
IMRN International Mathematics Research Notices
1995, No. 5

Cyclicity in Bergman-Type Spaces

A. A. Borichev and P. J. H. Hedenmalm

1 Introduction

Given a linear topological space X of analytic functions in the unit disk D, D = {z ∈
C : |z| < 1}, closed under multiplication by the coordinate function z, we say that an

element f of X is cyclic in X if functions of the form q(z)f(z), where q ∈ P (P is the ring

of polynomials), are dense in X. In this paper we consider, for 0 < p < +∞, the Banach

space A−p, and its separable subspace A
−p

0 . A holomorphic function f on D is in A−p if

‖f‖A−p = sup
{
(1 − |z|)p|f(z)| : z ∈ D

}
< +∞,

and it belongs to A
−p

0 if, in addition, (1 − |z|)p|f(z)| → 0 as |z| → 1. We are also interested

in the Bergman space Bp, which consists of those holomorphic functions f on D that have

‖f‖Bp =
(∫

D

|f(z)|pdS(z)
)1/p

< +∞,

where dS is the area measure on C, normalized so that the area of D is 1. The Bergman

space Bp is a Banach space for 1 ≤ p < +∞, a Hilbert space for p = 2, and a complete

metric space for 0 < p < 1. The space A−∞ is the union of all the spaces A−p, 0 < p < +∞,

supplied with the inductive limit topology. It can also be thought of as the union of all

the spaces A
−p

0 , 0 < p < +∞, or of all the Bergman spaces Bp, 0 < p < +∞, and the

inductive limit topologies it gets in this way coincide with the earlier one.

If, as is the case for the spaces X = A−∞, A
−p

0 , A−p, Bp, with 0 < p < +∞, the point

evaluation functional

f �→ f(z), |z| < 1,
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254 Borichev and Hedenmalm

is continuous and nontrivial, then an obvious necessary condition for a function f ∈ X to

be cyclic is that

f(z) 
= 0, |z| < 1.

Boris Korenblum’s factorization theory for the space A−∞ [10], [11] offers a de-

scription of the cyclic vectors in this space that uses the notion of so-called κ-singular

measure.

Theorem A. An element f in A−∞ is cyclic if and only if f(z) 
= 0, |z| < 1, and the κ-

singular measure associated to f is equal to 0.

As regards cyclicity in A
−p

0 , the following statement is proved in [3].

Theorem B. If f ∈ A
−p

0 and f is invertible (or just cyclic) in A−∞, then f is cyclic in every

A
−q

0 , p < q < +∞.

Note that f is invertible in A−∞ if and only if, for some positive constants C, N,

|f(z)| ≥ C (1 − |z|)N, z ∈ D.

Clearly, cyclicity in A
−p

0 implies cyclicity in A−∞ and in A
−q

0 , for p < q < +∞. A natural

question arises: If f ∈ A
−p

0 and f is invertible (or cyclic) in A−∞, must then f be cyclic

in A
−p

0 ? This question was posed by Leon Brown and Boris Korenblum in [3]. Here we

answer this question in the negative.

Theorem 1.1. Fix two real numbers p, q > 0. Then there exists a function f in A
−p

0 such

that 1/f ∈ A−q, f is cyclic in every A−r
0 , p < r < +∞, but f is not cyclic in A

−p

0 .

When equipped with the norm topology, A−p is not separable, and thus cannot

have any cyclic elements. Thus, to get meaningful results about cyclicity, it is necessary

to weaken the topology somewhat. The Banach space A−p has a natural predual (it is

a quotient space of functions integrable in the disk with respect to a weight); equip

A−p with the corresponding weak-star topology. One can then show that a sequence

{fk}k (k = 1,2,3, . . .) of functions in A−p converges weakly-star to f ∈ A−p if and only if

supk ‖fk‖A−p < +∞, and fk(z) → f(z) uniformly on compact subsets of D. A set Y ⊂ A−p is

said to be weakly-star sequentially closed if all weak-star limits of sequences of elements

in Y also belong to Y. By the Krein-Shmulian theorem (see [4, p. 429]), a convex subset Y

of A−p is weakly-star closed if and only if it is weakly-star sequentially closed.

