lemma 3.2. Let % be a collection of functions in
Q(C_,w), and let I(X") denote the closure of the ideal in Q(C_, w)
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generated by #. Being a closed ideal in Q(C _, w), I({") is a closed ideal
in Q.(C_, w) as well. Let us now make the assumption that the functions
in & lack common zeros in C_, that is, 2, (I(X"))={w}. For 1eC,
consider the element

14 (A= i) b+ I(X)

in the quotient algebra Q(C_, w)/I(¢"). Since b;(c0) =0, we have for each
A€ C that the Gelfand transform of this element vanishes nowhere on the
maximal ideal space {o0} of Q(C_, w)/I(#"), and hence it is invertible. Let
us define

A=+ A= b+ X)) (b, + (X)), AeC, (5.3)
as an element of Q(C_, w)/I(#"), and note that we have
A, =(1+(A=0)b) " -b,+1(X), leC,,
so that by (3.4), we have in fact
A, =b,+1(X), ieC,. (54)

Let us now return to our functional ¢ e Q(C_, w)* which annihilated
I(A"). Any such functional may be considered as a bounded linear func-
tional on Q(C _, w)/I(X"), by standard functional analysis arguments. By
(5.4), the resolvent transform #[¢] of ¢, defined by (5.1), can also be
represented by the formula

RA[p1A)=<A,,¢>, AeC,.

By (5.3), 4, is defined for all A€ C as an element in Q(C _, w)/I(¢"), which
permits us to extend the definition of Z[¢] to the whole complex plane:

R(¢1A)=LA4;,4), AeC (5.5)

A standard Banach algebra technique shows that the element A4, of
Q(C_, w)/I(A") varies analytically in A€ C, so that the function #[¢],
defined by (5.5), is an entire function.

6. THE QUICK ESTIMATE OF THE RESOLVENT TRANSFORM OF A FUNCTIONAL

Let ¢ be a bounded linear functional annihilating I{#"), just as in
Section 5, and assume that the functions in .¥* have no common zeros in
C . This implies that the function #[¢], initially defined only on C,,
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extends to an entire function, by (5.5). By (3.3), we have, for every s,
O<s<l,

4 1 2
m’[muns||¢||Q(c,,w,.((l_S)zm)z-w(m)+ﬁ), jeC,. (61)

This estimate controls #[¢] in the upper half-plane; to be able to
deduce the desired conclusion Z[¢] =0, we need some information about
the behavior of #[#] in the lower half-plane. Let us look for concrete
representatives in Q(C_, w) for the cosets A4;.

Let feQ(C, w) be such that f|, belongs to the collection #, and
suppose also that f does not vanish identically on C_. Introduce the
notation

Z(f,C_)={zeC_: f(z)=0},

and put

for AcC_, and

i—z

(=@, zeC\(A),

Hy(z)=

for Ae C_\Z(f,C_). To check that for AleC_, T, fe Q(C, w), and that
for AleC_\Z(f,C_), H,e Q,(C, w), where Q.(C, w) is the unitization of
Q(C, w), it is sufficient to note that for T,/ we have T,feCy(C),
6T, fe Cyo(C, ,w), and the estimates

ITiSf Nl =0y S2 1/l p2e)/134, AeC,

by the maximum principle, and

oT./() <(sup M)/mn, 1eC \Z(f,C)
zeCy W(SZ) zeC, W(SZ)
so that T, fe Q(C, w), and
1T i owcm <2 1l giem/134,  2eC_; (6.2)

similar computations can be made for H,. The calculation

) —
ZH(2)=1—-f(2)/f()el + I(X)), zeC_,

(1+ (A=) b,(2)) Hy(z) =7—

580/115:2-9
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shows that for Aie C_Z(f,C _), H, is an element of the coset
A+A=Db+I)) ",

and since T, f|e_ = f(A)-b;-H;|¢_, it follows that

A, =T fle V(A +IA),  AeC A\Z(f,C_)
Hence we have, by (5.5),

(o1 =LTfle_.#>/f(4), AeCA\Z(f,C.)
so that
[RLSID <1l gic_.wye I TaS e Mo /(DI AeC_AZ(f,C).
By (6.2), we have, by varying f'e Q(C, w) but keeping f|. fixed,
2L UM <2008l gic_wye 1 Te o )/ USAN-134]),  2eC_,

and if we write C(f, $)=2 ¢l gc_.wy+ - [f1c_ll grc_wy» this becomes

Cl/, ¢)
—_— ieC
RRVIOE =t

so that the function #[¢] belongs to the Nevanlinna class in C_ —i.
Choosing different functions f, and taking into account condition (b) of our
theorem, we see that function #[¢#] belongs to the Smirnov class in the
region C_ —1i.

