Beurling algebras and the generalized Fourier transform.

A. A. BORICHEV

Abstract. We investigate primary ideals at oo in Beurling-type Frechet algebras in the quasi-
analytic case. They are described by two parameters characterizing the rate of decay of their
Fourier transforms at oo (Theorem 9.6). We use the so called generalized Fourier transform
to treat related convolution equations. A necessary and sufficient condition for the orthogo-
nality of a functional with empty spectrum and an ideal generated by a function is given in
terms of their Fourier transforms (Theorem 3.6). Furthermore, we describe all primary ideals
at 0o in Beurling-type algebras on the half-line (Theorem 9.7).

Beside that, the technique of asymptotically holomorphic functions helps us to describe
asymptotics of quasianalytically smooth function (Theorem 9.9) and to prove an extension of
Levinson’s log-log theorem (Theorem 9.8).

1. INTRODUCTION.

Let B be a given commutative Banach or Frechet algebra having no unit. We extend it
formally with a unit and consider in the algebra obtained (closed) primary ideals that lie
in B. These ideals are called primary ideals at 0o (see, for example, [23,25]).

The General Tauberian Theorem of Wiener states that there are no nontrivial primary
ideals at oo in L'(R). We reformulate this theorem as a statement on the completeness
of translates. For a function f in L'(R) define 74 f(z) = f(z —t), v € R, t € R. Let
{f+}er be a family of elements of L*(R). Then Wiener’s theorem claims that the system
of translates {r:f,}, v € I', t € R, is complete in L'(R) if and only if

() {zeR:Ffy(z) =0} =0,
yer
where

Ff(z) = / f(z)e™ da.
R
In 1938 A. Beurling [2] extended this result to the so called Beurling algebras

L,(R) = L' (R, p(z)dz),

p

where
p(z) >p(0)=1,  ple+y) <px)ply), pltr)>pl@), t>1.

These properties imply the existence of finite limits

o= lim 08P®)

T—00 x T——00 €z

A closed ideal I in L}(R) is primary at oo if and only if

ﬂ{zES:ff(z)zO}:@,

fel
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where S ={2€C: —a < Imz < —f}.
A. Beurling distinguished between three cases: o+ (3 > 0 — the analytic case, a4+ =0
and the integral

(e.0)
1 _
/ logplz) —az 4, (1.1)
oo 1+2x
diverges — the quasianalytic case, & + # = 0 and the integral (1.1) converges — the

non-quasianalytic case. He proved that in the non-quasianalytic case there are no primary
ideals at co. (A modern proof is presented in [23]). Later, in 1950, B. Nyman [37] proved
the existence of certain non-trivial ideals primary at oo in two cases: in the quasianalytic
one, for p(x) ~ exp(|z|/log|z|), and in the analytic one, for p(z) = exp|z|. In the last
case he proved also that every primary ideal at oo is contained in one of the primary ideals
described by him. A complete description of primary ideals at co in the case p(z) = exp |z
was obtained independently by B. I. Korenblum [33] in 1958.

In 1985 H. Hedenmalm [28] described all primary ideals at oo in the following analytic-
non-quasianalytic case:

] — 1 —
ot f>0, / logp(z) —aw / logp(w) —fz . _
1+ 22 oo L1422

We should mention here also related results concerning the completeness of systems
of translates in L'(Ry) obtained by B. Nyman [37] and generalized for L}(R;) in the
non-quasianalytic case by V. P. Gurarii and B. Ja. Levin [27]:

Let {fy},er be a set of elements of L1 (R ), logp(z) = o(z),  — oo. The system of
right translates {r; f,}, v € I', t > 0, where

_t7 Zt7
e f(2) == { g(x ) i<t

is complete in L}(Ry) if and only if

m {z €Cy: Ffy(2) = 0} =0, 0 € clos U ess supp f.

yer ~er

The main steps in these works for L}(R), Lj(Ry) are the following ones: first, we
prove the possibility of analytic continuation for the Carleman transform of a functional
annihilating an ideal or a translation-invariant subspace, and then, use the log-log theorem
of Levinson [35,38], that permits us to get precise estimates of this continuation.

In the quasianalytic case the first step can be made using the theory of commutative
Banach algebras (see [26]). However, proper extensions of the second step have been
unknown up to now.

That is why, in a number of papers by B. I. Korenblum [34], S. P. Geisberg [19],
S. P. Geisberg and V. S. Konjuhovskii [21,22], A. Vretblad [39], Y. Domar [14] only some
examples of continual chains of primary ideals at oo are constructed.
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Here we deal with the Frechet algebra £, with even weight function p,
L, ={f: forevery n >0, f(z)z"p(|z|) € L'(R)}.

These algebras are contained in the corresponding Beurling algebras Lll, (R) and are suffi-
ciently similar to them in the sense that there exist continuous chains of primary ideals at
oo in £, analogous to that discovered for L;(R) by B. I. Korenblum in [34]. Our typical
p are exp{|z|/log(|z| + 2)} and exp{|z|+ |z|/log(|z| + 2)}.

We present (Section 9) a complete description of the primary ideals at oo in the quasi-
analytic case for the Frechet algebras £,,. This description is similar to that in the analytic
case for p(z) = exp |z| in [33] and in the analytic-non-quasianalytic case in [28]. We obtain
it through an application of the generalized Fourier transform. Roughly speaking, we are
able to extend the Fourier transforms of elements in £, to functions in the whole complex
plane with a certain control on their 9 derivative. Such functions are called asymptotically
holomorphic functions. Technical tools to work with these functions were developed in
[5,6]. The generalized Fourier transform is just the map associating to every element in
L, a suitable asymptotically holomorphic extension of its Fourier transform.

The reason to consider £, instead of Lll, (R) is to make simpler the argument involved
in the construction of this generalized Fourier transform. It looks plausible that sharper
estimates on the generalized Fourier transform together with results of this paper could
lead to a description of primary ideals in LI(R), at least for ¢ = 2.

The paper is organized as follows. The generalized Fourier transform for £, is con-
structed in Section 2. In Section 3 we give a necessary and sufficient condition for the
orthogonality of a functional ¢ with empty spectrum (that is for every z in S there exists
f» such that Ff,(z) # 0, f,xp = 0), and an ideal generated by a given function f, in terms
of the Fourier transforms of ¢ and f. This result reduces the problem of orthogonality
to that of describing the asymptotics of some entire functions and some quasianalytically
smooth functions. We begin to discuss these questions in Section 4. Results on these
asymptotics which seem to be of interest also in their own right are obtained in Sections 8
and 9. The proofs involve some auxiliary functions produced by the conformal mappings
technique in Section 6. The case I, > 0 is taken care of in Section 7. Corresponding
regularity questions are discussed in Section 5. These results on asymptotics lead to a de-
scription of primary ideals at oo in £, in Section 9. Several remarks and unsolved problems
are contained in Section 10.

An early version of this paper was published in [9].

The author is sincerely thankful to N. K. Nikolskii and A. L. Volberg for valuable
discussions and to the referees for numerous helpful remarks and suggestions.

2. THE GENERALIZED FOURIER TRANSFORM.

Let a C2?-smooth function p : [0,00) — [1,+00) satisfy the condition p(0) = 1, with
log p(x) strictly concave on R . Set p(z) = p(|z|), z € R. We call such function p a weight
function or just a weight and define

T— 00 €T
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Unlike Beurling’s terminology, we call the weight p quasianalytic if
1 —1
/ —ogp(x)2 P 1 = . (2.1)
x

Let us introduce some notations. Put
LR = {f: fpe 'R}, LFR) ={f: f/pe L(R)}.
£y ={f+ for every n >0, [ [f(2)a" o) do < o0},
L= {f: forsomen >0, ¢> 0, |f(@) < ellal + 1)"p(lo]},
My ={f s for some n >0, [ |f(@)l(j2] + 1) "p(Jal) da < o},

My = {f: for every n > 0 there exists ¢ > 0 such that | f(z)| < c(|z|+1)""p(|z|)}.

Given a domain 2, denote by A(€2) the set of the functions analytic in Q. For a majorant
M defined on R\ [—c_,cy] with c_,c4 € RU {—o00,00} we introduce related spaces of
analytic functions

AL = {f € A(Cx +icy) : there exists ¢ > 0, | f(2)] < cM(Imz)},
AM — {(f7g) : f € AL7 g € A]_\4'}7
where C; = {z € C: £Imz > 0}. The Fourier transform is defined in the usual way,

Ff(z) = / F(2)ei®* da.

For any function f on R put fi = f - xr., where Ry = {z € R: £z > 0}. In the case
l, =0 if logz = o(logp(z)), * — oo, then

F((LpR)+) CCF(Cs),  F(Ly(R) C C*(R),

in the case I, > 0 if logz = o(logp(x) — ), + — oo, then
FILL®):) € CF(Ch — L), FILAR) € CF ({2 [Tnz| < L)),

where C'P(€2) is the space of the functions analytic in © and infinitely differentiable up to
the boundary of €.
Beside that, in both cases, if p satisfies (2.1), then F(L;(R))|R = il, are quasianalytic
(A) classes (for a definition see [36]).
Put
w(z) = sup p(r) exp(—rx), x> 1.
r>0
LEMMA 2.1. (a) If (14 2?)f(z) € (L°(R))4, then Ff € AJ.
(b) If F(z)(1+|Rez|)?* € A, then F = F [ for some function f, f € (L°(R)), which
is determined by the equality
1

— F(2)e ™ dz = f(x), reRy, s>1,. (2.2)
27 Jrtis



THE PROOF uses the relation

inlf w(x)e®™ = p(s), s > 0.
r>lp

This is a standard property of the Legendre transform (see [36]). The equality (2.2) is a
form of the inversion formula for the Fourier transform. J

Let ¢, be a fixed number, [, < ¢, < p'(0)/p(0), and let the function r be defined
(uniquely) by the equalities

w(z) = p(r(z)) exp(—zr(z)), b <z <p'(0)/p(0),
r(z) =0, 2> p'(0)/p(0).
This function is not necessarily in C', so we redefine it on [c,, p'(0)/p(0)] not increasing
it in such a way that the obtained function is in C*((l,,o0)). Note, that r(z) — oo,

x =1, +0,
p(s) exp(—sx) > 1, 0<s<r(z). (2.3)

To define the generalized Fourier transform we use the construction of restricted Fourier
transform (cf. [13], see also [17]), unlike [5,7,8] where a variant of continuation with
controlled 9 derivative proposed by E. M. Dyn’kin in [16] was applied.

