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FINITENESS OF LIMIT CYCLES AND UNIQUENESS THEOREMS
FOR ASYMPTOTICALLY HOLOMORPHIC FUNCTIONS

A. A. BorICHEV, A. L. VOLBERG*

ABSTRACT. We present a finiteness theorem for limit cycles of quasianalytically smooth vector
fields on the plane. We consider vector fields with only non-degenerate singular points. Our
result can be viewed as an extension of [13] and [20]. Our assumptions make it possible to prove
certain quasianalytic properties of a monodromy transformation. These properties follow from
estimates on O-derivative of extensions of monodromy transformations to certain complex
domains. The second part of the article is devoted to functions satisfying such estimates on
the d-derivative (asymptotically holomorphic functions). Sharp uniqueness theorems for such
functions are proved which allow us to complete the proof of the finiteness theorem.

1. INTRODUCTION.

1.1. The problem of finiteness of limit cycles has attracted attention for quite a long time
(since [18]). In its initial setting, which is due to H. Poincaré, it amounts to proving that
any polynomial vector field on the plane:

&= a(z,y)
{?):ﬁ(x,y), (z,y) € R?, (1.1)

(o, B are real polynomials) has only finite number of limit cycles.

H. Dulac made a basic contribution in [6], applying an asymptotic expansion of a mon-
odromy transformation of a polycycle. He proved that if infinitely many limit cycles occur
in a neighborhood of a polycycle, then this asymptotic expansion contains only the first
term, that is the identity. He wrongly concluded that this means that the monodromy
transformation is equal to the identity.

Reviews of the growing knowledge in this area can be found in [14] and [15]. We only
mention here that there were several other attempts to solve this problem (see [14] for more
references), but even for polynomials of degree 2 these attempts were not successful until
recently. Now the problem is solved by Yu. S. II’yashenko and independently, using different
methods, by two groups of French mathematicians: by J. Ecalle and by J. Martinet—
R. Moussu—J.-P. Ramis [10,11].

Before describing our contribution let us emphasize that there are actually two problems
disguised as one. The first problem is to prove that the number of limit cycles of (1.1) is
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finite. The second is to estimate how many limit cycles may occur for given degrees of
polynomials. The second problem is extremely difficult and its full solution lies in the
future. The first problem has at least one transparent advantage: it is local, in the sense
that to solve this problem it is sufficient to prove that

the number of limit cycles close to a polycycle of (1.1) is finite. (1.2)

Assertion (1.2) was proved by II’'yashenko and Ecalle and Martinet-Moussu-Ramis un-
der the assumption that o and 3 are real analytic in a neighborhood of the polycycle. The
requirement that « and 3 are polynomials is superfluous here. Their proofs seem to be dif-
ferent although they use certain quasianalytic properties of monodromy transformations of
polycycles. These properties become more and more involved when the order of degeneracy
of singular points on our polycycle grows.

However, the quasianalytic nature of the proofs gives rise to a natural question:

Is the number of limit cycles close to a polycycle of (1.1) finite,

1.3
if « and (8 are quasianalytically smooth functions? (13)

Standard methods of ODE show that for smooth non-quasianalytic vector fields the answer
to (1.3) is “No”.
We formulate a

Conjecture. If « and f in the right hand side of (1.1) belong to a quasianalytic Carleman
class, then the number of limit cycles close to any polycycle is finite.

In our present work we prove this conjecture under the assumption that all singular
points on our polycycle are non-degenerate. A previous result of this type was published
in [20]. There the second author managed to treat only “very” quasianalytic Carleman
classes (see Remark 4 after Theorem 2.2 below).

The case of non-degenerate singular points can be considered as the first (relatively
simple) step in proving this conjecture. This step is parallel to the work of Il’'yashenko
[13] where he proved that (1.2) holds for real analytic vector fields with non-degenerate
singular points.

1.2. Notations. We shall use the following terminology. A characteristic is an integral
curve defined by the system (1.1). A closed characteristic is called a cycle. A cycle is called
a limit cycle if its neighborhood contains no other cycles.

A finite connected union of singular points (points where o = (3 = 0) and characteristics
connecting these points one after another is called a polycycle.

A monodromy transformation of a cycle is a classical object which is introduced as
follows. For a given cycle C' and a transversal I' we define m : I' = I' as the transformation
of the first return along a characteristic. This transformation is well defined as a germ of
maps (R,0) — (R, 0) if there are no singular points in a neighborhood of C.

A monodromy transformation of a polycycle is defined as for ordinary cycles, only the
transversals in the definition are replaced by semitransversals, that is, semi-intervals that
are transverse to the polycycle. It is convenient to regard monodromy transformations as
germs of maps (R;,0) — (R, 0).



FINITTENESS OF LIVIIT CYCLES b

However, we have to warn the reader that in general not every polycycle admits a
monodromy transformation.

Now we introduce a way to measure the smoothness of the right-hand part in (1.1). A
C*°-smooth function will be called flat on a set if it vanishes along with all its derivatives
on this set. For a given sequence {M,,} the Carleman class C{M,} is defined by

C{M,} = {f € C>*(R?) : for some By, Cy > 0, |f(")($)| < BfC}MMmI}-

Here n = (n1,n2), |n| = n1+mns2. We consider only Carleman classes with regular sequences
{M,,}: namely, if m,, = M,,/n!, then we assume
2 :
L. omy, < Mp_1Myq1;
2. Supn(mn+1/mn)1/n
1
3. mn " = 00, n — o0.

< 0.

Under these assumptions properties of C{M,,} can be adequately expressed by the “weight

function”

= inf 2" —".
plw) = Inf 2" =,

In case M,, = n!,
p(x) =0, 0<z<l,

and C{M,} contains only real analytic functions. Furthermore, C{M,,} is quasianalytic
(C{M,} € QA, i.e., C{M,} does not contain any non-trivial function flat at a point) if
and only if

/log log ﬁ dx = oo. (1.4)

To see this, one combines the following two remarks. Let us denote m = log(1/p) and
let p be the Legendre transform of m,

plt) = inf (m() +Ct)

The first remark is that (see [16, p.337])

o) 1
/ ff; dt = 0o <= /1ogm(g) d¢ = 0. (1.5)
1 0

If T(x) = sup,o 2" /My, one can easily compute that expp(t) > T(t). The second
remark is that since the sequence {logm,} is convex, an opposite inequality holds for
large t:

T(2t) > expp(t). (1.6)

Combining (1.5) and (1.6) we see that (1.4) guarantees that

71

/ 0g T(t) dt = oo.
+ 12

1

1
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By the classic Denjoy—Carleman theorem this condition implies that C{M,} is a QA class.
Along with (1.4) which is a condition on smallness of p, the following regularity condition
will be imposed on p to prove our main result:

log log —
m 2@ _ (R)
x—0 1
log —
x

Let us discuss this condition. In terms of M, it means that M, < C.(n!)!T¢ for each
positive . In other words (R) says that we consider only classes C{M,} lying in the
intersection of all Gevrey classes. All Gevrey classes are non-quasianalytic. Thus (R) is
a natural condition. However, there are quasianalytic classes which do not lie inside the
intersection of all Gevrey classes. Thus, (R) is actually restrictive. We will need (R) once
in the proof. We tried to get rid of (R) but could only weaken it slightly.