1 R[1(4)] < (6.3)

7. THE NEwW IDEA—ANOTHER BAsic ESTIMATE

We are now at the classical point where estimates (6.1) and (6.3) are
sufficient to prove that 2[¢]=0 in case w is a non-quasianalytic weight,
that is,

f log log(1/w(t)) dt < oo

holds, for some >0 with w(8)< /e, the main tool being Levinson’s
log-log theorem (and of course the Phragmén—Lindel6f principle), but these
estimates are simply insufficient to handle the remaining quasianalytic case.

To deal with the general case, we need more information, preferably in
the form of growth control of the entire function #[¢]. This we get by
constructing more ingenious representatives than b, of the coset 4; in
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QAC_,w)yl(x') for AeC_ . The inspiration comes from the successful
estimate we have obtained in the lower half-plane. Recall that f was a
function in Q(C, w) such that f| belongs to the collection 2", and such
that f does not vanish identically on C_. Let us begin by observing that
the set C\Z(f, C) is open, where

Z(f,C)={zeC: f(z)=0),

and that the function Jf/f is continuous on it. Considering that fis analytic
on C_, and that / does not vanish identically on C_, we realize that we
may extend ¢f/f continuously to the open region (C\Z(f,C))uC_ by
declaring this function to vanish on all of C_. Let us fix a parameter a > 0,
and consider the open set

QUfa)={zeC:|f(z)| >a-w(3Jz)} UC_;

here we have extended w to all of R by putting it equal to O on the interval
1— o0, Of. Clearly, Q(f, «) is contained within the open set (C\Z(f, C))u
C.. For A1eQ(f,a), let p(1) be a real number such that 0<p(i)<
dist(4, C\Q(f, #)). In what follows, we shall assume that the point 2
belongs to the set Q(f, a). Let y, be an infinitely differentiable compactly
supported function on C with values between 0 and 1, which vanishes off
a disk of radius p(4) centered at 4, and has value 1 on a disk of half that
radius, also centered at i. By construction, the function y; is supported
inside Q(f, «). Now let the function A, solve the ¢ problem

Ohy(z)= —12) 3f(2)/f(z),  zeC;
just put

OO, .
hi(z)=—| =5==2——>dm, , ze(C,
A(2) chm(z—o m(C)/n eC

where dm, denotes area measure on C. Then 4, belongs to Cy(C), and 4,
is analytic on C_. Note that the closed disk-portion

{zeC:|z—4|<p(A), 3z =0}

is a compact subset of the set C\Z'(f, C), so that there must be some ¢>0
such that |f(z)] =& on it. It is now clear from the definition of 4, that
because 0f € Cy(C, , w), we must also have ok, e Co(C, , w), so that, in
fact, h; € Q(C, w). Moreover, we have the estimate

sup{lh(z)|:z€C, |z— Al <p(A)} < (2/a) p(4) sup (10f(2)I/w(3z)),

zeC,
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and we also have the same estimate of the sup-norm outside the disk
{zeC:|z— 4| <p(A)}, by the maximum principle, because h, € Cy(C) is
holomorphic off the disk centered at A with radius p(4), so that we get

1Al o ie) < (2/2) p(A) sup (18f(2)]/w(3z)). (7.1)

zeC,

Let the function g, be defined by the relation

giz)=(1/f(A)) exp(hy(z) — h;(4)),  AeC.

Since h, € Q(C, w), we see that g; belongs to Q,(C, w). Also, we have the
estimate

Igill Loy < (W/IAAN) - exp(Z A4 L (c))- (7.2)

It is now time to consider the function F, given by

Fz)=0-f(z) g:(zN)/(A—2), zeC\{i}.