For every f € K,,

Kp:={f:z—af(x) e Ly(R), fe Ly, (R},

we define a function Ff on (C4 + ilp,) U (C_ —il,) in the following way:

Ff(2) :/ ( )f(:):)eimz dx, Imz > 1,
—r(Imz

_ r(—Imz) )
Ff(z)= / f(z)e" ™ dx, Imz < —lp.

— 00

The function Ff is bounded because of (2.3) and analytic for |Im z| > p'(0)/p(0) by the
definition of r. Furthermore, F f is continuously differentiable, for some c,

\E(ﬂ)(z)\ < c%, where 9 = %(a% + i(%), (2.4)

and the function z — |9(Ff)(2)|w(|Imz|)(1 + |z|)~2 is summable on {z : |Imz| > lp}.
This follows from the equality

IFf)(z) = %r'(Imz)f(—r(Imz))e‘i”“mz), Imz >, (2.5)



the estimate
/I > [O(F ) (2)]w(Imz)(1 + [2]) 2 dma(2) <
) [ Pt [Tl -ope <o @

where ¢(p) depends only on p, and analogous relations in the lower half-plane.
Let zo € il, + R, z € il, + C,, z — 2p. Then

‘ﬁf(z) — ff(ZO)‘ < ‘/0 f(:[;)eiwzo (eim(z—zo) _ 1) dl"—l—

0 ) ) —r(Imz) )
‘/ f(z)e' ™ [1 — eirlz0=2)] d$‘ + ‘/ f(z)e™* dx‘.
—r(Imz) —00

The first and the third terms tend to 0 because the function z — f(z)exp(l,y|z|) is
summable. Furthermore, by (2.3),

0
/ f(l') [1 - eim(zo—z)] ‘e—fb Im z dz <

—r(Imz)
t1 0 .
sup M . / ‘f(l') |:1 _ ele(ZO—Z)] ‘p(x) dx S
0<t<r(Imz) p(t) —00

0
/ f ()] —eim(zo_z)‘p(ac) dxr — 0 for z — zp.

—00

Thus, we can extend the function Ff continuously to the set {z: =1, < Imz <I,}, by
defining it there to be equal to Ff.
Now we impose a more restrictive condition on p: for sufficiently big t,

log )" (1) 2 2. (.7)

Then for some ¢ > 0, and for [, <z < ¢,

()
w(a) = exp[logp(r(z)) = r(z)(lozp) ()] = coxp[= [ sogp)(5)ds] = or' (o),

1 )2
@l 1y
w(zx) _O(r(a:)>’ =+ 0. (2.9)

Taking into account estimate (2.4) we obtain that
‘g(ﬁf)(z)‘ =o0(1), Imz—1,+0. (2.10)
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Analogously,

oo

oFn@ - [

—r(Imz)

iz f (x)e'®? dx‘ = o(1), Imz — 1, +0.

Finally, if Im zy = [,, then by (2.3) and Lebesgue bounded convergence theorem,

oo . oo .
. . 1Tz . . ITZ
Zlgrzlo ixf(z)e'* do = / iz f(z)e' ™ d.
Im z>1,, —r(Imz) —00

Thus, j-:f € CY(C). The function .7::f is called the generalized Fourier transform of f.
Of course, it depends on the choice of the weight function p. We indicate what weight is
taken to construct F f when this is not clear from the context.

We can reconstruct f from Ff as follows. For every u € CPR), fek,, if F= Ff-Fu,
then

- 1 .
(FF)@) = o /RHSF(Z)e_”Z dz = (fru)(z), wER, (2.11)

and an analogous equality holds for s — —[,, — 0. This statement follows from the relation
1 .
L[ p)eioz s :/ FOyule—t)dt — (Fru)(@), 51, +0.
2m R+is —r(s)
Let us verify the multiplicative property of the generalized Fourier transform: it maps
convolutions into products.
LEMMA 2.2. If f € K, g € (L(R))y, where s(z) = p(z)(1 + |z)™% v € C(R),
F=Ff -Fu-Fg, then
(a) the function G : z — (1 + |z|)20F (2) is summable and bounded in the half-plane
Cy +ilp.

(b) (F~1F)(z) = limg_s7, 40 % fRHs F(2)e @ dz = (f xu* g)(x).

PROOF: (a) The summability of G is a consequence of (2.6) and the estimate

/000 p(z)(1+2) e ™ dr < w(t).

Moreover, we can obtain that for some ¢ > 0

oo

° t
/ p(z)(1+2) e dr < CL)z, lp <t<cp. (2.12)
0 (r(2))
To get it, we verify that the expression
sup exp[—logp(r(t)) + tr(t) + 2logr(t) + logp(s) — ts — 2log(1 + s)]
0<s<oo
is bounded uniformly in ¢, [, < ¢t < ¢p, and this follows from (2.7).
Now we get that G is bounded as a consequence of (2.4), (2.8) and (2.12).

(b) This assertion is verified in the same way as (2.11). It is sufficient to indicate that

; f@), tzu,
v 0, t <z

L,(R)
— f, x— —o0, where  f,(t) =

Let us show that under some mild conditions every asymptotically holomorphic function
is uniquely determined by its inverse (generalized) Fourier transform.
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LeMMA 2.3. If F € CYCy), (1+ |2]2)0F(z) € L>®(Q) N LY(Q), where Q = {z : 0 <
Imz < 1}, and for every s > 0

(L4 |2]*)F(2) € L™ (2N (Cy +is)),
then the limit

lim F(2)e™"" dz. (2.13)
s—+0 R+’LS

exists and is finite for every ¢ € R.
Moreover, if these limits are equal to zero for all x, then F' extends to R by 0 continuously,
and the extended function F' satisfies the conditions

F e C(Cy), F(2)(1+ |2*) € L=(Q).
Proor: Put
1 [ OF(¢) 1 / — .
F = — — F
() = 1 [ T dmale) - —— [ OF©) dma(e). zeC\ ik
Fy(2) = F(2) — Fi(2),  z€Cy\{i}.
These functions are well defined and continuous because of the conditions on F and OF.

Analogously we obtain that the integrals fR+is F; (2)e~%®* dz converge for j = 1, s € R,
and for j =2, 0 < s < 1. Moreover,

lim Fi(2)e™ % dz = / Fi(2)e™ "% dz,
s=H+0 Jr4is R

because

(/ —/)Fl(z)e_mz dz = —22'/ OF) (2)e™"% dmy(2), 0<s<l.
R+is R 0<Imz<s

The integrals fRHS Fy(2)e™** dz do not depend on s, 0 < s < 1, since F; is analytic in .
Thus, the existence of the limits (2.13) is proved.
If these limits are identically equal to zero, then

/ Fy(2)e™ % dz = — /F1 ey 0<s<l.
R+is

Since Fy € C(C_) N H>®(C_) N LY(R), we have

/ Fi(2)e” % dz = 0, / Fy(2)e™ % dz = 0, x > 0.
R+4i/2

As a consequence, the function F5, analytic in €2, extends analytically across R to a function
in H*(C_ +1i/2). Beside that, F5(2)(1 + |2]?) € L®(R +i/2). As a result,

FeC(Cy),  F(2)1+]e]*) € L™(Q),

/ F(2)e™* dz = lim F(2)e ™% dz = 0, z € R,
R s740 JRpis
therefore FIR = 0. I

We complete this section with a statement associating the asymptotics of the convolution
of two functions and boundedness of the product of their Fourier transforms.
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THEOREM 2.4. Let [ € Ky, g € (M) 4.
(a) If
(f *g)(x) = O(lz|Texp(lpr)), 2] — o0,
then for every u € C§°(R),

Ff-Fg-Fue L®({z:1, < Imz < I, + 1}) N C(Cy4 + il,),
(Ff-Fg)(z) = F(f+9)(2), z€R+il,
(b) If Ff-Fg e L=(Cy + il,) N C(C4 +ily), then for every u € C5°(R),
1

el (Ff-Fg- Fu)(z)e ™ dz = (f * g * u)(z).
27 Jryit,

PROOF: (a) Let us denote by Fj(z) the generalized Fourier transform of the function
(f * g)(z) exp(—l,x) for the weight po(z) = (1 + |z|)* (which satisfies (2.7)), by F(z) the
function

(Fi(z = ily) = (Ff - Fg)(2)) - Fulz).
Then (2.11) implies the existence of the limits

1 .
lim — / Fi(2)Fu(z+il,)e ™ dz = (f * g * u)(z) exp(—Ipz), reR
R+is
Lemma 2.2 (b) implies the existence of the limits

lim L / (Ff-Fg)(z+ ily) Fu(z +ily)e™ "% dz = (f * g » u)(z) exp(—I,7), zeR
R+is

s—+0 27
Thus,
1 .
lim — / F(z+ily)e " dz =0, zeR
R+is

The function F'(-+1il,) satisfies the conditions of Lemma 2.3, because both the functions

z = Fi(z —ily) - Fu(z) and Ff-Fg- Fu satisfy them as a consequence of estimate (2.10)
and Lemma 2.2 (a) respectively. Therefore,

F € C(Cy +ily), F|R +il, =0, FeL*({z:l,<Imz<l,+1}).