Classes C{M,,} are defined for functions of one variable as well, and one may wonder
whether the smoothness of monodromy transformations can be expressed in terms of these
classes. More precisely, the following question arises naturally: is it true that monodromy
transformations for QA vector fields are QA functions? In other words: if «, 8 € C{M,,},
(1.4) holds for the associated p, and m is a monodromy transformation for (1.1), is it true
that m € C{M,} with associated p satisfying (1.4)?

__Itf'm is a monodromy transformation for a cycle, the answer is “Yes” and we can choose
M, = M,. This is manifest because the implicit function theorem holds in Carleman
classes (see [9]).

If m is a monodromy transformation for a polycycle, the answer seems to be “No” in
general, but still is “Yes” if certain conditions are imposed on the polycycle. The proof of
this positive part is the essence of our article. However, it is very indirect. Namely, instead
of estimating the n-th derivatives of monodromy transformations we are going to use the
technique of asymptotically holomorphic functions (AHF). Let us describe what they are.
They will be defined in domains of the type

where 1) is smooth positive (usually monotonic) function on Ry . The classes of AHF in
Q2 will be determined by two positive functions A : Q@ — [0,1], p : [0,1] — [0,1] in the
following manner (( = £ + in)

f € AHp,(Q) <= [0f(Q)] < p(A(£ +im)). (1.7)

The function p is always monotone, p(0) = 0, and p satisfies (1.4). So (1.7) shows that f
becomes more and more “holomorphic” along any path where A(§+in) — 0. A number of
papers exist (see [2,3,4]) which are concerned with the estimates of functions in AHy4 , ({% :
Re z > 0}). Usually one chooses

A€+ in) = or A(€ + i) = %
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which means, respectively, that the functions f, f € AH4 ,, are getting more and more
holomorphic towards the real half-axis Ry or towards co uniformly on vertical lines.

Here we deal with estimates and uniqueness theorems for functions in AH,4 , with p
satisfying (1.4) and with

A(E+in) = e or A(E +in) = ne™*.

We need just these choices of asymptotic behavior of the d-derivative because our main
idea is to extend the germ of a monodromy transformation of a polycycle

m(e™®) : (R4, 00) = (R4, 00)

to a function from AH4 ,(§2) with such A and p.

It is necessary to point out that the idea to extend monodromy transformations to a
complex domain  is due to II’'yashenko [13]. In case of real analytic vector fields with
non-degenerate singular points this extension is a holomorphic function, so its 0-derivative
vanishes, and, by the way, the extension is unique.

In our case the J-derivative does not vanish, but its smallness can be grasped from the
smoothness of the right hand part of (1.1). The extension is certainly non-unique. That is
why we have to choose one which is good enough.

We hope that in the future our technique will allow us to deal with degeneracies of
singular points in both the real analytic and quasianalytic cases in a uniform way.

At last, let us survey the content of this article. Section 2 contains statements of the
main results. In Section 3 the idea of the proof of our finiteness theorem is presented.
Section 4 is devoted to a reduction to a local problem. In Section 5 we construct an
asymptotically holomorphic extension of the monodromy transformation. Sections 6 and
7 contain uniqueness theorems for such functions. In Section 8, we combine the results of
Sections 4—7 to complete the proof of our finiteness theorem.

A preliminary version of this work was published in [5].

Alexander Volberg would like to express his gratitude to Jack Plotkin and Zoltan Balogh
for reading the manuscript and making valuable remarks.

2. STATEMENT OF RESULTS.

2.1. A supplementary result. In [6], Dulac was concerned only with real analytic fields,
although he actually proved the following result:

Theorem A (Dulac). Let C be a polycycle of a C* vector field on R? having finitely
many singular points in a neighborhood of C'. Assume that

1. all singular points on C' are of finite multiplicity;
2. there is a sequence of limit cycles converging to C'.

Then

a) C admits a monodromy transformation;
b) this transformation is the identity plus a flat germ.

One can find Theorem A in this form in [I’'yashenko’s paper [14].
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2.2. Main theorem.
First we formulate three basic assumptions.
A. From now on we assume (unless otherwise stated) that o, 8 € C{M,}, M, is a
regular sequence (see 1.2),
n

_ n-n
plo) = b "

p satisfies (R), and
1

1
/loglog ——dr = .
/ p(z)

B. We assume that for every compact subset of R? there is only finite number of points
(x,y) belonging to it and such that

Ol(.’L',y) = 6(1'79) =0

(These are called singular points.)
C. And our “for the sake of simplicity” assumption is that each singular point z = x+1iy
is non-degenerate: that is, the matrix
<am ay>
Bz By

has two non-zero eigenvalues A1(z), A2(2).
For singular points lying on polycycles this means that they are saddle points. In other
words, for a polycycle P and a singular point zg, zop € P we have

)\1(20) : /\2(20) < 0.

Theorem 2.1. Under assumptions A,B,C each polycycle has a neighborhood without
limit cycles.

In [14] the finiteness theorem for limit cycles was deduced from the conclusion of The-
orem 2.1. The analyticity of the field was not used at all. Thus this part of [14] gives us
our main result.

Theorem 2.2. Under assumptions A,B,C given above the vector field (1.1) has only finite
number of limit cycles in each finite part of the plane R2.

Remarks. 1. If @ and (3 are real analytic, that is «, 8 € C{n!}, we trivially have (1.4)
since p(z) =0 for z € (0,1).