To investigate cyclicity in A−p with the weak-star topology, it is not enough to

look at sequential limits. The following example illustrates this point.
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Cyclicity in Bergman-Type Spaces 255

Theorem 1.2. Fix two real numbers p, q > 0. Then there exists an outer (in Beurling’s

sense) function f in the Nevanlinna class such that f ∈ A−p, 1/f ∈ A−q, f is cyclic in every

A−r
0 , p < r < +∞, and the set of all weak-star sequential limits in A−p of functions of the

type f(z)q(z), where q(z) is a polynomial, does not contain the constant function 1.

Note, however, that in the situation described in Theorem 1.2, the function 1 does

belong to the weak-star closure of the set of polynomial multiples of f, and hence f is

cyclic with respect to the weak-star topology. Recall that we say that f ∈ A−p is cyclic in

A−p with respect to the weak-star topology if its polynomial multiples are dense. It can

be shown that the weak-star closures of the polynomial multiples and the H∞ multiples

of f coincide.

The following result shows that it is possible to get a genuine analog of Theo-

rem 1.1.

Theorem 1.3. Fix two real numbers p, q > 0. Then there exists a function f in A−p such

that 1/f ∈ A−q, f is cyclic in every A−r
0 , p < r < +∞, but f is not cyclic in A−p (with respect

to the weak-star topology).

The first result analogous to Theorem B for the Bergman space Bp was proved by

H. S. Shapiro [15], [16].

Theorem C. If f ∈ Bp and 1/f ∈ A−∞, then f is cyclic in every Bq, 0 < q < p.

Moreover, as was pointed out in [3], the following analog of Theorem B holds for

the spaces Bp.

Theorem D. If f ∈ Bp for some p, 0 < p < +∞, and f is cyclic in A−∞, then f is cyclic in

every Bq, 0 < q < p.

The question of whether the conditions

(a) f ∈ Bp and 1/f ∈ A−∞, or

(b) f ∈ Bp and f is cyclic in A−∞

imply that f is cyclic in Bp was first raised in [15], and later in [14, p. 93], [1, pp. 187,

190], [17, Question 25], [12, Conjectures 1, 2], [18, Conjecture 1], [19, Question 5], and [9,

Problem 8.4]. A special case of this question is whether the conditions f ∈ Bp, 1/f ∈ Bq

imply that f is cyclic in Bp. This question was raised in [14, p. 93], [17, Question 25′], and

[18]. See also [7].

We construct an example answering all these questions in the negative.

Theorem 1.4. Fix two real numbers p, q > 0. Then there exists a function f in Bp such

that 1/f ∈ A−q, f is cyclic in every Br, 0 < r < p, but f is not cyclic in Bp.
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256 Borichev and Hedenmalm

The particular properties of the functions fmentioned in Theorems 1.1–1.4,which

imply that they are noncyclic, are specified in Section 2. They are required to be, in a sense,

extremally large in the given space X (X = A
−p

0 , A−p, Bp). More precisely, the set E(f) of

points in D where |f| is “maximally” large is pretty massive: for Theorem 1.2, its closure

contains the unit circle T; for Theorem 1.3, E(f) is a dominating set forH∞ (that is,bounded

analytic functions attain their supremum modulus on E(f)); and for Theorems 1.1 and 1.4,

the harmonic measure of T in the region D\E(f) equals 0. To see the relevance of extremal

growth for noncyclicity, let us look at the setting of Theorem 1.3. Here, f is in A−p, and

the set

E(f) = {
z ∈ D : (1 − |z|)p|f(z)| ≥ 1

}

is dominating for H∞. Let gn be a sequence of H∞ functions, such that fgn converges

weakly-star to a function h ∈ A−p. Weak-star convergence requires that ‖fgn‖A−p ≤ C for

some constant C, and hence sup{|gn(z)| : z ∈ E(f)} ≤ C. But then gn is a bounded sequence

in H∞, and h = fg, with g ∈ H∞. Thus f · H∞ is weakly-star closed in A−p, and it cannot

contain the constant function 1, because f is not in the Nevanlinna class. (It does not have

finite nontangential boundary values.) We conclude that f is not cyclic in A−p. Proofs of