By the way we constructed the function g;, we see that the function fg, has
the property that

O fg:)(2)=g:(2) 0f(2)(1 = xu(2)),  zeC,

and consequently, fg, is analytic on a disk of radius p(4)/2 centered at A
Also, (fg;)(A)=1, so that in the division, F, does not get a pole at 4, and
we have F, e Cy(C). If we apply the ¢-operator to the function F,, we get
the expression

T =~ ) - e, (73)

so that since f e Q(C, w), the above formula shows that 0F; e Co(C, , w),
and consequently, F; e Q(C, w). By the maximum principle,

2
|F,1||LL(C "m(l +I1/1 L*(C) gl L“(C)) (7.4)

and by formula (7.3), we have the estimate

10F()l 2 13f2)1
= L : 7.5
e @) p(4) gl P G w(3z) 72)
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From (7.4) and (7.5), together with the basic estimates (7.1) and (7.2), we
obtain the norm estimate

2 11 o,
lIF,,HQ(c.w,sp(M (1+ T exp(4p(1) |1f||Q(C.w)/a)). (7.6)

We shall now see that
A, =F,+I(X), LeQ(f, a),

and this relation will give us the additional estimate we need on the
function #Z(¢]. Consider the function

i—z
A—z

G(2)=(i—z) Fy(z)= (1-f(2) g:(2)), zeC,

which belongs to Q.C, w), because G;~G,(0}=G,—1€Cy(C), and

because of the formula

(i = 2)(1 = 2,(2)

P 2.(z) 0f(z), zeC.
—Z

EG;.(Z)= —_
The calculation
(14 (=D 8,20 G,) = 522Gy =1~ f2) @)l + 1K), 26,

shows that for 1€ Q(f, ), G, is an element of the coset
(I+(A=i)b;+1(4)) "1,
and since F,|¢ =b,-G,|¢_, it follows that
A, =F e +1X), AeQ(f, a).
Hence we have, by (5.5),
RPN = (File . ¢ 16Q(f ),

so that by (7.6), we have, for some constant C(f, ¢),

(/. 9)
p(2) 1 f(A)

Recall that in the above estimate, p(1) was an arbitrary real number with
0 < p(2) < dist(1, C\Q(/, 2)).

|21 < -exp(4p(2) [ [l gic.m/a),  A€R(f2).  (1.7)
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8. THE FUNDAMENTAL TECHNICAL RESULT

The following general interpolation-type result will prove valuable for
the proof of Theorem 8.2.

THEOREM 8.1. Let N be a positive integer, and let h, ¢, 6, b be four real
parameters with 0<h, ¢, 0< 1, and e<b<1. Suppose we have a finite
sequence (g, ..., {n of points in the upper half-plane C _, with the property
that e<3(,< b, and

2jh<RE<(2j+ 1) b, j=0,.., N
Write a= (2N + 1) h, and introduce the rectangle
R(g,a,b)={zeC,:0<Rz<a, ¢<3z<b}.

There exists an absolute constant C such that the following holds: if f is an
analytic function on C, with \f(z2)I <1 on C,, and |f({) <6 for all
Jj=0,.., N, then if A=1+ min(a, b)/(2h) and

My=CAexp((37+401log 1/h) A
we have the estimate

AN+ 1)e

—4b-z+—a‘z”'32> +6M,,  zeR(e ab)

/) < (1 +6Mq) exp ( -

Proof. To begin with, let us consider an analytic function g on C, with
lg(z)]<1 on C,, and g({;)=0 for all j=0,.., N. Let B be the finite
Blaschke product corresponding to the sequence {(,},,

B(z)=n C_J, zeC\U {}

j o<

Then, by the well-known factoring theory for H? spaces, |g(z)) <|B(z)| on
C ., and by Lemma VII.1.2 [13, p. 288], we have the estimate

3z-3¢,

lB(2)|<exP( 2Z| Bt

>, zeC,.

For ze R(e, a, b), we have

lz— {2 <46+ a?,
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so that

3.3, (N+1D)e
(227 4b% +a?

2

J

3z, z€ R(e, a, b),

and, consequently,

2N+ 1)e

TSI -32), ze€ R(g, a, b). (8.1)

lg(z)l <[B(z)] <exp ( -

Unfortunately, we do not know that the function f vanishes on the
sequence [y, ... {y, SO we will try to subtract from f a function that
interpolates the values of f on this sequence, and if we are lucky, this
interpolating function can be chosen quite small. We shall use Carleson’s
interpolation theorem (see [13, p.287]) to obtain an interpolating
function.

For two points z, { in the upper half-plane C,, introduce the
pseudohyperbolic metric p(-, -):

p(z,0)=1(z={)/(z= ).
By the properties of the sequence {{;},, we have, for j and k with j#k,
P L) Zn=h- (462 + h) 22 /S, (8.2)

and the last inequality holds because we assume 0<b, A<1. If S(r) is a
(Carleson) square with side length r lying in the upper half-plane with one
side supported on the real axis, one can check that

z SngAr,

Jige sy
where the constant A is given by the expression
A =1+ min(a, b)/(2h).