2. We believe that assumption C is superfluous. We are working on the general version
of Theorem 2.2. However, as in the real analytic case [15] the technique turns out to be
very involved. Fortunately, the phase portraits near singular points are the same for real
analytic and QA vector fields on the plane. This statement looks non-trivial because its
proof is based upon the Lojasiewicz inequality for QA functions on R? (see [5]) and an
application of a result of Dumorthier [6].
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3. It is worth noting that for Q A vector fields B can be assumed without loss of generality.
If two quasianalytic functions have an infinite set of common zeros, there is a common QA
divisor.

4. Under the assumption

1
p(z) < exp(— exp F)
Theorem 2.1 was proved in [20].

2.3. Uniqueness theorems for a class of asymptotically holomorphic functions.

To prove Theorem 2.1 we need two results on AHF.

Let Q. = {£+in: € > 0, |n| < ¢}, where € is a positive number. Let p be an increasing
function on Ry, p(0) = 0.

The first theorem is an analog of classical Phragmen-Lindelof theorem for the class
AHexp(—s.ﬁ),p(Qe) N L (QE)

Theorem 2.3. Let p satisfy the condition

the function log is convex for large x.

1
p(e=")
Given a bounded C*°-smooth function f on 2. such that

0F(Q)] < ple™=),

and
(&) =0(e*"), & — oo, for every n,

we have for large &

(O] < p(Ae™), (2.1)
where A is an absolute constant.

The second theorem is our main result for AHF'.
Let Q = {{41in: £ >0, || < 1}. We deal with the class AH, exp(—eg),p(21) ML (£21).

Theorem 2.4. Let f be a bounded C°°-smooth function on €2y such that

05 ()] < pllnle™),

where
1

1
/loglog ——dr = oo,
/ p(x)

and suppose that (2.1) holds. Then

f§)=0, &£>0.

Theorems 2.3 and 2.4 are partial cases of Corollary 6.2 and Theorem 7.1 respectively,
which are proved in Sections 6 and 7 below.
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3. THE IDEA OF THE PROOF OF THEOREM 2.1.

Let C be a polycycle all of whose singular points are saddle points and which admits
a sequence of limit cycles {C,} converging to C. Let I" be a semitransversal to C' with
a local coordinate z, 0 < x < 9. Theorem A shows that the corresponding monodromy
transformation m exists and satisfies the relation

m(z) —z =r(x), r(z) = o(z™), x — oo, for every n.

The next step is to extend & — r(e7%) to a function from A, exp(—ce),»(2e). This is done
in Section 4 and 5, however one simple lemma concerning such an extension is formulated
at the end of this section. The application of Theorems 2.3 and 2.4 shows that r(e™%) =0
or m(z) = x. This means that cycles C,, are not limit cycles and this contradiction proves
Theorem 2.1.

Here is a simple lemma on how to obtain an AHF from a family of locally defined
holomorphic functions. Similar arguments were employed in [9].

Let 2 be a planar domain and a be a positive Lipschitz function on Q (K > 1):

|a(x,y) - a(jag” < K(|LE - j| + |y - g|)7 (xay)v (jv g) € Q;
al0f2 = 0.

Let us decompose €2 into the union of squares with sides parallel to the coordinate axes
F = {Q} with the following properties

Q,Q" e F= intQ' n int Q" = 0;

L (C(Q)) < diam @ < 501Ka(C’(Q)), QcF. (3.1)

oo “¢(

Here for a square ) we denote by C'(Q) its center, and by 2Q) the square (with sides parallel
to the coordinate axes) centered at C'(Q) and such that diam 2@ = 2diam Q.

Claim 3.1. Let Q € F. Then 2Q C Q. If ¢',£" € 2Q), then

3

a(€)/a(€")] < 3 (3.2)

Proof. |a(¢') — a(C(Q))] < 2K diamQ < 5:a(C(Q)). The same is true for £&” and the
claim follows. e

Let us call such a decomposition an a-decomposition. Suppose that p is a positive
function such that for every n, p(x) = 0(z™), + — 0. Assume now that along with an
a-decomposition F we are given a family of holomorphic functions {hg}ger such that

he € Hol(2Q);
Ihar(2) — hon ()] < Capla(2)) if 2Q' N 2Q" £ 0.
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Lemma 3.2. Given an a-decomposition F and a family {hqg}gecr satisfying (3.3), (3.4),
there exists a function h such that

1) |h(z) = ho(2) < Cipla(2),  2€Q, Q€ F; (3.5)
2)  |0h(z)| < Calplal2))'/?. (3-6)
Proof. Claim 3.1 and property (3.1) show that
£ Gamgy <

for each pair of “neighbors” Q1, Q> from F, 2Q1 N 2Q2 # 0, and for some k. This allows
us to construct a partition of unity of finite multiplicity based on {2Q}gecr. Let {vg}ger
be such a partition of unity having the following properties:

1) supppg C 20Q;

2) 0< 9o <1, pg € C™;

3) Vol < C(k)(diam Q)™

4) sup,eq card {Q € F : pg(z) # 0} < oo.

Put h(z) = > ger ho(2)pq(2). Clearly (3.4) implies (3.5). Combining (3.1)(3.4) we

can easily see

Bh(2)] < cfg;;».

This implies (3.6) because p(z) = O(z?). e
4. LOCALIZATION.

In this section we repeat the reasoning from Section 2.6 of [13]. All the (semi-) transver-
sals are assumed to be real analytic. Let C' be a polycycle (admitting a monodromy trans-
formation) such that all its vertices are saddles. Let I' be a semitransversal to C and
let

507[‘ :I'—>7T
denote a monodromy transformation.

Figure 1 shows how d¢ r can be decomposed into the superposition of correspondence
maps (for each saddle) and the mappings which can be extended to QA mappings of the
whole transversals.

More specifically, let us enumerate the saddle points on C in a natural order. Let I';, F;-
be two semitransversals such that characteristics arrive to the j-th sector through I'; and
leave j-th sector through I';. The mapping

. /

is called the correspondence map for this singular point.

Remark. In our Figure 1 we can choose L'}, F;- as close to j-th singular point as we wish.
Let f; : F;- — I'j41 be the mapping along the characteristics. Denote by f‘j,f‘;- the

transversals containing semitransversals I';, F}. Clearly the f; are very good mappings, i.e.

being considered in local coordinates on f‘j, f‘; they become of the same class of smoothness
as the field.
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FIGURE 1

Proposition 4.1. If o, 8 € C{M,} and {M,} is a regular sequence, then f; € C{M,}.