Since Fy € C1(C), F1|R = F(f = g)(- + il,)|R, we get our assertion.
(b) By Lemma 2.2 (b), if F' = Ff-Fg- Fu, then the following equality holds:

1 .
s—1>ilgl+0 Py /RHS F(z)e "™ dz = (f * g * u)(z).
Lemma 2.2 (a) and the conditions of the theorem imply that the limit in the left-hand side

is equal to

1 .
— F(z)e "% dz.
2T Jryil,

The theorem is proved. N



3. CRITERIA OF ORTHOGONALITY.

An element f of £, or M, is said to be mean periodic if f x g = 0 for some non-zero
functional g. An immediate implication of Theorem 2.4 is the following result associating
the property of mean periodicity with the behavior of the Fourier transforms.

Here we suppose that for every ¢ > 0 there exists x. such that

C
(logp)”(2)| > =, = > (3.1)

Under this condition we obtain by an argument similar to that used in the proof of relation
(2.9) that

1
—— = o(x), x — +0,
r(z +1p)]
and for every n > 0,
r?(z + 1) n
A . 2
P o(z"), x — +0 (3.2)

THEOREM 3.1. Let the weight p satisfy conditions (2.1) and (3.1). If f € IC,\ {0}, g € M;,
then f x g = 0 if and only if the function Fg which coincides with Fgy and —Fg_ on
Ct +1il, and C_ —il, respectively, can be meromorphically extended to C, the divisor of
its poles is subordinated to the divisor of zeros of F f, and

Fg-F[ e L®C).
In this situation

F(fxg4)(z) = =F(fg-)(2) = Ff-Fg(z),  ze€R+[-lp )i

This meromorphic function Fg is called the Carleman transform of g.
In the proof of Theorem 3.1 and later on we use extensively the following statement.
We consider bounded simply connected domains D.

THEOREM (on harmonic estimation). Let f be a function analytic and bounded in D and
continuous up to 0D. For z € D,

log |/(2)] < /8 105 1(0) (4G, D).

where w(z,d(, D) is the harmonic measure in D as seen from z.

A corollary of this theorem claims that under the same conditions if |f(¢)| < M; on a
Borel set E C 0D, |f(¢)| < My on 0D \ E, then

1f(2)| < M;’(Z,E,D)le—w(%ED).

We shall refer to this result as the theorem on two constants (see, for instance, [32, p.
257]). Sometimes, abusing the terminology a little bit, we use the same name for analogous
statements involving several subsets of 0D.
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Given a C'-smooth function f in a domain D, we denote by H p the function

o) = 1)~ = [ 2 a0, (33)

pz—(

PROOF OF THEOREM 3.1: If f x g = 0, then as a consequence of (3.1),
(f #90) (@) = =(f xg-) (@) = O(|l«| e 1), |z| = o

Now, applying Theorem 2.4 (a), we deduce that for every u € C$°(R) the function Ff -
Fg4+ - Fu extends continuously across the strip Q@ = {z : [Imz| < [,} and analytically in
its interior to the function —F f-Fg— - Fu in the half-plane C_ — il,. This continuation
is bounded in Q1 = {z : |Imz| < I, + 1}. In addition, the restriction of this continuation
to Q coincides with the following products of Fourier transforms:

F(Frgy)-Fu=~F(frg-)- Fu.

These facts imply the meromorphic continuability of Fg, to Fg_, the restriction on the
divisor of poles of this continuation Fg, and the equality

F(frxgy)=~F(fxg-)=Ff - Fg

in the strip . Here we use quasianalyticity of the function Ff. The only thing we need
to verify is the restriction on the poles of Fg. Our argument is as follows. The zeros of
Ff on Q are of at most finite order. Let Ff have a zero of order n at zy, Imzy = l,. We
know that Fg is analytic in a deleted neighborhood of z,

B={z:0<|z— 2| <¢€}.
If € is small enough, then for some ¢y, co

)< o < IFIG)

< < ca, z€ BNQ. (3.4)
|z — zo|™

Let us suppose that the function Fg(z)(z — zp)™ is unbounded in B. Then it should be
large on some connected set «y in B\ 2, whose radial projection on the ray zp+ R, contains
a neighborhood of zy: for some ¢ > 0

c

log |Fg(z)| > z €.

|z — 20|’
Indeed, the function z — Fg(zo+1/2)z~" is analytic and unbounded on C; and bounded
on J(Cy \ RD) for big R, D = {z € C : |z| < 1}. Now our statement follows from a
standard Phragmen-Lindelof type argument.
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Since .7?f - Fg is bounded near zq, for some cq,

Cc

log |Ff(2)] < ¢1 — zZE€n.

|2 — 20|’

Put D = 20+ 0D, 0 < 0 < ¢, and consider the function H = H%fD, defined by (3.3),
analytic in D. We obtain that H is small on y. Namely, by (2.4) and (2.8) we have for

small § > 0 and some ¢ > 0,

. (1 w(0 +1,) >
log |H(z)| < —cdy := —cmin| =, log ——2 ), zZ €.
5 |H(2) (5on s )
Now, by the theorem on two constants applied to H in the connected component of D\ ~y
containing D N €2, we get for some ¢ > 0,

log |H(2)| < —cbux, |z — 20| < 9/2.
Therefore, for some ¢; > 0,
log |F£(2)] < —c16., |2 — 20| < 6/2,

that contradicts to (3.4) for small d, because by (3.2) for every n > 0 we have w(z)(z —
)" (r(z))™% = oo, x = I, + 0. Thus, Fg(z)(z — 20)™ is bounded in B, and Fg has at z
a pole of degree at most n.

Note that the function F', F' = ]N-"f - Fg, is bounded in C\ € because ]N-"f and Fg4 are
bounded there. We already know that F' - Fu is bounded in 2.

LEMMA 3.2. If () is a strip parallel to the real line, F' is an unbounded C*-function in Q,
bounded on 052 and with bounded O derivative, then for some ¢ > 0,

max |F(z)| > cexpexpcx.
| Re z|=x
PROOF: Applying the theorem on two constants to D ={z € Q:a -z < Rez < a+ x}
and H = Hpp we get that for big fixed a, for sufficiently big maxge =4 |F(2)| and for
some ¢ > 1,
max log |F(z)| > ¢ max log|F(z)|.
| Re z—z|=a Rez=zx
Iterating this estimate we obtain our assertion. |

Let us return to the proof of the theorem. If F'is not bounded in €24, then by Lemma 3.2,
the growth of F' is sufficiently large. This growth cannot be compensated by the decay of

Fu. Thus, F is bounded on Qq, F' € L*°(C).
Let us turn now to the opposite implication. For every u € C§°(R),

1 .
Frgs o) =5 [ T e )
—% (Ff -Fg_ - Fu)(z)e ™ dz = —(f x g_ xu)(x).

R—il,
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The middle equality follows from the inclusion
Ff-FgeC(Q)nN H™(intQ),

the other ones follow from Theorem 2.4 (b). Therefore, (f*g)«u = 0 for every u € C§°(R),
fxg=0.1
The implication
ﬂ {z: Ff(z) =0} =0 = Fg e AC)
fif*xg=0
can be found in many papers, as was mentioned above. Usually it is proved via certain
localization of the functions Ff and Fg4+. In the quasianalytic case this method cannot

be applied, and the corresponding result was obtained by Y. Domar in 1975 [12] using the
technique of commutative Banach algebras. The equality

F(fx90)(z) = (Ff-Fg)(z) = =F(fx9-)(2), 2z €R+[=lp, bli,

could be demonstrated (at least in the analytic-non-quasianalytic case) with the use of
an argument similar to that in [28]. However, necessary and sufficient conditions for the
equality f * g = 0 in the quasianalytic case have not been obtained until now. The reason
is that the information on the behavior of Ff and Fg only in €2 is insufficient. We show
it by using the following construction.

ExAMPLE 3.3. Let p be a sufficiently regular (analitically-) quasianalytic weight. There
exist f € Ly, g € M}, such that the functions g4 and —Fg_ extend to an entire function
o (Fg-Ff)z) =0(z]""), |z| =00, Imze[=l,l,], n>0,
but fxg # 0.

(A similar example is sketched in [25], see also [37, Sections 17, 18]).
PRrROOF: Let a be a sufficiently regular positive function, rapidly decreasing to 0 for x — oo,

Q={z:Rez>0,l,+a(Rez)/2< Imz <, +a(Rez)},
Qo={z:Rez>0, |Imz| <7},

and let ¢ be a conformal map from Q onto Qg such that ¢(o0) = o,

o) = oEerepda). e C@NAQ)

G(z) :/8 28) je GeAE)\D)

0z—§

We denote by the same symbol G the analytic continuation of G into €2. Then G is an
entire function. For z € 2 we have

G(2) = —2mip(z) + / O e,

a0 ? —§

13



Furthermore, by Warschawski’s theorem (see [40)]), if « is sufficiently regular we have

a”' () g
el

a(z)

=: k(a™t(t)).

sup |p(2)| < expexp [4%/
Imz>1,+t

Put

g(t) = i/asz e o (2) dz. (3.5)

Then Fgi = £G in Cy £ lpi. To verify that g € L7 we deform the integration contour in
(3.5) to I' = 9(Q2N (C_ + (I, + t)i)) and obtain

< ci >
j9(@)| < eint{ Lol el + Hel}, @20,

and an analogous inequality for x < 0. To get that

i <
jnt{ | swp o) expllly + )21} < epla)

it is enough to know that

sup  Jp(2)] < cw(ly +1)
Im z=l,+t

which follows if « satisfies the inequality
a_l(t) dr
47r/ NG 41, N() = loglogw(?).