By [13, pp. 288, 2891, we have

inf T p(5), L) > & =exp(—204(1 +21log 1/n)),

Jii#*Ek

and by [13, pp. 292, 293], the constant of interpolation, denoted by M, is
controlled by the expression

M < 4nCA/¢,
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where C is an absolute constant. If we use (8.2) and the notation C' = 4nC,
we get

M < My=C'Aexp((37 +40 log 1/h) A),

which makes it possible for us to find an analytic function # on C_ such
that 4((;)= f((;) for all j=0, .., N, and

h(z)| <6M,,  zeC,.

If we now put g= f— h, we get a bounded analytic function in C, which
vanishes on the sequence (g, ..., { 5, and the bound we have on it allows us
to use (8.1) to conclude that

2(N+1)e
|g(Z)|<(l+5MO)CXp<—WSZ), zeR(a,a,b).
Finally, since /' = g + 4, we get
2(N+1)e

Hf(2) <l +5M0)exp(— 32)+5M0, ze R, a, b),

4’ +a*
as asserted. {]

To be able to apply our estimate (7.7), we should study the sets in C
on which the values of a function f in Q(C, w), which does not vanish
identically on € _, are separated away from zero.

For big positive integers k, say k = ky(w), it is always possible to find
real numbers a,, 0 <a, <}, such that

w(a,) =exp(—e*),

because the weight w is continuous and increasing on R, =[0, oc[, with
w(0) =0 and w(¢) >0 for all ¢ > 0; the numbers g, are uniquely determined
if we make the additional inessential assumption that w is strictly
increasing on R . Note that the sequence {a, }, is strictly decreasing down
to 0, and that the decrease gets slower as the smoothness increases for the
spaces Q(C _, w). If k = ky(w), then introduce, for 0 <s<3*—1, the thin
strips

D(s,ky={zeC:k+s3*<Rz<k+(s+1)37* —12<3Jz<a,-27%}.

THEOREM 8.2. Let fe Q(C, w) be such that f does not vanish identically
on C _. Then, for all big k, say k >k (f, w), having a, > (2)%, there exists an
Se, 0<s, <3%— 1, such that

Lf(2)| 2 wla) =exp(—e*),  zeD(s, k).
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As a consequence,
D(s,, k)<= Q(f, 1)={zeC:|f(z)| >w(Iz)} v C_.

Proof. By a scaling argument, we may as well assume that f has norm
<1 in Q(C,w). Also, we see that we may assume, without loss of
generality, that

10f(I<CA+]2)) P w(32), zeC.,, (8.3)

for some constant C, because if f does not meet this condition, we simply
replace it by the function

g(z)=(B**P(2)) - fz),  zeC,

where B>?3(z) is as in the proof of Lemma 3.1, which does meet the
above condition, and it is even smaller than f for big values of the
argument z.

To carry out the proof of Theorem 8.2, let us first suppose that the
assertion does not hold, that is, suppose there exist points £(s, k) € D(s, k),
such that

|f(E(s, k)l <w(a,)=exp(—e™), 0<s<3*—1,

and try then to show that this is not compatible with other available
information about the function f. Since f is a bounded holomorphic
function on C _, and f does not vanish identically on C_, we have

-,
—w 1+t

and hence, for all sufficiently large k, say k = k,(f), we are able to pick a
point x, € [k+ %, k+ 2] such that

|f (x> 2e™ .
Let S, be the infinite strip
S,=1{zeC:0<3z<a,},
and consider the function

0
=160~ Langoyn  ec

z —_—
which is holomorphic in the half-plane

C_+ia,={zeC:3z<a,},
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by the Cauchy-Green formula [19, p. 3]. If we use our assumption (8.3),
the integral involved in defining f, may be estimated as

J. TC) iy

z—

< Cwlay) L 2= &~ (1 + |2]) "2 dmy(&)/m
< wlay), zeC,

if k& is sufficiently big, say k > k;(f, w) (here we choose k4(f, w) bigger than
or equal to 2, k,(f), and ky(w)), because the width 4, of the strip S,
converges to 0 as k — oc. If we recall that w(a,) < 1 for & = k4(w), and note
that

exp(—e*)<e ¥, k=0,1,2, ..,
we obtain, for k= &;(f, w), the estimates
S <2, zeC,
| fe(E(s, k)| < 2w(ay), 0gs<3 -1, (84)
[fulxl > e