The proof can be found in Dynkin [9].
Let I' =T';. We can write

dor = fnobpo...0 frod;. (4.1)

Let us fix local coordinates on I';, I'; with the domain of definition (0,e]. We shall use
the change of variables e(¢) = e, € > log(1/¢). Put

Aij=elodoe, Fij=elofoe.
Then (4.1) can be rewritten in the form

def _
AC’F:ee 1oéCIoe:FnoAno...oFloAl.
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As mentioned, we are going to extend the A; and F; to the complex domain from the ray
[log %, o0). Proposition 4.1 will take care of F;: see Section 8 where we shall just apply
Dynkin’s extension [9] to get the estimates of OF; we need.

It is more difficult to handle the A; because generally speaking they can become less
and less smooth as & — oo since we are approaching the singular point of Figure 1. The
analysis of A; is a local problem around the ¢-th singular point. To analyze A; it is useful
to change variables in a neighborhood of the singular point to reduce our system (1.1) to
a special form.

It turns out that the change of variables we need is of the same C{M,} class. The next
proposition (and its proof) follow immediately from the reasoning in [6, pp.68-77].

Proposition 4.2. Let (1.1) be a field of a regular C{M,,} class with a saddle at the origin.
Let A = |A1(0)/A2(0)|, where A1(0), A\2(0) are eigenvalues of the linear part of the mapping
(a, B) : (R%,0) — (R?,0). Then there exists a change of variables (z,y) — (%, ) of the
class C{M,} and a linear change of time which reduce (1.1) to the system

(4.2)
where f € C{M,,} and

The change of coordinates can be absorbed by Fj; (since they are in the same class
C{M,} and C{M,} is invariant under superposition [9]). Therefore, according to Propo-
sition 4.2 we can consider only correspondence maps given by systems (4.2).

5. AN ASYMPTOTICALLY HOLOMORPHIC EXTENSION OF THE CORRESPONDENCE MAP.

Let

{u: —u(X + zFuf(z, u)) (5.1)

be a system with £ > A and f € C{M,,}. We shall consider the case A > 1. The opposite

case is completely similar. Rescaling, we can assume that

max |f(z,u)] <
lz]<1,|u|<1

A~ =

The extension will be given in a series of steps.

5.1. According to [9] one can extend the function f(z,u) € C{M,} to a C* function
f(z,w) on C? such that

DO f (2, w)| +|D0uw f (2,w)| < p(Cy max(|Im 2|, [ Imw])).

Here D denotes any derivative up to the order 1.
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Reciprocally f(x,u) can be restored from 0, f(z,w), Oy f (2, w) by the Martinelli-Boch-
ner formula (see e.g. [17,19]).
For a number a, a € (0,1), let us fix the domain
G ={(z,w) : 2] < 2,|w| < 2,|Imz| < a, | Imw| < a}

which is a neighborhood of the square S = {(z,u) € R? : |z| < 1, |u| < 1}.
The Martinelli-Bochner formula immediately gives us a function f* holomorphic in G*
and such that
|/ = f*I < Byp(Cylal) in G*. (5.2)
The solution of (5.1) with initial data

€ — ¢
{(m X (5.3)

is given by the solution of (u(0) = 1))

a(t) = —u(t) (A + () u(t) f (x(t), u(?))),
where x(t) = e!=5. We stop to follow ¢ as soon as z(t) = 1 (at t = £) and then A() =
—logu(&) is the correspondence map.
To extend A to a complex domain we fix a point (; = &y + iny and a square Q((p)
centered at (g with

1
diam Q(Co) == m max(noe_g()/z, e—>\€0/2) .

After that we consider a new system, which approximates (5.1) on the square S but which
has the advantage that it has a holomorphic right part. It will be convenient to consider
the new system with complex time,

2=z
5.4
{ b= w4 Fufa ), (nu)eGn o0
The number a will be fixed later according to the location of Q(&p).
5.2. We are going “to solve” (5.4) with initial data

z(0) =e7", v E ,
©) Q) .
w(0) = 1.
In other words, we are going to find a path v = v, o connecting v with 0 such that
(2(¢),w(() € G*, (€, (5.6)
(2(€),w(C))cey satisfies (5.4). (5.7)

In the last statement we mean that the derivatives are taken with respect to (.

Taking for a moment, the existence of such a path for granted we consider the moment
when z = 1 ({ = v, that is the end of our path), and then ACO(V)d:ef— logw(v), v € Q((o),
will serve as a building block for our extension A(v) of A(§).

Remark 5.1. Actually the extension A will be constructed from the functions
{—logw(v)},eq(c) with the help of Lemma 3.2.
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5.3 The choice of a. Clearly, the bigger a is, the easier it is to ensure (5.6). At the same
time, the smaller a is, the better will be the estimate of

A () =A%), v eQ()NQ((),

and so the better is the estimate of 9A((). So, we need to choose a as small as we can and
also to ensure (5.6), (5.7).
The main difficulty is to ensure

| Im 2(¢)| < a, | Imw(¢)| < a. (5.8)
The estimate |z(¢)| < 1 is guaranteed by the requirement that
Re(¢ < Rev, ¢ €Yo- (5.9)

The estimate |w(¢)| < 1 is ensured by the following a-priori estimate (see [13])
1 :
(§|w|2> = —|wPRe (A + 2Fwf(z,w)) < 0 (5.10)

and the estimates [2({)| < 1, [f%| < A/4, |w(0)] = 1.
Let us consider the domains

Q% = {C: n| < aet},

1
O ={¢:In| < §a€£/2}~

If @ is chosen in such a way that Q((o) C Q* then any path v, ¢ from v € Q((p) to 0 lying
in Q% will guarantee the first requirement from (5.8).

The second requirement is much more subtle. To justify the choice of the path «,
below let us remark that presumably u = Alogz + logw is “almost the first integral of
(5.4)” because zFwf(z,w) is supposed to be small. As we will see, in fact, the function

u(Q)E N og 2(¢) + log w(C) (5.11)

does not vary much along <, o. In other words,

)\log@ —1 w(C)

0g ——| 1is small, ¢ € Y0,

z(¢) w(0)

which means that along the path ~, ¢ the value of —logw(() is almost A(¢ — v).

