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Quasiadditivity and measure property of
capacity and the tangential boundary
behavior of harmonic functions

H. Aikawa and A. A. Borichev

Abstract. A certain quasiadditive property of capacity is shown. Namely, it is proved
that if a set F is dispersely decomposed into subsets, then the capacity of F is comparable
to the summation of the capacities of the subsets. From the quasiadditivity it is derived
that the Lebesgue measure of a certain expanded set is estimated by the capacity of the
original set. The estimation has an application to the boundary behavior of harmonic
functions.
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1. Introduction

Throughout this article we denote by A a positive constant whose value is unim-
portant and may change from line to line. We say that two positive quantities
f and g are comparable, written f = g, if there exists a constant A such that
A7lg < f < Ag. We say that a capacity C is quasiadditive if

C(B)~ ) C(E;)

for some decomposition E = | J E;. In [3] and [4] we considered the quasiadditivity
for certain capacities with respect to the Whitney decomposition. Here we give a
different type of quasiadditivity.
Let K(r) # 0 be a nonnegative nonincreasing lower semicontinuous (1. s. ¢.)

function for » > 0. We assume that

lim K(r) = oo and lim K(r) =0.

r—0 r—00
For z € RY we define K(z) = K(|z|), and assume that K (z) is integrable over
RY. We define the capacity Cx by

Ckx(E) =inf{||p|| : K *u>1on E}.

Define a positive function n(r) by |B(0,n(r))| = Ck(B(0,7)) and put n*(r) =
max{n(r), 2r}.
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Theorem 1. Suppose {B(x;,n;(r;))} is disjoint and E is an analytic subset of
UB(zj,rj). Then

Ck(E)~ Y Cx(ENB(xj,15)).

Theorem 1 has a counterpart in LP-capacity and in energy capacity. Let 1 <
p < 0o. We define

Caep(B) = int{|[f|2: K + > Lou B, f >0},
Define a positive function n,(r) by |B(0,n,(r))| = Ck p(B(0,r)) and put 7);(7") =
max{y (1), 2r}.

Theorem 2. Suppose {B(x;,n;(r;))} is disjoint and E is an analytic subset of
UB(zj,rj). Then

Crp(E)~ Y Crkp(EN Bxj,r;)).

The energy capacity is defined by
ex (FE) = sup{||p||* : p is concentrated on E, /K « pdp < 1}.
We define 7(r) by [B(0,7.(r))| = exc(B(0,7)) and put 5 (r) = max{n.(r), 2}.

Theorem 3. Suppose {B(x;,n%(r;))} is disjoint and E is an analytic subset of
UB(zj,rj). Then

ex(E)~ Y ex(EN B(xj,1;)).

From Theorems 1-3 we can deduce the following measure property of Cx, Cx
and eg. For notational convenience we extend Ck p, 1, and ny; for p > 1. Thus,
Ck,1, m and n7 mean Ck, n and n*, respectively. We put

Exyp= | Bla,n;0p()), Ex.=J Bl@n:(0p().

rel zelE

Theorem 4. Let p > 1. There is a positive constant A depending only on N, K
and p such that

|E‘K7p| < ACK,p(E)7
|EK7e| S AGK(E)

Theorem 4 has an application to the tangential boundary behavior of harmonic
functions. We shall later give Theorem 5, a generalization of Theorem 4, in con-
nection with Nagel-Stein approach regions ([10]). We shall introduce a notion of
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“thin sets” to obtain precise description of the tangential boundary behavior of
harmonic functions given as the Poisson integral of certain potentials. We shall
combine it with Theorem 5 and observe that [9, Theorem 2.9] follows.

The plan of this article is as follows: We prove Theorems 1-3 in the next section.
Since the proofs are similar, we shall give a complete proof only for Theorem 3.
For Theorems 1 and 2 we refer the reader [6]. In Section 3 we shall prove Theorem
4 by using the usual covering lemma. We shall also indicate that if we invoke the
covering lemma due to Nagel-Stein [10], then we obtain Theorem 5, a generalization
of Theorem 4. In Section 4 we shall give some applications of Theorem 5 to the
boundary behavior of harmonic functions.

2. Proof of Theorems 1-3

We prepare an elementary lemma.

Lemma 1. Let 0 < 2r < R. Suppose x ¢ B(zo, R) and let p = dist(z, B(xg,r)).
Then

|B(x, p) N B(xo, R)| = A|B(xo, R)|,

where A depends only on the dimension.