In particular, it holds if 4w(a=1)(t) > ¢N’(l, + ¢). This inequality shows that such a
function exists if the integral flp N(x)dz diverges, which is equivalent (see Lemma 5.6,
[3]) to the quasianalyticity of the weight p (for sufficiently regular p). To find g € M;; we
repeat the process described above for sufficiently regular p; such that £ C M7 (see also
Lemma 3.5).

Since |G| is estimated from above on R + [,i by maxsso{c/(a(s)k(s))}, for sufficiently
regular v we obtain that G is bounded on C_ + [,i. Now, if we put f(z) = exp(—z?), then
the functions f and g satisfy the conditions of Example, but by Theorem 3.1, f x g # 0.
Indeed, (Ff) and Ff are bounded. Since Ff(z) = Ff(z) = /me " /%, z € R, for fixed
p and sufficiently small o, using the theorem on two constants we obtain that |Ff(z)| >
exp(—c(Re 2)2) on Q. Therefore, for sufficiently small o the product Ff - Fg is unbounded
in Q.

To be in a position to treat convolution equations on the half-line, we need the following
result.

14



THEOREM 3.4. Let the weight p satisfy conditions (2.1) and (3.1), f € (Kp)+ \ {0},
g € (Mj)—. Then (f xg)_ = 0 if and only if the function Fg extends meromorphically to
C, the divisor of its poles is subordinated to the divisor of zeros of F f, and

Fg-F[ e L®C).
In this situation B
F(f+9)(2) = (Ff-Fg)(2),  2€Cy —ily.
PROOF: As a consequence of (3.1),
(f *g)(x) = O(|z|"e "), T — +00.

By Theorem 2.4 (a), modified a little bit, for every u € C5°(R) the function Ff - Fg - Fu
extends continuously across the line R — il, to the function F' = F(f * g) - Fu which is
analytic in the half-plane C; — [,i. Now the function F/(Fu - Ff) is the meromorphic
continuation of the function Fg. (Again we use the fact that Ff is quasianalytic). Thus,
we get the equality

F(f+9)(2) = (Ff-Fg)(2),  z€Cy —ily,
and the property of the poles’ divisor of Fg we are interested in. Finally, the boundedness
of the function Ff - Fg is proved in just the same way as in Theorem 3.1.
In the converse direction, for every u € C3°(R), if F' = Ff - Fg - Fu, then by Theo-

rem 2.4 (b)

Froru@ =50 [ Pt

Now for each u such that suppu C Ry we have
F(z)e™ ™% ¢ H*(Cy —il,) N L' (R —il,), x <0,
therefore, supp (f * g x u) C Ry U{0}. As aresult, (f+xg)— =0. I

LEMMA 3.5. If 2 = o(p(z)), ((x) — oo as z — 0o, then there exists a C*-smooth convex
function 1 such that ¢'(x) < ((x), x = o(¢(x)), Y (z) = o(p(z)), " (x) = O(1), z — .

PRrROOF: This statement is rather standard. Put ¢y(0) = ¢{(0) = 0,
17 ]-7 if ,l/)(l) (LIT) < mln{ V lnfyZ:l: (,O(y)/ 71nfy2w C(y)}a
(z) = .
0, otherwise.
Then

0<yi(z) <1, min{ inf ¢(y)/y, inf C(y)} > Pp(x) = 00, T — 00,
y>w y>w

wo() =0(e, [l y). o =olule). 5o

The function ¢ (z) = [, 1o(z) dz satisfies all the conditions of the lemma. |

This lemma helps us to prove a variant of Theorem 3.1 for the pairs of spaces (ﬁp, £;)

and (./\/lp, M;)

15



THEOREM 3.6. Let 2 be one of the spaces L, and M,, the weight p satisfy conditions
(2.1) and (3.1) and f € A\ {0}, g € A*. Pick a weight p satisfying (2.1) and (3.1) and
such that f € Lo, g € M;ﬁ. (The existence of such a weight follows from Lemma 3.5).

Then f x g = 0 if and only if the function Fg which coincides with Fgy and —Fg_ on
C; +il, and C_ — il, respectively, meromorphically extend to C, the divisor of its poles
is subordinated to the divisor of zeros of F f, and for every u € C§°(R),

Fg- F(f xu) € L®(C),

where the generalized Fourier transform F (f xu) is taken with respect to the weight p. In
this situation

F(f*g4)(2) = =F(fxg-)(2) = Ff-Fyg(z),  ze€R+[=lp L

REMARK 3.7: Theorem 3.4 extends analogously.

REMARK 3.8: Let us sketch how to find p mentioned in Theorem 3.6, for example, in the
case A = M,,. Put

plexpx) p(—expx) )

lg(expz)|” |g(—expz)| ((z) = —(1/2)(logp)” (exp x) exp 2z.

o(z) = log min(

Using Lemma 3.5 we find the function ¢ and put

P (z) = p(x) exp(—¢(log™ |z])).

The weight p satisfies (2.1) and (3.1). For an arbitrary u € C§°(R) if f; = f x u, then
fe E;, fi1€ IC;, g e M;‘;, and we are in the conditions of Theorem 3.1.

4. ASYMPTOTICS OF QUASIANALYTIC AND ENTIRE FUNCTIONS. DISCUSSION.

Theorems 3.1 and 3.6 make it clear that it is important to have a description of the
asymptotics of quasianalytically smooth functions on the line or on the strip and entire
functions which are the Carleman transforms, to be able to investigate primary ideals at
oo in £, and M,,.

The Fourier transform turns elements of L;(R) into functions in C{M,}(R),

(n) n
R = {1 € 0@ s gl <o) oty —amp

The first results on the asymptotics of these functions in the quasianalytic case were
obtained in [29,30]. The limit rate of the decay of quasianalytically smooth functions on
the real line was written down in [34]. A proof is presented in [19].

Furthermore, the limit rate of the decay for functions smooth (not necessarily quasian-
alytically smooth) on a closed strip and analytic inside it was obtained independently in
[39]. Let us cite some results of this work (Theorems I and III):
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Suppose that the weight p(z) = p(|z|) increases for x > 0, p(0) = 1, the function
z +— (logp(w))/z decreases for z > 0, the function sup, g p(z +y)/p(y) is locally bounded,

and |
/ ogp(z) , _
R ]_ + ,TZ

THEOREM A. (a) If f € L (R), f # 0, then
lérgg.}f (h(—1log|Ff(z)|) — z) < oo,

Mw:EA”%ﬁQM_

where

s 1+ 2
(b) There exists f € Ly(R) such that

limrgggf (h(—log |Ff(z)|) —x) = 0.

If the function = — g(z)(z® + 1) belongs to L°(R), and the Carleman transform of g,
Fg, is an entire function, then for some ¢ > 0,

logt log™ | Fg(2)| < ¢+ log" sup[logp(z) — z|Imz|] =: ¢+ N (| Imz|).
z>0

Two well-known results about the asymtotical behavior of entire functions G satisfying the
estimate

logt log™ |G(2)| < N(|Imz|), z € C,
are, in a sense, limite cases of the relation interesting for us.

THEOREM B. (The Phragmen-Lindel6f theorem for the strip) If a function G, G € A(C)N
Apr, M = expexp N, is unbounded in the right half-plane, and

1, t> /2,
N@:{ =/
00, t<m/2,
then
lim sup[log* log™ |G(z + iy)| — ] > —oo.
Tr—>00 Y

THEOREM C. (The log-log theorem of Levinson) If N decreases,

/N®ﬁ<w
0
and G € A(C) N Ay, M = expexp N, then G is a constant function.

We need to produce results sharpening Theorem A and filling the gap between The-
orems B and C. First we construct some auxiliary functions with special asymptotical
behavior at co. We do it in Section 6 using the conformal mappings technique. B. Nyman
was the first to apply the so called “Nyman’s bottle” construction in [37] (for the term see
[39, p. 120]). Here, we need estimates essentially sharper than that in [37]. Therefore, our
argument is necessarily more involved. Related notations are introduced in Section 5. Also,
we discuss there regularity questions. In Sections 5 and 6 we deal with the case [, = 0.
The case I, > 0 is considered in Section 7. Finally, results extending Theorems A — C are
proved in Sections 8 and 9.
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5. AUXILIARY STATEMENTS RELATED TO THE LEGENDRE TRANSFORM.

Let p(x) be a positive C?-smooth strictly concave function on Ry, p(0) = 0, p(x) = o(x),

T — 00,
/00 % dr = oo. (5.1)

We introduce several auxiliary functions determined by p. Put

h(z _%/mps(j)d, > 1,
F(z) = logh™(z), x>0,
T 1
7(’7’.) = §F/(.’L')7 x> 07
M(z) = F(y~'(x)) +loglay' (v (x)), 0 <z <~(0),
@z) =swlply) —zy),  ©>0,

N(z) =log* Q(x), x> 0.

Assuming some regularity of p, we are going to prove a number of statements concerning
the regularity of these functions and relations between them. In particular, we show that
the function N (which is the logarithm of the Legendre transform of p) is very close to M.