For any path v = 7,0 let 4* denote the inverse path {A(( —v)}cey, -

The conclusion from this consideration is that to ensure the second requirement of (5.8)
we have to choose v = 7, o in such a way that it connects » and 0 and

yC QY 4t C Qo (5.12)
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The choice is not unique, but now we are going to choose a path which clearly will be
practically optimal. Given (g let us choose the least a = a((p) such that

Q(¢p) C clos O%. (5.13)
This is our choice of a.
Respectively v = 7,0, v € Q((o), ¥ = p + 90, will be fixed in the following way:
v =~ Uyt U~y where

'yI:{,u—i—i(S—t:OStg

VRS

}

sz{g+4§—ﬁ:0<ténﬁ

L

7”1:{%—¢:0<t<

o=

This path is pictured on Figure 2.

FIGURE 2
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Clearly v C Q2 if Q(¢y) C O%. Also, 4* is the image of y under the map ¢ — A(v — ()
which is the superposition of the symmetry with center v/2 and the A-dilation. Our picture
shows that if v C Q% Rewv > 1, then v* C Q@ Thus, (5.13) = (5.12). Note that (5.9)
holds as well.

Remark 5.2. Clearly the line segment connecting v and 0 is symmetric with respect to
v/2. But it is not the path we need, as it does not lie in Q2.

5.4 Keeping track of the location of — logw(().

In this section, letters A with indices mean absolute constants. So, — log z(() goes along
v =yl uytT Uy As to —logw(¢) we know only that it has a positive real part for
¢ € 7 (see (5.10)). Now we are going to estimate the oscillation of u({) from (5.11). This
will show how far —log w(() is tilting from ~*.

Using notation (5.11) and equations (5.4) we can write that for { €

| = ‘)\z + E — A= Pz w)| < || < [Pl < et (5.14)
If v = |u — u(0)], we deduce from (5.14) that
9] < ¢ Re (u=u(0)+Rew(0) < ,—Augv
In other words, |(e7?)"| < e™*, v(0) = 0. And
1= O < (lul + e ™ < Jule™ + Ze™ /2 < Ae™ 2, (e

Thus, for ¢ € v,0, v = p + 40,

Alog % — log % < 0(¢) < Are /2, (5.15)

Assertion (5.15) means that
v € Q(Co) = the set {—logw(()}¢en, o lies in the Aze~ARe%/2 peighborhood ofy*.  (5.16)

5.5 Asymptotically holomorphic approximation.

Theorem 5.1. There exists a function 3(@“), C*°-smooth in the domain Od:ef{§ =&+in:
In| < 2e8/4,& > 0} and such that

IOA(C)| < ByAs f/p(CfAAL max(Age=AReC/2) A7| Tm (|e— Re</2)) (5.17)

and A is close to the correspondence map A(€) = —logw(€) for (5.1) in the sense that

A(E) — A©)| < ByAs i/ p(CrAsAge12).
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Proof. Let us fix Q({o) and recall that (2(¢), w({))ceyo = (2°°(¢), w(())cen, ., solves
(5.4) and A% (v) denotes —logw(v) for v € Q({p). We fix the number a as

a = a(Co) = max(Age R0/ A Tm (ole™ Re0/2). (5.18)
The choice of As and A3 guarantees that
Q(C()) C 0%

Also (5.18) guarantees that (5.6), (5.7), (5.8) hold. In fact, the most difficult second part
of (5.8) follows from (5.12), (5.16), (5.18) because (5.12) and (5.16) imply

{=logw(Q)}cen,o € 2%

if a complies with (5.18). And the last inclusion trivially gives | Imw(()| < a.

Now, (5.6)—(5.8) guarantee that (z(¢),w(()) stays in the domain of holomorphicity of
the right hand part of (5.4), and so it depends holomorphically on the initial data (5.6).

Finally, we get

A% (v) € Hol (Q(¢o))- (5.19)

Clearly we are going to paste all {ACO}COGO to one C'*° function as Lemma 3.2 indicates.
For this purpose we have to estimate A% (v) — A%t (v) for v € Q(¢o) N Q(¢y).

Let a = max(a(p),a((1)). Clearly it follows from (5.2) that

/4D — f% < Bgp(Cya). (5.20)
Let (2(C), @(¢))ce, o be the solution of (5.4) with f* replaced by f® and with initial data
(5.5). Let A(v) = —log(v). Using (5.4), (5.20) we get
|(log w*) — (log @)| < Byp(Cra) + Kf|w® — b,

and w% (0) = @(0). Thus, using Gronwall’s lemma (taking into consideration that the
length of v, ¢ does not exceed 2|v|), we get

A% (v) — A(v)| < Bp(Cra)e " < Byp(Cy - a) - exp(Ly - a73). (5.21)
The last inequality follows from rough estimates
v e Q(G) C 0D i=0,1 = |v] < As + Age*5/2,
(€0 =a< Agmax(e” Reco/d o= ReG/4)
An analog of (5.21) holds with (o replaced by (; and therefore,
v € Q(¢o) NQ(G) = [A® (v) — A (v)] < Bfy/p(Cra)

if (p,(1 € O. (Here we use (R) for the only time in the proof). Furthermore, for v €
Q(¢o) N Q(¢1) we have
a < Ay max(AQe_A Re”/Z, Asz|Imvle” Re”/Z).
And finally, we get
0,61 €0, veQ(Q)NQ(G)=

A% () — A% (V)] < B?\/p(C'fALL max(Age~ARev/2 As|Im v|e— Rev/2)),

Now (5.19) allows us to use Lemma 3.2, and an application of this lemma proves (5.17). The
last statement of the theorem follows easily when we estimate |A%(£) — A(€)|, £ €R,. o
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5.6 An improvement of the J-estimate.
We would like to show that one can replace the function a((p) in (5.18) by

pu— 0 = - 0 y .
b =b(Co) = Ag| Im (o|e™ Beco/2 (5.22)

and still be able to repeat all the reasoning of Theorem 5.1. Now we consider Q((p) centered
at (o with diameter (1/100)noe~%/2. The choice (5.22) of b still guarantees Q(¢o) C O°
and thus (5.12) hold here:

v,7" C Q.
The next lemma gives a much more precise version of (5.16).

Lemma 5.2. If s € O, v € Q({o), ¢ € 7L, then the points {—logw(¢)} lie in the
Ag min{exp(—(A/2) Re (o), | Im (o] exp(—(1/2) Re (o) } -neighborhood of +*.

Assuming this lemma, we can now easily prove

Theorem 5.3. The correspondence map A(§) = —logw(§) for (5.1) can be extended to
a C> function A(() in the domain O in such a way that

A < BrAwo{/p(CyAn|Imcle=Rec/2).