Proof. Let x1 be the point on the line segment connecting xy and x such that
|21 — x| = 3R. It is easy to see that

p=lr—xzo|—1r= |$—x1|+%R—r2 |$—x1|+iR.
We observe that
B(ay, 1) C Bz, p) O\ Blzo, F),
since if y € (21, %R), then
|z —y| < |x—$1|+iR§pand lzo —y| < |a:0—:1:1|+iR:R.

Thus the required inequality follows. O

Proof of Theorem 3. For simplicity we write E; for E N B(x;,r;). It is sufficient
to show that > ex (E;) < Aex(F). Let pu; be the ex-equilibrium measure for Ej,
ie.

p; is concentrated on Ej,
/K * /J,jd/l,j = 1,

1p5]1? = ex (Ej).
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Let pj = ex (E; D205 and let p* = = >_ uj. We observe that

[ sy = Il = exe(By) and )| = 3 exc(Ey). 1)
We put

145

fi=
N ICNHE

))|XB(%'7?7€*(TJ‘))7

dp; = fidz and p' = Y7 p5. Then [|p}|| = [|pf]| = ex (E;) and f; < XB(z; m2(r;))s
since |B(zj,n; ()| > [B(xj,me(rj))| = ex(B(zj,15)) > ex(E;) = ||p}ll. We
observe from the disjointness of B(z;,n%(r;)) that Y f; < > XB(w;mrery)) < 1
Hence

K*u’zK*(ij)gK*lszdx<oo. (2)

Let us compare K * p* and K * p/. Suppose first « ¢ B(z;,n%(r;)). We apply
Lemma 1 with zy = x;, R = n}(r;) and r = r;. Let p; = dist(x, B(zj,r;)). We
have

K () > / K(z —y)du;(y)
B(=z,p; )NB(z;,mz(r;))

> K(pj)p;(B(x, pj) N B(zj,mz(r;)))
= K(pj)llul |B(z, pj) N B(zj,1z(r;))]

|B(wj,m%(r))]
> AK (pj)l|p5]].

Obviously, K x p¥(z) < K(p;)||p;|], whence
K x pi(z) < AK * (). (3)
Now suppose x & |J B(zj,n%(r;)). Then (3) holds for all j, so that by (2)
Kxp*(z) =Y Kxpi(r) <AY K ph(r) = AK = i (z) < A.

Suppose & € B(zj,n%(r;)). Then, by the disjointness of {B(z;,n%(r;))}, we have
x & Uiz B(@i,nZ(ri)). Hence (2) and (3) yield

K xp*(z) = K x pi(z ZK*M ) < K *pj(x) + A
i#g
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Therefore

/K*,u*d,u*:/ K*,u*du*+2/ K« p*dp*
RN\UB(z;,nz (r;)) B(z;,nz(r;))

<al+Y [ K iy

(zj.m2(r5))

A+ Y [ K i

(zj.me(rs))
= (A+1)) ex(Ej),

where the last equality follows from (1).
Now the proof is easy. Let

[ = (Z eK(Ej)) o T

We have

/K*ﬁdﬁSA,

_ 1/2
il = (> exctr)
Obviously g is concentrated on E. Hence by definition
exc(B) > AP = AY ex(B).

Thus the required inequality follows. The theorem is proved. O

The proofs of Theorems 1 and 2 can be carried out in a similar way with the
help of Lemma 1 and the following dual definition of Cx and Ck j, (cf. [8, Theorem
14]). For details we refer to [6].

Theorem A. Let E be an analytic set. Then

Cx (E) = sup{||p|| : p« is concentrated on E, K % ;1 <1 on RV},

Theorem B. Let E be an analytic set. Then

Ck p(E) = sup{||p||P : 1 is concentrated on E, || K * pl|, < 1},
1

1
where — + — = 1.
b q

3. Proof of Theorem 4

Proof of Theorem 4. Since the proof is same, we shall prove only the first inequality.
Take an arbitrary compact subset F' of E ;. By the usual covering lemma we can
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find z; € F such that
F e JBaj, 5y (r5),
{B(zj,m,(r;))} is disjoint,

rj = 0p(w;)-

Let E' = |J B(zj,7;). By definition this is a subset of £. We apply Theorems 1
and 2 for B(z;,r;) and E’. We obtain

Y Crp(B(xj,75)) < ACk p(E') < ACk (E).
On the other hand we have

] <Y 1By, 5y (r))| = A 1By, my(r5)].
It is easy to see that

|B(0,7,,(r)| = [B(0,mp(r))| = Cr p(B(0,7)).
Hence
[F| < ACk ,(E).

Since F' is an arbitrary compact subset of E K p, the required inequality follows.