The function f, is analytic in the half-plane C_ + ia,, and it is small on a
rather numerous set of point. We are now in a situation where we may
apply Theorem 8.1 to the function

Fz)= filk+1—z+1ia,)/2, zeC,,
witha=1,b=a,+%, h=3"% N=(3*-1)/2, e=2"% and § =exp(—e*).
If we carry out the necessary computations, we get, for k2 k,5(f, w) (22),
that 4 < 3% and

My < C-3%exp((37 + 44k) - 3%),

where C is the absolute constant mentioned in Theorem 8.1, so that if k is
sufficiently big, say k = k,(f, w), where we choose k,(f, w)=k.(f, w), we
get

M, <exp(e*/2).
It follows that
oM, < exp(—e*/2), k= ky(f w),
s0, by Theorem 8.1 applied at the point z, =k + 1 — x, + ia,,

|F(z,)] <2exp(—(3/2)" a,/5) +exp(—e*/2),  k=ky(fiw) (85)
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By the definition of F, f.{x,})=2F(z;), so that if we assume that
k=k,(f, w) and a, = (3)*, we have from (8.5)

| filx)l < 6 exp(—(5/4)"/5).

For & > 40, this is in contradiction with (8.4). This completes the proof of
Theorem 8.2. |}

Later on, we shall need a simple assertion concerning functions analytic
inC,.
LemMma 8.3. Let fand g be analytic in C , , with [ # 0, let f be bounded
in C , and suppose
|f(z) g(2)I <1/3z, zeC,.
Then, for some constant C(f)>0,

log |g(2)| S C(f)- (1 +1z1?)/3z< C(f) - (1 +121* +(32) %), zeC,.

Proof. This statement was proved in [17]. For the sake of complete-
ness, we present here the corresponding arguments. Given a >0, we
estimate the function g in the shifted upper half-plane C,_ +i¢ in the
following way (see [20]):

dt, zeC,_,

z .t < 1 )4 Sz _— >
log |g(z+ i)l <log 1/ +a(f)3z+ e (Rz— 1)+ (32)?

T

3z j* log 1/] /(1 + )]

where o( /') denotes the constant

alf)= lim inf log 1/| f(iy)| € [0, + 0.

Moreover, since f is bounded and nonidentically vanishing in C, it
follows that

k]

sup J‘x I_Og_l_/l_‘f-(t_ﬂdt<w

O<igt ¥~ 1+[2

so that we have for some constant C,(f), independent of &, 0 < £ <1, that

_3_5j”* log 1/]/(1 + i)
e

7 ST G A SO+ D3 zeC
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If we now pick £ =min{3z/2, 1} in the above estimate for g, the desired
assertion

14122
3z

log {g(2)| < C(f) zeC,,

immediately follows. The final touch comes from the simple inequality

(L4 1223z <+ |z + (32) 72, zeC,. |

9. THE CONCLUSION OF THE PROOF OF THEOREM 4.1

The necessity of condition (a) is clear. That (b) is necessary as well
follows from the fact that for ¢ >0, e~ . H*(C _) is a closed subspace (in
fact, an ideal) in H*(C _). Consequently, we shall concentrate on proving
the sufficiency of these two conditions.

As indicated previously, the method of our proof involves duality
arguments. Let us assume that the functional ¢ in @(C _, w)* is orthogonal
to I(4"); the plot of our proof is to prove that every such ¢ equals the 0
functional, so that the desired assertion is a consequence of the
Hahn-Banach theorem. In fact, we shall prove that Z[¢] =0, so we need
the fact that ¢ is uniquely determined by its transform 2[¢], which, as has
been pointed out already, follows from Lemma 3.1. By (5.5), Z[¢] extends
to an entire function. Let fe " be a function which does not vanish
identically on C_. Then, by (6.1), (6.3), and (7.7), we have the estimates
O<s<1)

\ 1 1 2
(%M](A)lSC(qﬁ)(“_s}z (SAA‘)Z.W'(SSA)*_EZ), leC,, (9.1)
. C(f ¢)
|%[¢](A)|<m, ieC_, (9.2)
C(/. 4) .
|2[$1(2)| <m~exp(C(f)p(A)/a), AEQ(f, a). (9.3)