Proof. Let v € Q({p). Lemma 5.2 and (5.12) guarantee that
- log’lU(C) S va C € 71{,07 (523)
if b= Ag|Im(ole~2ReC . At the same time

—logw(¢) lies in the As-neighborhood of (v/1)t U (M) if ¢ € 'yIfO U 7,{710[.

v

If Ag is chosen to be large enough, this As-neighborhood of (y!1)* U (y/1)? lies in QP.
Combining this assertion with (5.23) we see that

—logw(¢) € Q°, ¢ € Y0, (5.24)

if b is taken as in (5.22) with Ag large enough. Now (5.24) guarantees (5.6), (5.7), (5.8).
We continue exactly as in the proof of Theorem 5.1 replacing a’s by b’s. This gives us an
asymptotically holomorphic function in O \ Ry . Finally, to verify that this function is a
C*°-smooth continuation of A({) we note that the above construction can be extended as
follows.

(A) If Q(Co) C 0, then Q'(¢o) ™ conv {Q(¢o), Q(Co)} € 02, A% € Hol (Q'(¢o))-

(B) It Q(Co), Q(C1) € O, v € Q'(Co) NQ'(¢1), then for every n 3> 0,

|A% (1)) — AS (1)) < B}\/p(C}(n)Alz max (| Im (ole= Re<o/2 | Im (;|e— ReC1/2)).

(C) It Q(C) € O, v € Q'(€) MRy, then

IA(r) — AS(v)] < B}\/p(C'}(n)A12| I (|- Re</2),

This proves Theorem 5.3. e
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5.7 Proof of Lemma 5.2. Let v € Q({p). When ¢ € v}, we have |2(¢)] < Ae™ Reo/2,
| Im 2(¢)| < Ae™ ®e%/2| Im (o).
Let us use the notation w (¢) = w(¢) = |w(¢)|e’*(©). Then by (5.4) we have
A+ v — 2w fl(z,w).
w
And therefore,
& = —Im (2F|w|e* fO(z, jw|e'®)). (5.25)
From (5.2) we clearly get (because f(x,u) is real on S)
[ Im f* (2, [w]e™)| < Byp(Cyb) + By (| Im 2| + |al).
Then (5.25) gives us
] < fa] + e VRO B (| Tm Gole™ R0/ 4 p(CpAg| Tm Gole™ Ho0/))
< la| + By Tm Gole #Rew/2, o(0) = 0.
Solving this differential inequality we obtain
( €Ly = |a(¢)] < ABy|Tm (ole FReco/2eReco/2 < AR | Tm (ole™ BmD Reo/2 (5 26)

Let us recall that (5.10) shows that |w(¢)| < 1 along the whole path . Along with (5.26)
this shows that

v e Q) Ce 7,5’0 = | Imw({)| < A|Im (ple™ ReCo/2 (5.27)

Here, it is sufficient to consider only the case k£ > 3, because k can be chosen arbitrarily big
subject only to the condition & > A. The combination of (5.16) and (5.27) proves Lemma
52. e

6. A PREPARATION THEOREM ON ASYMPTOTICALLY HOLOMORPHIC FUNCTIONS.

Here we are going to state a uniqueness theorem for function f defined on the right
half-plane C (or on its sufficiently massive subdomain) whose d-derivative decays rapidly
along the real axis,

0f(2)] < w(Rez).

If such a function decays on Ry more rapidly than any exponential function, then we can
make a stronger claim that it is no greater than w(cz) on Ry for some ¢ > 0.

This result includes a similar one proved earlier in [20, Theorem 3]. The proof uses the
usual machinery of estimations of asymptotically holomorphic functions (see [1,4]).

Let w be a positive decreasing function on R} such that

the function log is convex. (6.1)

w(z)

Remark. We shall use later w(z) = p(e™%"), where p is as given at the beginning of
Section 2.2. So p is logarithmically convex which means exactly the convexity of log(1/w).
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Theorem 6.1. If f € (C' N L>)(C,),

0/ (2)] < w(Re2),
|f(x)| = O(exp(—nz)), x — oo, for every n,
then
|f(z)] < w(Kx) for large x
and for an absolute constant K.

Proof. First, let us remark that without loss of generality we can assume that

0f(2)] < (1 + |z]) " *w(Rez), (6.2)
and _
)=+ [[ L dmac). (63
ceCy

Really, we can divide f by (1 + 2)® and then redefine it on the half-plane {Rez < 1} in
such a way that f|{z: Rez < 1/2} =0 and

/ /< D@ dma() =0,

/ /C I dma(0) =0

Dividing our new f by a large constant we obtain (6.2). To prove (6.3) let us consider the
difference

af(z) =

Now, ay is an entire function, and it belongs to H*(C;.), because

@ [[ S wmo| = | [ SZE amac] <

The equality follows from the fact that two first moments of 9 f vanish. The last inequality

trivially follows from (6.2). Therefore,
// fo(gg) dma(C) = f(2),  Rez> 1.

0< Re(<1

def1
zZ)=—

It is evident that being divided by a large constant the function fy satisfies conditions
(6.2)—(6.3) and has the same asymptotics as f does. From now on f satisfies (6.2), (6.3).
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For every ¢ > 0 let us consider the function F(z) = f(z)e**. It is bounded on the
imaginary axis and on the real half-axis by the conditions of the theorem. It is of exponential
growth in the right half-plane. Moreover, 0F(z) is bounded and summable in the right half-
plane (because w decreases faster than any exponential function and because of (6.2)).
Therefore, the function ap,

or@) = F() -+ [[ 2 dwa(o)
ceCy

is analytic in both the first and the fourth quadrants, it is of exponential growth there,
and it is bounded on their boundaries. The Phragmen—Lindelof theorem for angles implies
that arp and F' are bounded in the right half-plane. As a result, we have

|f(z)| = O(exp(—n Re z)) for every n uniformly in Im z. (6.4)

If s

0< Re(<z

Furthermore, the functions

are analytic in the half-planes Re z > x, and the difference f — f, can be estimated from
above as follows:

1= L@ =[5 [ L amao)| < 22 [[ LD ) < st

Re(>z

where K is an absolute constant. Let A = {n € N:Supre,sexpn |f(2)] < w(exp(n —2))},
B =N\ A. Our local goal is to verify that A is infinite. Put

a(r) = —exp(—z)log sup [f(2)].
Rez>expz

Condition (6.4) means that
a(n) — oo as n — 0. (6.5)