More specifically, we use the following assumptions on p:

the function ¢ : z +— log p(exp z) is strictly convex for big x,
for some ¢ > 0, the function ¢(z) + clog x is concave for big x,

for every A, the function g(x) — A/z is convex for big z.

Note, that condition (5.4) implies (5.2).

LeEmMA 5.1. (a) p(x) > zp'(x), x > 0.
(b) Under condition (5.2),

1 /
lim ¢'(z) = lim log p(x) = lim 2 (z)

= 1.
T—00 z—oo logx z—oo  p(x)

PROOF: (a) follows from the concavity of p, (b) follows from (5.1), the relation p(z) = o(z),
x — 00, and the convexity of q. I

18



LEMMA 5.2.

) P(hle) = e
F (h(z) _h/(z)z;;gx(zl)/ () . 2p(x)p;(i§>’(x)7 z>1
© ) = San'(e) = 2,
han = T (14 @)Y _ T an (@) — o)
7 (h(x) 5(1 h'(x) ) T2 p(x) ’
Y () = = (o _ Tt o)

THE PROOF is immediate. |

LeEMMA 5.3. (a) Under condition (5.2), ¢'(z) <1, ¢" () < ¢'(2)(1 — ¢'(x)) <1 —¢'(x).
(b) Under conditions (5.2) and (5.3), ¢'(x) > 1 — ¢/x for some ¢ > 0 and big x.

PROOF: (a) By convexity of ¢, ¢’ increases, and by Lemma 5.1 (b), ¢'(x) — 1 as z — oc.
Hence, ¢'(xz) < 1 for big z. Expressing derivatives of p in terms of ¢ we obtain

p'(expz) = ¢'(z) exp(q(z) — z),
P (expx) = (¢"(x) + ¢ (z) — ¢'(x)) exp(g(x) — 22).

Since p"(z) < 0, we get ¢ (z) + ¢'*(z) < ¢' ().
(b) The fact that ¢”(z) < c¢/x? for large x and the properties of ¢’ mentioned in the
proof of (a) imply the assertion. i

LEMMA 5.4. (a) The function F is convex, F'(x) — oo, F"(x) = o(F"*(x)), z — oo.
(b) The function v decreases, v¥'(z) — 0, as © — oo.
(c) Under conditions (5.2) and (5.3) the function ~y(x) is convex for big x,

/007/2(x)dx<00, /mwdx<oo.

(@) (@)

PRrROOF: (a) and (b) follow from Lemmas 5.1 and 5.2. The first part of (c) follows from
Lemma 5.2 (c¢). To prove the second part of (c¢) note that

2 y72(g) * ~2(h(z)) ,, T [ 20 (z)\ 2 d
/ ’ny(x) da::/ Wh(x)dx:i/ (1_ /[))(a:)) =

m oo _/ 9 _E oo _/ 9 OOd_x
2/ (1 —¢'(logx)) dlogx_Q/ (1—-4¢'(x)) dxgc/ 3 <00
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by Lemma 5.3 (b). To complete the proof of (c) we use the following estimates:

/00 @) dz < sup |y?(z)| /00 7’;(:(:)) dr < o0,

v(z)
=A@ @ @) g gy = [T @)
[T e [ ey - [ <,
@) [ o e o) de
[ TS = [ am@) @) @) da -

by Lemma 5.2 (c)
//2 10g.’1§') 7.(.3 00 Jo%) dx
:—/ 2h/2( ) h/(x)dng/ quz(x)dxﬁc/ ey <oc. 1

LEMMA 5.5. Under condition (5.2),

(a) M'(x) < 0 for small positive x.
(b) v(2)y'(z) M'(v(x)) < 7/2 for big .
(¢) v()y"(x) < (x/2)|y'(x)| for big .

Proor: First of all, for big x,

v(@)y (@) M (y(x)) = () | F'(z) +

Furthermore, by Lemmas 5.2 (¢) and 5.3 (a),

FBE) () 1 ol (5)g"(ogz) 7 "(logz) _w

@) 2@ —¢logn) 20 —glogr)) ~ 2 OP
" A (b)) (h(a)) ¢ (log )
3+ (@) - TN = 5 (o tose) - T ) > 0o

LEMMA 5.6. The function Q(x) is strictly convex for small x > 0, [, N(z)dz = oo
ply) = inf (2y + Q(x)),  y>0. (5.9)

ProOF: The assertion is just a consequence of standard properties of the Legendre trans-
form (see, for instance, [3,32,36]). §

EXAMPLE 5.7: Put R(z) = —Q'(x) = —N'(x) exp N(x). Then

F_l(a:):z/wR_l(et)dt—i—o(l), x — 00.

™

For example, if N(z) = 1/z, then for some constant c,

F(x) :exp(%x+c+o(1)), T — 00.
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LEMMA 5.8. (a) Under condition (5.4), z?(1 — ¢'(x)) — oo, T — 00.
(b) Under conditions (5.3) and (5.4), v(z)y"(x) = o(|'(z)]),  — oo,

lim y(e)y ()M (v(x)) = 3.

T—00

PROOF: According to (5.7) and (5.8), to prove (b) we need only to verify that
q"(z) = o(1 — ¢'(x)), T — 00.

This relation is proved as follows. By (5.3), ¢”(z) < ¢/x?%, and by (5.4), for any fixed
A the function z — gq(z) — z — A/x is strictly convex, limg, o (¢'(z) — 1+ A/2?) = 0,
¢ (r) -1+ A/x%2 <0,1— ¢ (x) > A/x? for big z, v > x(A). These estimates prove both
(a) and (b). B

LEMMA 5.9. Under condition (5.4), logz = o(p(x) — xp'(x)), z — oo.

ProOOF: By Lemma 5.8 (a), for every A and big z,

plexpz) — p'(expz) exp

o) : (5.10)

A
;<1—q'(£):

and by Lemma 5.1 (b), z = O(p(expz)/z?), * — co. I

LEMMA 5.10. Under condition (5.4), for every ¢,c; > 0, and for sufficiently big x, x >
x(e,c1), we have

() inf (zy + 7)< plx) — clog,
(b) ;r;%(xy + eN(y)+cl) > p(z) + clogz.

PROOF: (a) By Lemma 5.6, for small y > 0,
p(_N/(y)eN(y)) — _yN/(y)eN(y) +eNW)
Therefore, we need only to verify that for small y > 0,
eNW _ eNw)—er > clog(—N’(y)eN(y)).

This inequality follows from relations

exp(N(p'())) = p(z) —
—N'(p'(z)) exp(N (¢ (x))) = =

and Lemma 5.9. The proof of part (b) is analogous. I

21



LEMMA 5.11. Under conditions (5.3) and (5.4) we have for big x and y such that |x —y| <
(),

Y ()] < 2/y'(«)],
(@) =y ()] < 29(2) 1 ()],
()Y ()| < 3v(2) Y ().
PRrROOF: By Lemma 5.4 (b) and (c), v is convex, and the assertions hold for y > z. For

y < x we use the following argument. Let s be such that |7'(z — s)| = 2|y'(x)|. Then, by
Lemma 5.8 (b), we have

V') <Y (@) /yv(@), w-s<t<az, oz oo,
17 ()] = 17 (x — )| = |7 (=) = /_ V() dt < sly'(x)|/v(x),
s > (),

and the assertion follows. |
LEMMA 5.12. Under conditions (5.3) and (5.4), 0 < M(z) — N(x) < 4 for small z > 0.
PROOF: We begin with a simple observation (see Lemma 5.2):
N(p'(x)) = log(p(x) — zp(x)),
M (P9 = pi(y(hw)) = F(h log [v(h(z))~' (h
— ) = MO (h(2))) = F(h(z)) + log |y(h(x))7 (h(z))]
= log(p(x) — ' (x)) + log 5. (5.11)
It remains only to verify that for big x,

0< M(p'(x) = M(p(x) /) < 4~ log 5.

The left inequality follows from Lemmas 5.1 (a) and 5.5 (a). To verify the right inequality
we use that by Lemma 5.5 (b) for big z,

T 1

2 2y (v =)

Therefore, it is enough to estimate the expression

1 plo)/e dx 1 1, _y(p(z)
p'<x>/p'<m> oy 0 e = (5F)

M (z)] <

Put u=~vy"(p(z)/z), v=u+2p(x)/x. If y~1(p'(x)) > v, then
v(u)/2 < p'(z) <7(v).
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By Lemma 5.8 (b) for large z and u <y < v,

S 0 I
I SO e T R M

Therefore, |v/(y)| > [y'(u)|/2, u <y < v,

A8 (@) > 1 o) )~ 20 @) + 200 f0) = [0l >

p(z) p(z) — zp' (z)
x p(x)

v—Uu

Y (h(@))] = 5

Y

which is impossible. Hence, v71(p'(z)) — v (p(x)/x) < 2p(z)/z, and Lemma 5.1 (b)
completes the proof of our assertion. J

LEMMA 5.13. Under conditions (5.3) and (5.4), for every k > 0 and big x, x > x(k),

M(vy(x) + ky()y'(z)) — M(v(w)) < 4k.
THE PROOF is analogous to that of Lemma 5.12. |

LEMMA 5.14. Under conditions (5.3) and (5.4), if ¢ is a C?-smooth function, ¢" (x) =
O(1), x — oo, then the functions p4(x) = p(z) £ ¢ (logx) are concave for big x, and the
functions q4(z) = log px (exp x) satisty conditions (5.3) and (5.4).