Introduce three sets of positive integers,

Z(fiw)={keZ:kzk\(f w)},
X={keZ(f,w): a,>(5/6)"},

and

Y={keZ(f,w): a,—3-27 = ay},
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where k (f, w) is the positive integer that appears in Theorem 8.2, which
we will find advantageous to assume >4. For ke X, consider the line
segments

I,={zeC:Rz=k+ (s, +1)37% —i<3z<gqa,-2""*},

where 0<s,<3“—1 is as in the formulation of Theorem 8.2. Then, by
Theorem 8.2, I, < D(k, 5,)c 2(f, 1) for all ke X, and since every point of
I, is at least (1) 3% distance units away from the complement of Q(f, 1),
we conclude from (9.3) that

|ZLT(A) < C(S, 6) exp(2e™),  Aely, (9.4)

for some finite positive constant C(f, ¢), provided that ke X. For ke X, let
J, be the line segment

Je={zeC:Rz=k+ (s, +5)37% a,— 2" *< 3z},

and observe that if we apply (9.1) with the parameter value s=
(a, —3-27%)/32, we obtain for ke X n Y the estimate

(R[N < C(B)- (2% /wla,—3-27%)+ 1/(a,—3-27%))
< C(¢) -exp(2e*), ied,, (9.5)

where we use the facts that w(a, —3-27%) = w(a,,) = exp(—e*) for ke ¥,
and @,—3-27%22"% for ke X. If we combine our estimates (9.4) and
(9.5), we get

|2[$]1(2)] < C(S, ¢) -exp(2e*), ze K., keXnY, {9.6)
where K, denotes the union of the line segments [, and J,:

Ki=l,uJ,={zeC:Rz=k+ (s, +5) 375 —4<3z<i}

Let us gather the information we have built up about the entire function
A[P]: it satisfies (9.1), (9.2), and (9.6), with f an arbitrary nonidentically
vanishing function in the collection J¢; the fact that )¢ has condition (b)
of Theorem 4.1 entails, as has been noted before, that £{¢] belongs to the
Smirnov class on the shifted half-space C_ —i. By Lemma 8.3, applicable
by (9.2), we have

o=

| R[N <exp(C(f, ¢) - (1 + |41°)/I34])
<exp(C(f, ¢)- (1 +141*+134[7%)),  AleC_. (9.7)
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Consider the auxiliary entire function
P,(z)=exp(—z°)-R[$1(z), zeC,
and the infinite strip
S={zeC: —1<3z<i}.

We plan to show that @, is bounded in the strip S. Elementary computa-
tion shows that we have the estimate

BRz2) -~ L<REO)<SHR) + &, ze S, (9.8)

so that by (9.1) and (9.7), the function @, is bounded on the boundary ¢S
of S, and has the estimate

[@,(z)| <exp(C(f, 4)- (1 +|34 %), zeSnC_. (99)
In addition, we have, by (9.6),
|®D,(2)] < C(f, ¢) -exp(2e*), zeK,, keXnY,

and the growth that this estimate permits is too small for the strip .S; the
critical growth in the strip S is in fact of the order of magnitude
exp(exp(2nz)). More precisely, if the set X n Y is not finite, we may apply
the Phragmén—Lindeldf principle in the form that appears in, for instance,
[18, pp. 145-146], to obtain that, in fact, @, is bounded on the portion of
S that lies in the right half-plane.

This is all very well if X~ Y should happen to be infinite, but what if it
is actually finite?

Claim. If XY is finite, then X is also finite.

Since X n Y is assumed finite, there exists an integer /e X n Y such that
k<! for all (other) ke X Y. If X contains an integer k which is bigger
than /, then k cannot belong to Y, and hence

ay>a,—3-27 522 =3.27 > ()%,

because £ > 4. We see that 2k also belongs to X, and 2k being bigger than
I, we must have 2k e X\Y. If we continue inductively, it follows that for
n=0,1,2,.. we have 2"k e X\ 'Y, and we also get the inequality

aznk>ak—‘3'(2'k+2“2k+ +272"k)>ak_3/(2k—1).
Since k >4, we have

a,-3/2*-1) =3 -3/2x-1)>0,
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but this is impossible, because we already know that a,— 0 as j — c. This
contradiction demonstrates that our initial assumption concerning the
existence of a k€ X bigger than / must be wrong. |

If the set X is finite, then a, < (2), and consequently
w((3)¥) = w(a,) = exp(—e?),

must hold for all but finitely many indices & € Z(f, w). If we piay around
with this inequality for a little while, we see that

w(t) = exp(—8/t'), 0<t<egg,

holds for some small but positive number &,. But this weight w is of non-
quasianalytic type, so by the estimates (9.1), with parameter value s chosen
to equal 3, and (9.9), the Levinson log-log theorem [21, p. 376] applies to
the function @, and proves that it is bounded in the whole strip S.