Theorems 1.1–1.4 are supplied in Section 3, based on Theorems 2.1–2.4 (which will be

proved elsewhere). The constructions on which the proofs of Theorems 2.1–2.4 are based

resemble an example given by Nikolaı̆ Nikolskiı̆ [14, p. 84, Theorem 2].

2 Technical constructions

Here we produce four functions satisfying certain growth conditions in the disk D. The

details of the constructions will appear elsewhere.

Theorem 2.1. Given a real number α > 0, there is an outer function F in the Nevanlinna

class such that

(a) sup {(1 − |z|)|F(z)| : z ∈ D} < +∞,

(b) |F(z)| ≥ (1 − |z|)α, z ∈ D,

(c) inf {|F(z)| : z ∈ D} = 0,

(d) T is contained in the closure of the set E(F), E(F) = {z ∈ D : (1 − |z|)|F(z)| ≥ 1}.

A subset E of D is said to be dominating for H∞ provided that sup{|f(z)| : z ∈ E} =
sup{|f(z)| : z ∈ D} holds for all f ∈ H∞. It is well known that E is dominating if and only

if, to almost every w ∈ T, there corresponds a sequence of points in E approaching w

nontangentially.
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Cyclicity in Bergman-Type Spaces 257

Theorem 2.2. Given a real number α > 0, there is a function F analytic in D such that

(a) sup {(1 − |z|)|F(z)| : z ∈ D} < +∞,

(b) |F(z)| ≥ (1 − |z|)α, z ∈ D,

(c) The set E(F) = {z ∈ D : (1 − |z|)|F(z)| ≥ 1} is dominating for H∞.

Theorem 2.3. Given a real number α > 0, there exist a function F analytic in D and two

increasing functions U,V : [0,1[→ R+, with U(t) → +∞ and V (t) → +∞ as t → 1, such

that

(a) sup {(1 − |z|)U(|z|)|F(z)| : z ∈ D} < +∞,

(b) |F(z)| ≥ (1 − |z|)α, z ∈ D,

(c) inf {V (|z|)|F(z)| : z ∈ D} = 0, and

(d) the set E(F,U) = {z ∈ D : (1 − |z|)U(|z|)|F(z)| ≥ 1} has the following property: if ϕ

is a function bounded from above and subharmonic in D, and

expϕ(z) ≤ U(|z|), z ∈ E(F,U),

then

expϕ(z) ≤ V(|z|), z ∈ D.

For real numbers c (or real-valued functions), write c+ = max{0, c} and c− =
max{0,−c}.

Theorem 2.4. Given a real number α > 0, there exist a function F analytic in D and an

increasing function V : [0,1[→ R+, with V (t) → +∞ as t → 1, such that

(a)
∫

D
|F(z)|dS(z) < ∞,

(b) |F(z)| ≥ (1 − |z|)α, z ∈ D,

(c) lim supr→1

{∫π

−π
log− |F(reiθ)|dθ − V (r)

}
= +∞,

and the following additional property holds:

(d) if ϕ is a function bounded from above and subharmonic in D, and∫
D

|F(z)| expϕ(z)dS(z) ≤ 1,

then

∫π

−π

ϕ+(reiθ)dθ ≤ V(r), 0 ≤ r < 1.