Given n € B, consider the function fexp(n—2) bounded and analytic in €, = {z: Rez >
exp(n — 2)} and continuous up to the boundary. We have:

sup |fexp(n—2) (Z)| < Kexp[_a(n _ 2)611—2],
Re z=exp(n—2)

sup |fexp(n—2) (Z)| < Kexp[—a(n)e"],

Rez=expn

where K is an absolute constant (we use that supge > epn |f(2)] = w(e"?)).
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By the two constants theorem (see, for instance, [16, p.257))

Re 3 exp(n—1) o2 ()] < Cexpl—omaln = 2)e"™ - 2 i patme]
As a result,
aln—1)> —Ke " + aln _12:_—; ea(n). (6.6)
Therefore,
a(n) —a(n—1) < Ke™ " + %(a(n —1) —a(n - 2)). (6.7)

If for some ng the set B contains all n > ng, then inequalities (6.7) imply that
a(n) < K

and this is impossible by (6.5). Therefore, there exist arbitrarily large n, n € A.
Let ny,ny € A be numbers such that for every natural n, ny < n < nsy, we have n € B,
and ny — nq > 1. A simple two constants like estimate implies that

log w(exp(ng — 2))
exp(ng —2)

a(ng — 1) > —K

Beside that,
_logw(exp(ny —2))
exp ni )

a(ny) >

Now, inequalities (6.6) employed for n € [ny + 1,15 — 1] imply that the function G(z) =
za(logz) is “almost concave” in the sense that for every z € [e™, e™?]

Glem)(em 1 —x)+ G(e™ ) (z —e™)

6712—1 _ enl

+K27

where K; and Ky are absolute constants. Since the function log(1/w) is convex, we get

e < x < e

for large n; and an absolute constant K. This proves our theorem. e

The assertion of Theorem 6.1 remains valid when the right half-plane is replaced by a
smaller but still massive domain €2,

Q. ={z€Cy : |Tmz| < e Re7Y,

where ¢ is a fixed number, € > 0.
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Corollary 6.2. If f € (C' N L>®)(Q.),
0 (2)| < w(Rez),
and
|f(z)] = O(exp(—nx)), r — 0o, for every n,

then
|f(x)| < w(Kx) for large x,

where K is an absolute constant.

Proof. Let i be the conformal map from C, onto €2, such that

P(00) = 00, P(Ry) =Ry, ¢'(c0) = 1.

Standard estimates of the asymptotic behavior of conformal maps (see, for example, [12,22])
give that
Revy(z) > Rez, z € Cy, Y(x)<z+C, zeR,;,

for sufficiently large =, and
' (2)| < e, z€Cy,

for some ¢ = ¢(e) > 0.
Now the function F'(z) = f(1(z))/c satisfies the conditions of Theorem 6.1, because by
the chain rule

0F (2)| = —[0f (¥ (2))][¢'(2)] < w(Retp(2))) < w(Rez),

F@)] = 117 (b(@)] = Olexp(~mih(x)) = Olexp(-na)), & oo.

1
c

Therefore, for large x

[f(@)] = F(™ (@) S w(EY™(2)) S w(K1z). o

7. A UNIQUENESS THEOREM FOR ASYMPTOTICALLY HOLOMORPHIC FUNCTIONS.

We deal here with asymptotically holomorphic functions f of the following special kind:

0f(2)] < p(p(Rez)|Im z]),
where p is quasianalytic, that is
1
1

o) dx = oo, (7.1)

p is positive, increases, / log log
0
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and ¢ is bounded. Functions having the above estimate of the 0-derivative are quasian-
alytically smooth on Ry. If ¢(z) = 1, then the maximal possible rate of decay of these
functions at oo depends on p and varies from exp(— exp(mz/(2¢))) when p is equal to 0 on
the interval [0, ¢], to arbitrarily rapid decay when p is sufficiently close to the boundary of
quasianalyticity, that is when the integral in (7.1) diverges sufficiently slowly. Therefore,
conditions like

1
f@l<p(=) o 1f@)] < plexp(-a))
can never ensure that f|R; = 0 unless p is sufficiently far from the boundary of quasian-
alyticity. (See, for example [20, Theorem 4]). When ¢ is not constant, but the integral

7(,0(&:) dx

still diverges the situation is similar. However, if this integral converges, then the condition

|[f(@)] < p(e(2))

implies that f|R, = 0.
In the next theorem S denotes the strip {z € C4 : |Imz| < 1}.

Theorem 7.1. Let a function p satisfy condition (7.1), let a function ¢ decrease on R, ,
and

7gp(x) dx < oo.

If f € (CY N L®)(S), -
0f(2)] < p(p(Rez)|Imz|),

and
[f(@)] < ple(z), x>0, (7.2)
then fIRy = 0.
Proof. Put
s(t) = p~ ' (sup |/ (x))),
>t
1
M = loglog —,
p
where p~1 is the inverse function to p. It is evident that s does not increase, and s(t) < ¢(t)

(see (7.2)). We are going to prove that s(t) = 0.
First, we verify that
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for sufficiently large ¢, where A is an absolute constant. To prove this, consider a domain

9 ) R, mal < 0
P={z:t 2(,0(t—2)<R <t+1, |1 |<(p(t_2)}.

fr(z) //C—Z ),

cep

The function fp,

is analytic in P, and for sufficiently large ¢t we have

|fp(z)| < 2exp(—exp M(s(t))), x € [t,t+1].

By the two constants theorem, for sufficiently large ¢ we obtain

o= 505 )| < expl- exp(s(e) - )
(e 55| < e exphr(ste)) - 1)

where A, A; are absolute constants. This proves (7.3).
Without loss of generality assume that p and ¢ are continuous. Then the function s is
also continuous. Construct an infinite sequence of points tx in such a way that g = 2,

__Sltk1) = 1. (7.4)

Tit1
otk — 2)

Such a sequence exists because if we consider r(t) = t—s(t)/(t—2), then clearly r(tx) < tx
and r(t) >t — 1. Thus, 541 can be taken as the smallest solution of r(tx41) = tx. Clearly
tr — oo. Now we get

M (s(trv1)) — M(s(tr)) < A

for some A which does not depend on k. Since

/1 M(t) dt =

and s(t) — 0 as t — oo, we have that

S ste) = 3 ks(tim) - s(t)) > 30 D MECD (o)
k=0 k=1 k=1
. s(tk—1)

1
M(x)dx = oo

> =
A

k=1 s(tx)
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unless s = 0. Furthermore, by (7.4)

S s(t) = sto) + S ot — 2tk — te1) < slto) + > / oz —2)dz < oo.