The theorem is proved. O

In Theorem 4 we have considered the enlargement based on balls. We can
replace balls by the so-called Nagel-Stein region. Let (2 be a set in Rf“ with

Qn 3]1%?_’“ = {0}. Put Q(y) = {z : (z,y) € Q}. We say that Q satisfies the
Nagel-Stein condition (abbreviated to (NS)), if

() 12(y)] < Ay™ with 4= A(Q);
(ii) there is a > 0 such that

(x1,91) € Qand |z — x| < aly —y1) = (z,y) € Q.

Obviously, the nontangential cone I' = {(z,y) : |z| < y} satisfies (NS). The section
['(y) is the open ball with center at 0 and radius y. So, Q(y) may be regarded as
an extension of a ball. For F we put

Erpo = | (2 - Q508())))

zeFE

This is a generalization of E K,p

Theorem 5. Let 2 satisfy (NS). Then
where A > 0 depends only on N, K, p and €.
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Theorem 5 can be proved in a similar way with the help of the covering lemma
due to Nagel-Stein [10, pp.90-92]. For details we refer to [6].

4. Boundary behavior of harmonic functions

In what follows we are interested in the boundary behavior of harmonic functions
in RY . Hereafter we let 1 < p < co. Following the idea in [2] and [7] we introduce

the notion of thinness at the boundary. For a set E C Rf“ we put By = {(z,y) :
0 <y<ttand B =, ep Bz, y). Werecall that B(z,y) is the N-dimensional
ball with center at x and radius y, so that the set E* is a set on the boundary
RY = 8Rf *1. We shall combine the above notation and write

Ef= |J By
(z,y)EE,0<y<t
Definition. Let £ C RY™'. We say that E is Ck p-thin at ORY T if

}1_1)% Ckp(Ef) = 0.

Remark. If F is Ck ,-thin at 3]1%1“, then the essential projection of £
{z : for any ¢ > 0 there is a positive number y < ¢ such that (z,y) € E }

is of Uk j,-capacity 0, and hence of measure 0.
From Theorem 5 we have

Theorem 6. Suppose ) satisfies (NS). Let Qg = {(z,y) : v € Qny(y))}- If E
is Ck p-thin at G]Rf“, then

Mz : (z+Qxyp) N B # 0} =0.

>0
In other words, for almost all x € 3Rf+1, z + Qg p lies eventually outside E, i.e.,
there is t = t; > 0 such that Ex N (x + Qg ) = 0.

Proof. Tt is not so difficult to see that

{z €RY: (¢ + Qup)NE £ 0} C (| (6-Qxp(0p- (@) = [ (@Qn; (05 ()

rzeE* rzeE*

(see [6, Lemma 2]). Hence Theorem 5 yields

{z € RY : (z+ Qk,p) NE # 0} < ACk ,(E*).
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Apply this inequality for E; replacing E. Then the definition of thinness implies
that

He: (x+Qkp) NE # 0} < ACk p(E}) - 0 ast — 0.

Thus the theorem follows. O

Remark. It is not so difficult to see that n;(r)/r — oo as r — 0 (cf. [1]). Hence
QK p is a tangential region.

For a function f on 8]1%?_’“ we denote by PI(f) its Poisson integral. In [6] we
have proved

Theorem 7. Let Q2 C Rerl and suppose Qﬂ@RfJﬂ = {0}. Suppose f € LP(RY).
Then there ts a set E C Rf“ such that E is Ck p,-thin at G]Rf“ and that
li PI(K P)=K 4
bl PI s P(P) = K £ () (@
for Ck p-a.e. z € 8Ri¥+1, i.e. there is a set F' C GRJI“ such that Cg p,(F) =0
and (4) holds for x € 3RJ_|Y+1 \ F.

As a corollary to Theorems 6 and 7 we have the following theorem. This is a
generalization of [9, Theorem 2.9].

Corollary. Let ) C RJ_|Y+1 and suppose Q satisfies (NS). Suppose f € LP(RY).
Then

b PIK < [)(P) = K 5 f(a)

N+1
for almost all x € OR,™".

Remark. In the proof of Theorem 7 we use the nontangential maximal function,
which is of type (p,p) for p > 1 but not of type (1,1). Hence the assumption
1 < p < o is necessary. However, we can show similar results even for p = 1 under
an additional assumption on the kernel k. In fact, if

K(r)~ r_N/ K ()t ~1dt for small r > 0,
0

then the same conclusions of Theorem 7 and Corollary hold. For details we refer
to [6].

Remark. The approach region Qg , in Theorem 7 is in some sense most tangen-
tial. If one consider less tangential approach regions, then one may obtain bound-
ary limit theorems with smaller boundary exceptional sets (corresponding to F' in
Theorem 7) which can be measured by the Hausdorff measure. This problem was
considered in [5].
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