3 Deductions of the main theorems

Proof of Theorem 1.2. Put f = Fp, where F is as in Theorem 2.1 with α = q/p. By (a) of

that theorem, f ∈ A−p; by (b), 1/f ∈ A−q; and by Theorem B, the function f is cyclic in every
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258 Borichev and Hedenmalm

A−r
0 , p < r < +∞. The function f is in the Nevanlinna class because F is. Suppose {pk}k is

a sequence of polynomials, such that fpk converges weakly-star in A−p to some function

h ∈ A−p. Then the norm of fpk in A−p is bounded by some constant C, so that

sup {|pk(z)| : z ∈ E(F)} ≤ C,

and by property (d) of Theorem 2.1, together with the maximum principle,

sup {|pk(z)| : z ∈ D} ≤ C.

Hence, by property (c) of Theorem 2.1, the infimum of the limit function |h(z)| on D is 0.

Thus we cannot get the constant function 1 as h(z). The proof is complete.

Proof of Theorem 1.3. We argue as in the previous proof, with Theorem 2.1 replaced

by Theorem 2.2. Put f = Fp, where F is as in Theorem 2.2 with α = q/p. By (a) of that

theorem, f ∈ A−p; by (b), 1/f ∈ A−q; and by Theorem B, the function f is cyclic in every

A−r
0 , p < r < +∞. Let {gk}k be a sequence of functions in H∞ such that fgk → fg weakly-

star in A−p as k → +∞, where fg ∈ A−p. Then the norm of fgk in A−p is bounded by some

constant C, so that

sup {|gk(z)| : z ∈ E(F)} ≤ C,

and by property (d) of Theorem 2.2,

sup {|gk(z)| : z ∈ D} ≤ C.

Since fgk → fg uniformly on compact subsets of D, gk → g, again uniformly on compact

subsets of D, and hence g ∈ H∞. We conclude that f · H∞ is weakly-star sequentially

closed in A−p, and hence weakly-star closed. The constant function 1 cannot belong to

f · H∞, for the following reason: if 1 = fg with g ∈ H∞, then f is in the Nevanlinna class,

and so f has finite nontangential boundary values almost everywhere. But this is clearly

not the case, given the rapid growth of |F(z)| on the dominating set E(F).

Proof of Theorem 1.1. We proceed as in the proof of Theorem 1.2, with Theorem 2.1

replaced by Theorem 2.3. Put f = Fp, where F is as in Theorem 2.3, with α = q/p. By (a)

of that theorem, f ∈ A
−p

0 ; by (b), 1/f ∈ A−q; and by Theorem B, the function f is cyclic in

every A−r
0 , p < r < +∞. We argue by contradiction, supposing that there exists a sequence

{gk}k of functions in H∞ such that fgk → 1 in norm in A
−p

0 as k → +∞. Without loss of

generality, we may assume that the norm of fgk in A
−p

0 is bounded by 2, so that by the

definition of the set E(F,U),

|gk(z)| ≤ 2U(|z|)p, z ∈ E(F,U).
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Cyclicity in Bergman-Type Spaces 259

By property (d) of Theorem 2.3,

|gk(z)| ≤ 2V (|z|)p, z ∈ D,

for all k. However, by property (c), there is a point w ∈ D such that |f(w)|V (|w|)p
< 1/2, which contradicts the requirement that f(w)gk(w) → 1 as k → +∞. The proof

is complete.

Proof of Theorem 1.4. Put f = F1/p, where F is as in Theorem 2.4, with α = pq. By

property (a) of Theorem 2.4, f ∈ Bp; by (b), 1/f ∈ A−q; and by Theorem C, the function f

is cyclic in every Br, 0 < r < p. Suppose {gk}k is a sequence of functions in H∞ such that

fgk → 1 in norm in Bp as k → +∞. We may assume, without loss of generality, that∫
D

|f(z)|p|gk(z)|pdS(z) ≤ 2, k = 1,2,3, . . . .

By (d) of Theorem 2.4,∫π

−π

log+ (|gk(reiθ)|p/2
)
dθ ≤ V (r), 0 ≤ r < 1.