PRrROOF: First, note that by (5.3), for big z and some ¢,

c ¢"(logz) wp"(x) p(2)(p(z) — zp'(z))
rogfz @ po) (@) |

By (5.10) and Lemma 5.1 (b), for every A > 0, and for big =, z > z(A),

Pl(@)(p(z) —wp'(x)) A
p?(x) zlog® x’
and as a result we obtain,
/!
xzp" () - A
p(x) xlog®x
A
() < p(x)
x2log” x
~ Y"(logx)  ¢'(logx)
p:/i; = p”(.’L’) + ( 72 - 72 ) <0.
Now let us turn to ¢ and qx.
! 2 1 2 /2
q¢"(logz) = zplle) +a7p(x) _Ih () =:a—b.



Since ¢" () > 0, a is positive. Since p is concave, by Lemma 5.1 (a) we have 0 < b < a < 1.
Furthermore,

7 (log ) = ap/(x) + 2°p" (x) £ 9" (logz)  (xp/(x) ¢’ (logx))?
* p(x) £ 9 (log x) (p(z) + ¢ (log x))?

1 Y (log z) Y’ (log x) 1 2
“(1 iwaogx)/p(a:)) T liogs) (1 S ) (o)
and for big x and some c,

J¥"Qogz)| + |9 (log )| + [p(logz)| 1
p(x) ~logia

|42 (log w) — ¢"(log )| < i

LEMMA 5.15. Under condition (5.2) for small x > 0 we have

Q"(z) +Q'(z) > 0
ProoF: The assertion follows from the equalities
Q'(p'(z)) = —m, (5.12)
Q" (p'(2))p" (z) = -1,

based on (5.9). We need only to apply relation (5.6) and Lemma 5.3 (a). 1
LEMmMA 5.16. For big x,

Q' (4(w))] < 22M ”(‘”? — oxp F(2).

v(@) | (2)

PRrROOF: First, exp F'(h(t)) = t. Since @ is convex, we obtain from Lemma 5.1 (a) and
equality (5.12) that

6. ANALYTIC FUNCTIONS GENERATED BY CONFORMAL MAPPINGS.
Let p(x) be a positive C?-smooth strictly concave function on Ry, p(0) = 0, p(x) = o(z),

T — 00,
/ —p(f) dr = oo
T

We use the notations of the preceding section and extend the function v to the whole
real line C'-smoothly, and possibly, redefine it on a finite interval in such a way that
1/2<~(t) <1, teR_, —=1/100 < '(t) < 0, t € R.
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For k € R, |k| < 50, define the strips

Qf ={2€C:|Imz| <y(Rez) + ky(Rez)y'(Rez), Rez > 0},
Qp ={z€C:|Imz| <y(Rez) + ky(Rez)y (Rez)},

and the standard strips

Qf ={2€C:|Imz| <7/2, Rez >0},
Q. ={z€C:|Imz| < 7/2}.

Let the conformal mappings w,:r of Qk+ onto QF and 1 of Qj onto €, be defined in such
a way that

PR =Ry,  PF(QFNCy)cCpl, g (o0) = o0,
rRy) =Ry,  ¢(R) =R, $p(QnNCy) CCy,  thp(+00) = +o0.

We are interested in getting precise estimates on the asymptotical behavior of 1/),‘: and
Y. First, we use a theorem of S. E. Warschawski [40, p. 296]. Its conditions on « are as

follows:
/°° (v + k)2 (2)
v(t) + ky()y'(t)

If p satisfies properties (5.2) and (5.3), then conditions (6.1) hold for every k because of
Lemma 5.4 (b) and (c), and Lemma 5.5 (¢). By Warschawski’s theorem we have

dt < oo (6.1)

lim (v + kvyy')'(t) = 0,
t—o00

) T [ dt
Re w,j(x +iy) = 5/ SO T+ 7 0 + ey t+o(l) =

F(z) - gklogv(x) +d +o(l), z—ooo,z+iyeQf. (6.2)

Correspondingly, for ¢ we have
Reyy(z +iy) = F(x) — gklog v(x) 4 ¢ 5 4 o(1), T — 400, T + iy € Q. (6.3)

Now we would like to estimate |Im v (z + iy)|, |Im;} (z + iy)|. Assume that y > 0.
Clearly, for big =,
7/2 = T (o + iy)

be w(¢k(x+@y)7R+79* ﬂC+)

<2

Furthermore,

w(l/)k(x—i_ly)aR-i—aQ* ﬂC+) = W($+iy,&,9k ﬁC+).

From now on let us suppose that p satisfies conditions (5.3) and (5.4).

25



A simple geometric argument using Lemma 5.11 shows that for some absolute constants
1, Ca, c3, and |k| < 20, z > 0,

w(g;{—iy,R_*_,Qkﬂ(C_F) . ) — + 2
) <, 0<y<v(z)— BT +3)y(z)[v(2)], 6.0

. v(z) -y +
w(z+iy, Ry, QU NCy) <csly(z)], k< —~" <3kT +3,
i R, B0 C) sl k< e

where kT = max(k,0). Analogous estimates hold for 2.
We introduce two functions f; and g; analytic correspondingly in Qo and Q7 ,,

J1(2) = exp(—exp¢ho(2))/(2* +4),
g1(2) = exp(—z + exp T, (2)).
Asymptotical estimates (6.2), (6.3) and Lemma 5.4 (a) imply that

O0<cer <

xﬂrfoo[ (1°g|f11 )|) “7] =0
i (n(log g1 () — 2) = 0.

LEMMA 6.1. For every c > 0 there exists t. such that

inf  sup  [|gi(z +dy)|exp(ty)] <exp(p(t) —clogt), >t
y>0 w:w~|—1lye§2f2

PrOOF: By Lemmas 5.10 (a) and 5.12 it is sufficient to verify that for some ¢ and big z,

loglgi(z +iy)| S yexp(M(y) +¢),  0<y <y(x)+2y(x)ly' (=)l (6.5)
Note that by (6.2) and (6.4), for some ¢,
loglog |g1(z + iy)| < F(z) + wlogy(x) + ¢ + log cos (Im ¥, (z + iy)) <
Y
log|1 — —— 0<y< -3 !
og[1 - 5] 0= u 9@ =@k @)

log|y'(x)l,  yeY(x) =)+ (=3v(@)[Y'(2)], 27(2) |7 (2)))-

F(z) + 2logvy(x) +

Furthermore,

A i)+ 910emr(a) +loe(1— -2 \] = /2 +29'(z) vy (@)

T [F@ + 210g (@) + 1og(1 = 25 )] = 0 = S S s =0
57(@) = 5y +21(@)7' (@) — 7' (2) =0 = y = ¥(2) +7(2)Y ().

Therefore, for a fixed y > 0,

sup loglog|gi(x +iy)| < sup [F(z) +log |y (2)y*(2)[] = sup [M(v(z))] + logy.
:v—i—iyEQJ_rZ zy€Y () z:y€Y ()

Finally, by Lemmas 5.4 (b) and 5.5 (b),

)+ gl () < F2T@ @]
M(y(z)) = M(y(x) + 27(x) |y (z)]) < 2 vy(x)|y (x)]
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LEMMA 6.2. For every ¢ > 0 there exists t. such that
‘/ F1(2) explitz) dz‘ < exp(—p(t]) — clogt]), |t > te.
R

ProoF: The function f; is bounded and analytic in £2g. Therefore, for some ¢ independent
of t >0,

[ ey explitz) dz] < esup| i+ (o) + 1) ()] exp(—tr(2) + 7@ ()]

z>0

By Lemmas 5.10 (b) and 5.12, to prove our assertion it is sufficient to verify that for
some c¢ and big x,

1 S exp(M(y(z) +~(z)7'(z)) — ¢)
[fi(e +i(y(z) + v (2)y'(2)] ~ v(@) + v (2)y'(2) '

It follows from (6.3), (6.4) and Lemma 5.13, that for some constant ¢ = ¢(7),

log (6.6)

1
[f1(@ +i(y(z) + v (2)y'(2)))]

( > F(z) +log |y (z)] — ¢ >
M (y(z) 4+ v(x)y'(x) — ¢ = log(v(z) + v(x)¥'(2)).

log log

This proves (6.6) and the lemma for positive ¢. Similar argument works for negative ¢.
Let m(z) = v(Rez)|7'(Rez)|. Define

1
77rm2(z) /|Z_w|<m(z) f1(w) dma(w).

u}EQSr

fa2(z) =

By Lemma 5.11 for big =,

fa(z +1y) = fi(z +iy), z + iy € Qfy
fo(z +1y) =0, T +iy ¢ Q.

LEMMA 6.3. For big x and some constant c,

(a) log|fo(z +iy)| < —exp(M(y) —¢)/y, = +iy ¢ QA
(b) log|0f2(z +iy)| < —exp(M(y) —¢)/y.

PROOF: As in the proof of Lemma 6.2, for some c,

log | fa(z+iy)| < — exp(F(z)+log [y'(x)|—c)—2log [y(x)y' ()|, |y(x)—yl < 10y(x)|y'(x)].

Therefore, we need only to verify that for every ¢ and for big =, = > z(c),

—clog |y(z)y'(z)| < exp(M(y()))/v(x).
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This inequality follows from the relation

log <log o PO < 2 (0(o) - 20/ (@)) = ex0 MO (o),

1
[y (h ()] pla) —xp'(z
which holds by Lemmas 5.2 (¢) and 5.9 and equality (5.11). This proves assertion (a).
Part (b) is proved analogously. We need only to apply additionally Lemma 5.8 (b). 1

Define

g2(z) = /a g1(w) dw, z € (C\Q—i'2

Q+2Z_w

The integral in the right hand side converges because g; is summable on 9QY,. The
function g; is analytic in QF,. Hence, go extends analytically to the whole complex plane.
This extension is also denoted by gs.