We conclude that the function @, is bounded at least on the portion of
the strip S that lies in the right half-plane, no matter whether X~ Y is
finite or not. However, the right half-plane plays no special role here, and
we should note that Theorem 8.2 applies to the function f(—Z) as well,
allowing us to conclude that |f| is reasonably big on a thin set (possibly)
going off to infinity in the left half-plane. All the computations we have
made for the right half-plane carry through analogously, and demonstrate
that @, is bounded on the portion of S that lies in the left half-plane, and
consequently, on the whole infinite strip S.

Let us again recapitulate the information we have concerning the entire
function Z[¢]: it is bounded in the shifted upper half-space C, + (1), and
by (9.8) and the boundedness of @, on the strip S, it has the estimate

R[912) < C(S, §)-exp(2(R2)°),  zeS;
also, in the lower half-plane, we have the estimate
R[9(z)<exp(C(f, 4)- (1 +12)°)/3z), zeC_,
and we know that #[¢] is of slow growth, that is, for every ¢ >0, we have
|2[¢ (=) = Olexple |21)),

as z tends to infinity along rays aR , , with ae C_, because #[ 4] belongs
to the Smirnov class in C_ —i. This information permits us to apply the
Phragmén-Lindelof theorem for angles to obtain that, as a first step, we
must have, for each fixed £>0,

|#L¢1(z)| = Olexp(e |2})),  |z| = o0,
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and as a second step, that Z[¢] is bounded on the whole complex plane.
Finally, Liouville’s theorem then claims that #[¢] must be constant, and
since, by (9.1), Z[¢1(iy) —» 0 as y — + oo, this constant must equal 0. The
proof of Theorem 4.1 is now complete. |

10. THE PrROOF OF COROLLARY 4.2

Recall from the proof of Theorem 4.1 the notation
MA(fNz)=e " f(z), zeC_,

for xe R and f€ Q(C_, w), and if f denotes an extension in Q(C, w) of f,
the notation

MYUF)2)=¢(3z) e ™ -f(z), zeC,

where  is a fixed C* function on R, such that 0<<y/(¢)<1 for all teR,
Y(t)=1 for all t<1, and y(7)=0 for all 7> 2. In that proof, we indicated
that for x>0, M _(f) belongs to Q(C_, w) provided that f belongs to
O(C_, w), and it is not difficult to see that

“]Mx(f)”Q(C_,w)S C(x)- ”f“Q(C,,wJ’ xeR,, fe@(C_,w)

On the other hand, given the above concrete formulas for M _ _, which is
the operator inverse to M,, and for M' | we see that

”f” QC_.w) = HM erf” Q(C_.w) < C(X) ’ ”M"f” QIC_,w)?
xeR,, fe(C_,w),

so that the norms || fli,¢c ) and M, fllgc_ ., are equivalent for each
x 20, with compatibility constants depending on x. This shows that the
subspace

M, (Q(C_,w))=e "77.0(C _, w)

is closed in Q(C _, w). We need one more piece of information to be able
to bring the proof of Corollary 4.2 to an end. If fe H~(C _) belongs to the
closed ideals ¢ ~"#*. H=(C ) for every B<e(X"), then it also belongs to
e ®X)7. 4(C_), and if in addition feQ(C_,w), then the concrete
formula for M', J“(/7) shows that f belongs to the closed subspace
e . 0(C_,w) of Q(C_,w). Now, by assumption, I, (X) is a
subspace of e ~#7. H=(C _) for every B <&(X'), so by the above remarks,
we see that 7, (') is also a subspace of e 2. Q(C_, w). However, by
the equivalence of norms we obtained earlier, it follows that 7, (X") is



QUASIANALYTICALLY SMOOTH FUNCTIONS 389

dense in e *7.Q(C_, w) if and only if M_, (7, (X)) is dense in

Y

(C_,w), and this last statement is an immediate consequence of

Theorem 4.1.
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