However, by (c) there exists an s, 0 < s < 1, such that∫π

−π

log−(|f(seiθ)|p)dθ ≥ V (s) + 10.

The uniform convergence of fgk to 1 on sT requires that

log+ (|gk(z)|p/2
) − log−(2|f(z)|p) → 0 as k → +∞,

uniformly in z ∈ sT, which is incompatible with the above two estimates. The proof is

complete.

4 Remarks

Theorems 1.1–1.4 suggest the following question: Is there a critical rate of decay of non-

cyclic functions lacking zeros in the spaces considered here? Compare with [19, Ques-

tion 6].

It is interesting to consider the example given in Theorem 1.4 in connection with

the questions posed by B. I. Korenblum in [13, Questions 1 and 2]. He introduced the

notion of an outer function in Bp in terms of domination, and proved that a cyclic function

necessarily is outer. Recent work by A. Aleman, S. Richter, and C. Sundberg [2] has shown

that the outer functions are precisely the cyclic functions. Thus Theorem 1.4 answers

Question 2 in [13] in the negative.

One more application concerns the factorization problem for the Bergman spaces.

Fix the parameter p, 0 < p < +∞. Let M be a proper closed subspace of Bp, invariant
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260 Borichev and Hedenmalm

under multiplication by z, and let m be the order of the common zero at the origin of the

functions in M. We consider the extremal problem

sup
{
Re f(m)(0) : f ∈ M, ‖f‖Bp = 1

}
. (4.1)

Suppose M is singly generated, that is, M = [F] = closBp {qF : q ∈ P}, the invariant sub-

space generated by F, for some F ∈ Bp. Then the above problem has a unique solution,

which we denote by GM and call the extremal function (or canonical divisor) for M. It is

proved in [2] (see also [5], [6], [8], [9]) that M = [GM], and that GM is a contractive divisor

on M:

‖f/GM‖Bp ≤ ‖f‖Bp, f ∈ M. (4.2)

A natural question arises: Is it true that GM is an expansive multiplier,

‖f‖Bp ≤ ‖fGM‖Bp, f ∈ Bp? (4.3)

A closely related question is the following one. Is it true that

GMBp ∩ Bp = [GM] = M?

To answer these two questions in the negative, we use as F the function f mentioned in

Theorem 1.4, for some positive value of the parameter q, say q = 1.

Let M = [F](
= Bp), and write G = GM. By (4.2), G has no zeros in D, and F/G ∈ Bp.

Therefore, for some r, C > 0,

|G(z)| > C(1 − |z|)r, z ∈ D. (4.4)

As a result, we have ϕ = G−ε ∈ Bp for some ε, 0 < ε < 1. Now, ϕG = G1−ε ∈ Bq for

q = p/(1 − ε) > p, so that ϕG is cyclic in Bp according to Theorem C. It follows that

ϕG cannot be in M, although ϕG ∈ GBp ∩ Bp. This answers the second question in the

negative.

To deal with the first question, we argue by contradiction, supposing that (4.3)

holds. It follows that

‖G−t‖Bp ≤ ‖G1−t‖Bp, 0 ≤ t < ε,

that is,

ψ(t) =
∫

D

(|G(z)|p − 1
) |G(z)|−tdS(z) ≥ 0, 0 ≤ t < εp.
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Cyclicity in Bergman-Type Spaces 261

Since G solves (4.1), we have ψ(0) = 0. On the other hand, the integrand
(|G(z)|p − 1

) |G(z)|−t

decreases strictly in the variable t (t ∈ [0,+∞[) for those values of z where |G(z)| 
= 1, and

vanishes identically for |G(z)| = 1. It follows that since |G(z)| is not constant, the function

ψ(t) must decrease strictly on the interval [0, εp[. This leads to a contradiction, which

shows that (4.3) fails.

An interesting question, which we cannot answer, is the following. Given an ar-

bitrary r > 0, is there an extremal function G, other than the constant one, such that (4.4)

holds?
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