LEMMA 6.4. (a) The function g is the Carleman transform of an element go in M.
(b) For every ¢ > 0 and small Imz > 0,

log™ |g2(2)| < cexp N(Im z).
(c) [loglog |g1(x)| — loglog |ga(x)]| = o(1), & — oo.

PROOF: (a) The proof is very close to the argument used in Example 3.3. Put
go(t) = z/ g1(z)e " dz.
aat,

Then, F((go)+) = +g2 on Cy, and for ¢ > 0,

190(t)| = ‘/ g1(z)e dz‘ g/ lg1(2)e~ ] dz.
oal, ot ,n(C_ +iy))

The last integral is estimated using Lemma 6.1. Analogous argument works for ¢ < 0.
(b) If p; corresponds to N +c as p corresponds to N, then the proof of (a) together with
estimate (6.5) show that for some ¢y,

p1(|t])
1+t2°

|90(t)| <c

By Lemma 2.1, we get our assertion.
(c) It is enough to verify that |g1(x) — g2(x)| = o(|g1(x)|), x — oo, that is,

‘/Bﬂfz (f:lfwu);) dw| = o(lgr(x)]), & — 0.

This last relation follows from the estimates

(0] > expexp(Flo) + Alog (o), dist(0,00%) > T ep P>
which hold for every ¢ and big by (6.2) and Lemmas 5.11 and 5.4 (a). I

Suppose that p is a weight function as introduced in Section 2, [, = 0, and let the function
p = log p satisfy the conditions given in the beginning of this section and conditions (5.3),
(5.4). Then we can summarize the results of this section as follows.
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THEOREM 6.5. There exist two functions fo € £, N K}, and go € M, such that F fo = fi,
the Fourier transforms of the functions (go)+ and —(go)— are the restrictions of the entire
function Fgo = g2 to C4 and C_ respectively, and such that

A {h(l"g‘ ]:fi(x) )- “"] =0,

lim [h(log | Fgo(z)|) — «] = 0.

7. THE CASE [, > 0.

To be able to deal with the case [, > 0 we need to make slight changes in definitions
and arguments in Sections 5 and 6. Put p = logp. We suppose that p(z) is a positive
C?2-smooth strictly concave function on Ry, p(0) =0, p(z) = [,z + o(z),  — oo,

2
The functions h, F' and v are defined as in Section 5,

lim v(z) =1,,

T—00

the functions M, Q and N are defined, correspondingly, for [, < = < ~(0), z > [, and
x > [, the function ¢ is defined as

q(z) = log[p(expz) — I, exp z].

Then Lemmas 5.1 — 5.3 hold in the case I, > 0, with the exception of the last equality
in Lemma 5.2 (c). Instead of it we have

7 p'(expx)expx — plexpz) plexpz) —l,expw

7 (expa)) = 2 plexpz) —Ilpexpa p(exp x) -
T, , lpexpw
5(9 (z) — 1)<1 - m), (7.1)
7" (h(exp z))h/ (exp z) expx =
T l,expx T , l,expx p'(exp x) exp x
21 (z) (1 ~ plexp :1:)) + 5(1 1 (x))p(expx) (1 ~ plexpa) ) (72)

In Lemma 5.1 (b) we have also

J— / J—
T— 00 log x z—oo p(xr) — lyx

Equality (5.6) still holds, though (5.5) should be replaced by
pl(expz) — 1, = ¢'(x) exp(q(z) — ).
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In Lemma 5.4 we have now -
lim F’ () = —

Z—00 2lp ’

and the corresponding changes should be made in (b). To prove part (c) we use (7.1) and
(7.2).

Furthermore, Lemmas 5.5 and 5.6 hold with the only changes in Lemma 5.5 (a) being
that M'(z+1,) < 0 for small positive z, in Lemma 5.5 (¢) being that v'(x)y" (z) < 7|v'(z)|
for big z, and in Lemma 5.6 being that fo and inf,~( are replaced, correspondingly, by fl

and inf,~; . In the proof of Lemma 5.5 we use instead of (5.8) that by (7.1) and (7.2),

v(h(expz))y"(h(expz)) w[ ¢"(z) F (1= g () 2RE

S 2 plexp) |’

' (h(exp )| 21— q'(x) (7.3)

As an analog of Example 5.7 we present the following statement.
EXAMPLE 7.1: If N(z) =1/(x — 1), >, = 1, then for some constant c,

F(x):g$—log$+c+o(1), T — 00.

Finally, Lemmas 5.8 — 5.16 hold for [, > 0 with obvious changes: the infimums in
Lemma 5.10 are taken by y > [,, the inequalities in Lemmas 5.12 and 5.15 hold for
small positive values of  —[,,, and the functions ¢4 are defined in Lemma 5.14 as ¢4 (z) =
log (ﬁi (expx)—1, exp x) In the proof of Lemma 5.8 we use (7.3), in the proof of Lemma 5.9
we use that for every A and big =z,

plexpz) — p'(expz)expr _ plexpx) — p'(exp ) expa
plexpz) —l,expx B exp q(x)

A
ﬁ<1—q'(a¢):

and the fact that z = O((expq(x))/2?), z — co.

To extend the results of Section 6, we suppose that p satisfies conditions (5.3) and (5.4),
extend the function « to the whole real line C''-smoothly, and possibly, redefine it on a finite
interval in such a way that 1, + 1/2 < y(¢) <[, +1,t € R_, —1/100 < ~'(t) < 0, ¢t € R.
The strips Qz, Q, 7, Q, and conformal mappings 1/):, 1y are defined as in Section 6.
Warschawski’s theorem gives us analogs of (6.2) — (6.4). Now, for sufficiently big C' we put

J1(2) = exp(— exp(vo(2) + C))/(2* + 4),
g1(2) = exp(exp(¢y (2) — C(z + 1)),

introduce the function m, m(z) = v(Rez)|y'(Re z)|, define

1
fa(z) = am2(2) /|z_w|;T(z) f1(w) dma(w),
= 7gl(w) w VA Ot
02(2) = /890+ A dw, zeC\DY. (7.4)
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and extend go into QE)F similarly to how it was done in Section 6. Lemmas 6.1 — 6.4 can be
extended for [, > 0 and sufficiently big C' with the only changes in Lemma 6.1 being that
inf,~o is replaced by inf,~; , the assertion of Lemma 6.3 hold for small y — 1, > 0. We
can obtain arbitrary (fixed) constants ¢ in (6.5) and Lemmas 6.3 and 6.4 (b) depending on
the choice of C'. Note, that deforming the integration contour in (7.4) we can verify that
for some c,

lg2(2)| < ¢, zeC\Qf. (7.5)
Finally, we get an analog of Theorem 6.5.

THEOREM 7.2. There exist two functions fo € L, N K}, and go € Mj, such that F fo = fi,
the Fourier transforms of the functions (go)+ and —(go)— are the restrictions of the entire
function Fgo = g2 to C; and C_ respectively, and such that for some constant C,

s [ i) o] =
mli)ngo [ (log|Fgo(z)]) —z] = —C.

Note, that here we are not able to make the limits to be equal to 0. The reason is that
F’ is bounded and «y(z) > [, > 0 here.

8. ASYMPTOTICS OF QUASIANALYTIC AND ENTIRE FUNCTIONS. CONTINUATION.

The constructions of the previous sections permit us here to improve Theorem A and
to prove uniqueness theorems for entire functions analogous to Theorems B and C of
Section 4.

The main method used in this section is inspired by a work of E. M. Dyn’kin [16], where
Levinson’s log-log theorem is proved with the help of the technique of asymptotically
holomorphic function. Throughout this section we assume that p = logyp satisfies the
following conditions:

The function p(z) is positive, C2-smooth and strictly concave on Ry, p(0) = 0, p(x) =

lpx 4+ o(x), © — oo,
/ p(il?) ; lp.’lT dr = 0,
T

and the function ¢(z) = log[p(exp z) — I, exp x| satisfies conditions (5.3) and (5.4). It is
easy to see that in this case the function p satisfies condition (2.1) and (3.1). We need
only to use relation (5.6), Lemma 5.1 (a) and the argument in the proof of Lemma 5.8.

PROPOSITION 8.1. Suppose that [, =0 and f € £, \ {0}.
(a) For some set E of (asymptotical) density 1 on Ry,

lim m(EnN(z,z+1)) =1,

we have
i o ) ) = o s ) o] 2
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(b) For every s < L(f) and for every u € C§°(R) we have
Fgo(-+ 8)F(f xu) € L=(C),

where the function go € M, is constructed in Theorem 6.5, and the generalized

Fourier transform F(f = u) is constructed in Section 2.
(c) L(f) < oc.

PROOF: (a) Suppose that L(f) < oo and ¢ is sufficiently small. In the case L(f) > —oo
put o(z) = (Ff)(z — L(f) — €), otherwise put ¢ = Ff.
First, note that both limits in (a) do not change when we replace f by f * u, at least
with
|Fu(z)| > exp(—expx). (8.1)

Indeed, by Lemmas 5.1 (b) and 5.2 (a), h is concave,

lim (h(expz) — z) = lim (z — F(z)) = —oo,

T—r 00 T—r 00

¢ < lim (h(h ™' (z+¢) +expz) —z) < lim (K (b~ (z +¢)) - expz+¢) =

Tr—r00 T—r 00

. exp

im ( )
2300 F’(:):+c)epr(:13+c)+C

= C.