This contradiction shows that s = 0. Theorem is proved. e

When ¢ is not summable, this result, generally speaking, does not hold. However, we
can prove the following weaker statement.

Theorem 7.2. Let ¢ be a positive decreasing function on Ry,

lim ¢(z) = 0.

Tr—00

Then there exists an increasing function p on Ry such that the following uniqueness prop-
erty holds:
If a function f, f € (C* N L>)(S), satisfies the conditions

0f(2)| < p(¢(Rez)|Imz),  z€S,
[f(@)] < ple(x),  zeRy,

then
fIRy = 0.

The proof of this theorem is similar to that of the preceding one. We shall construct p in
such a way that

p(z) < pi(z) = exp(— exp i)

Then for every f satisfying conditions of Theorem we have

3f(2)| < exp(—exp ! )

| Tm z|
If IRy # 0, put
s(x) = p " (sup | £(£))),
t>x
1 1
M, (x) = loglog e =

Construct a sequence of points t; in such a way that ¢, = 0,

tit1 — S(tk+1) = th, k> 0.
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We have again
Mi(s(te41)) — Ma(s(te)) <A,k

for some absolute constant A. Therefore,

WV
=

!/

$(tgt1) = e
tye1 = A" -logk, E>1.

As a result, we obtain

lim tr = o0,
k—o00

s(ty) = exp(—A"" - t3,),

sup | f(t)| > exp(—expexp(A™ - t3)).
t>ty

Choose p in such a way that

plz) < exp(— exp %)
p(ep(tr)) < exp(—expexp(24™ - 1))
We get a contradiction to the assumption |f(z)| < p(¢(z)). Therefore fI[R. =0. e
The sharpness of these results can be illustrated in the following way.

Example 7.3. Let a function p increase on R, , and

1
/loglog —— dx < .
p(z)

For every two positive functions ¢ and 1) decreasing on R, there exists a function f &€
(Ct N L>)(Cy) such that

0f(2)] < p(¢(Rez)|Imz]),
/(@) < (=), (7.5)
and supp (f|Ry) is unbounded.

Proof. By a theorem of Dyn’kin [8] for every ¢ > 0 there exists a C'-smooth function F,
such that
supp F. C{z:|Imz| <1, 0< Rez < 1},

and, at the same time,
|[Fe(2)] < 1,

0F(2)] < p(c|Im2]),
F.|IR # 0.
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Put -
=Y Yk + 1) F,gq1)(z — k).

k=0
It is easily seen that f enjoys all the properties (7.5). e

Example 7.4. Let a positive decreasing function ¢ on Ry satisfy the condition

/wwwxzw- (7.6)

0

Then there exists a function p on R, satisfying condition (7.1), and a function f € (C' N
L>)(Cy) such that

0f(2)] < plp(Rez)[Imz]),  z€Cy, (7.7)
[F@)] < ple(z), =Ry,
and supp (f|Ry) is unbounded.
Proof. Without loss of generality assume ¢ to be continuous. Put
exp(— exp z), [Imz| < 1
/ / Q) dms (<),
¢~ z|<2
Then . 5
0f(2)] = 0, | Im 2| < 5 or | Im 2| > 2’
|0f(2)| < exp(— exp(Re z/2)) for large Re z, (7.8)
|f(z)| = exp(—expz),  z€R;.
Now, define
p(x) = exp[—exp(p ™" (22)/2)],
where ¢! is the inverse function to ¢. Property (7.1) follows from condition (7.6). Prop-

erties (7.7) of f follow from (7.8). e

We display our results on Figure 3, where p varies from 0 through the quasianalytic
zone, and then through the non-quasianalytic zone (the boundary is the point (*)), and ¢
varies from ¢(x) = 1 through the zone where the integral

790(:(;) dz

diverges, and then through the zone where it converges (the boundary is the point (**)).
It is the shaded domain where our uniqueness theorem holds.
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FIGURE 3

8. THE END OF THE PROOF OF THEOREM 2.1.

Let M = |A /M| be the characteristic number of the j-th saddle of the polycycle C.
Assertion (5.15) says that

A;(€) = ¢+ O(1). (8.1)

Proposition 4.1 shows that the functions f; (see Section 4 for the notations) are quasian-
alytic. This fact combined with an obvious estimate

F;(()=¢+0(1) (8.2)

shows that (( =& +inp e Cy) B
0F;(0)] < p(ne™®). (8.3)

def 18/4) and that Theorem 5.3 implies that

Let us recall that O={(: |n| < 3
9;(Q)] < ABH(p(ACme /)5, (€. (5.4

Let us denote po(t) = CBf(p(CCyt))}4, where C is a large constant depending only on
{A;} and on constants A in (8.4). Now the combination of (8.1)—(8.4) shows that the
function A, = F,, 0 A 0---0 Fy o Ay satisfies the estimate (Q. = {C : |n] < e*e¢}):

0Ar(Q)] < po(e™%), (€ Q..
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Using the notation of Section 4 let us denote f(¢) = e™2r(©) —e=¢ = 5, p(e™¢) — e7¢.
The previous estimate and Theorem A (see Section 2) show that this function satisfies the
conditions of Theorem 2.3 and we conclude that

[be.0(e™¢) — | < po(Ae™=) (8.5)

for sufficiently large &.
Assertions (8.1) and (8.4) imply that A; is uniformly Lipschitz in the strip S = {¢ €
Cy :|Im(| < 1}. Clearly, A; maps R} into Ry and thus

[ Tm A;(¢)] < G5 Im (. (8.6)
The analog of (8.6) for F; follows from (8.2), (8.3):
[ Im F;(¢)| < C[Im]. (8.7)
Combining (8.1)—(8.4) with (8.6) and (8.7) we obtain the estimate
0A:r(Q)] < po(Cne™=%), ¢S (8.8)

Considering again d.(e™¢) — e~ ¢ = e~ (6 — ¢=C we see that this function satisfies the
conditions of Theorem 2.4 (see (8.5), (8.8)). The conclusion is that

ber(e™®) =et
and the finiteness theorem (Theorem 2.1) is completely proved. e
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