For every smooth u condition (8.1) holds on a set of density 1 on Ry. If there is no E
satisfying the conditions of the proposition, then taking a suitable f * u, ui(x) = u(tz),
0 <t < 1, we can assume that x — (|z| + 1)2f(x) € LY,R), L(f) < —¢, and that for
some § > 0 and a sequence of points xy, xr — +00,

F1 <log+log+‘i‘> > 1, + €, r € Ey,
p(x)
Ey C (zg, zr +v(zk)), mE, > dy(zk).
Put z, =z + vy(xg)/2. Using (2.5) and (2.8) we obtain
D(Ff)(2)] < cexp(—exp N(|Imzl)). (8.2)

We are going to show that

for every k the function ¢ - Fgq is bounded (uniformly in k) on the line z, + iR. (8.3)
To prove this statement, consider the rectangle Ry,

Ry, = {:13 +iy o < x <xzp+y(xk), |yl < ’y(xk)/Z},

and the auxiliary function ¢, = H, g,, analytic in R;. Then for some ¢, every c¢; and
sufficiently big k,

log™* 1og+( ) > min{ M(y(2x)/2), F(zr+€)} —¢ > Flag) + 1, 2 € By,

|ox(2)] (8.4)

1@l (re) < c-
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The second inequality in (8.4) follows from Lemmas 5.4 (a) and 5.8 (b) and the relation

1/~(t) = O(exp(1/21Y' (D)),  t— o,
which is a consequence of Lemmas 5.1 (b) and 5.3 (b) and the equality

exp(=1/C1'(h(#)])

(A (1)) () eXp(%(p(t) PI0)

By the theorem on two constants applied to ¢y in Ry \ Ek, we obtain for some ¢ > 0,

= ) - p(io exl’(‘m - qlfaogt)))'

log™ log+( ) 2 Frgp) +ar—c, o —a <v(ak)/3, [yl < v(xx)/3, (8:5)

|on (2 + iy)|

and the same estimate holds for ¢. In order to avoid applying the theorem on two constants
to an infinitely connected domain we can just apply it first to Ry N C4 and then to
R N (Cy £ 27v(xx)/5).

Introduce a harmonic function ¢ on

B, ={z:0< Imz < y(zg) + v(@x) ¥ (zk)], 21 < Rez < zp + y(zk) }

as follows:
Pz +iy) = (exp F(xx)) (v(2x) + (@)Y (z1)] — y)-

Estimate (8.2) and Lemma 5.12 imply that for sufficiently big k£ and some ¢y > 0,

1
log m > coth(2), z € By. (8.6)

Indeed, we need only to verify that
M(y) > F(x) +log[y(z) + y(z)|y'(2)| —y] —c, 0 <y <~(x)+ ()] (2)],

which follows from Lemmas 5.8 (b) and 5.13.
Put Q = {z € By : log™ (1/|¢(2)]) < cop(2)}. Inequality (8.5) for ¢ shows that

QN {z+iy: |z — .| <y(e)/3, Iyl < y(ww)/3} = 0.
Dividing ¢ by 2||¢||cc We obtain that
Qn {:1: +iyap < x <z +y(xK), y = y(zk) + ’y(xk)|'y'(:13k)|} = 0.

If O is a connected component of ) relatively compact in By, then we consider an
auxiliary function ¢(0O, ),

0(0.2) =) exn{ 1 [ 250 T,
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where the integral in the right-hand side converges and is bounded uniformly in z because
of (8.6). This function is analytic in O, for some ¢ which does not depend on k,

log |p(O, 2)| < —cotp(2) — ¢, z € 00,
and by the maximum principle,
log |p(O, 2)| < —cotp(2) — ¢, z € 0.
If zg = x, + iy € By, belongs to a connected component O of 2 such that O N 0By, # 0,

then we can again consider the function ¢(O, z). A simple geometric estimate

/ B(Qwlz0,dC,0) > / B(Q)wlz0,dC, 0), (8.7)
HO\dB,,

d0Nd B,

for some ¢ independent of k, follows if we consider harmonic functions = + iy — ¥ (z +
iy)(x —z —e) and x + iy — P(z + iy)(x — xx — y(zg) + €). Estimate (8.7) implies that
for some ¢ depending only on cy,

log |¢(20)| < —ctp(20) — c.

As a result,
log |p(z« +iy)| < —ctp(zy + iy) — c, 0 <y <y(zg). (8.8)

Analogous argument using the domains
Bys = {z :0< Imz<s, 2, < Rez < ap —l—’y(xk)},
with y(z) < s < 3v(xg) and the harmonic functions
s(z +iy) = (exp M(s))[s|M'(s)| + 1 — y[M'(s)|]
shows that
log |p(zy +iy)| < —cexpM(y) —c,  y(zk) <y < 2y(w). (8.9)

Finally, since v(y)|M'(v(y))| — o0, y — oo, we have log(1/y) = o(M(y)), y — 0. There-
fore, using a “spreading lemma” argument like that in [5,6,7], we get

log [o(m, +1iy)| < —c/y®,  2v(wg) <y <1 (8.10)

Now let us turn to the function g = Fgo. Estimates (6.2) and (6.4) and Lemma 5.11
imply that for every ¢ > 0 and sufficiently big &,

1
Y(@n) + 2y(@R) |y (2r)| — v
0 <y <~(xx) +v(xe)y (@1)],

: Y(xx) + 3y(zr) Y (zr)| <y < 1.

log™ |g2 (2. + iy)| < max|cyp(z. + iy), log

1
y —(@r) = 2y(@r) |y (k)|

log™ lg2 (24 + iy)| < log
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Furthermore, Lemma 6.4 (b) gives us that for every ¢ > 0 and small Imz > 0,
log™ |g2(2)| < cexp M (Im z).
Taking into account (8.8), (8.9), (8.10) and the estimate

1
t = 2y(x)}y'(2)]

we obtain that the function ®, & = ¢-gs, is bounded (uniformly in k) on the lines z, +iR, .
The same argument applied in the lower half-plane completes the proof of (8.3).

Note, that (8.2) and Lemmas 6.4 (b) imply that 0®(z) € L*°(C). Dividing ® by 22
and smoothing it up near the point 0 we can assume that 0® € L'(C). Now, the function
® is unbounded on any sequence of points of R where the lower limit in the definition of
L(f) is attained and where Fu is not very small. Put A = {2z : |Imz| < 1} and define
Op = Ho A

Then ®4 is analytic in A, ® — &5 € L>(C),

log <expM(t+v(z),  3y(@)y(2)] <t <),

®p € L>®({z: |Imz| =1}), @AEL‘X’(LICJ (xk—l—@—l—iR)), o ¢ L°(Ry).

This is a contradiction to the maximum principle. Thus, assertion (a) is proved.

(b) In the case s < L(f) < oo our statement follows from the proof of the previous
assertion. Therefore, by Theorem 3.1, if s < L(f), then (go(z) expisz) x f(z) = 0.

By the continuity property of convolution, we have

(go(ac) exp(z’L(f)x)) x f(x) =0,

again by Theorem 3.1 N
Fagol(-+ L(f))Ff() € L=(C).

(6) I ((go(w) explitu)) = £(u)) () = 0 for all z, ¢, then F(go(-)(x — -)) = 0, goly) f(z —
y) = 0 for a.e. z and y, so we have f = 0.

THEOREM 8.2. Let I, =0, and f € M, \ {0}. Then for some set E of density 1 on Ry
we have

i |1(1o8" 75 ) — o] = tmint 1o ) =] < o0

PrROOF: By Lemmas 3.5 and 5.14, as in Remark 3.8, we can find p = p - exp(—1(log))
satisfying the conditions listed before Proposition 8.1 and such that f € ﬁ;, go € M;‘;,
where the function gg is constructed by p in Theorem 6.5.

To prove the existence of the limit lim,_,o [h(z) — ﬁ(:}:)] > 0, where h corresponds to
p = logp, we need only to recall that [¢(logz)/z*dx < co. Now our assertion easily
follows from Proposition 8.1 (a), (c). 1
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REMARK 8.3: Note, that since y(h(x)) = p(x)/z,

S(h(x)) < A(h(x)) = LD =008D) _ p@) _ ),

x x
V() <v(x), = o0

Therefore, the proofs of Proposition 8.1 and Theorem 8.2 show that under the same con-
ditions if for some a € R and for some set EY on Ry such that

o sap MU 0 (.2 45w+ )

>0

we have |
. . J’_ o
h?é%f {h(bg ‘]—"f(x)‘) “"} > @

then L(f) > a.

In the case [, > 0 we can prove in an analogous way only the following weaker statement.

PROPOSITION 8.4. Letl, >0, f € M, \ {0}. Then for some set E of density 1 on R, we
have

1
limsup[h<lo +‘7D—x} < 00.
z—+00 & Ff(z)
TEE
If for every E of density 1 on Ry we have
lim sup [h(logﬂ;‘) — :1:} > —00
Ff(x) ’

r——+00
reE

then there is s € R such that for every u € C5°(R),
Fgo(- + ) F(f = u) € L=(C),

where the function go € My is constructed in Theorem 7.2.

THE PROOF OF PROPOSITION 8.4 runs as follows. By (7.5), the function

® = H}'go(-—s)%(f*u),(c

is bounded on the boundary of the strip J. Therefore, if ® is unbounded on Qf, then
by the Ahlfors—Heins theorem (see [4, Chapter 7]), the function H = ® ot * should tend
to oo along half-lines iy + Ry, —7/2 < y < 7/2, for a.e. y (see also the proof of Lemma
9.3). Now, if the function F(f % u) is sufficiently small on big sets near points zj of R,
x — 400, then it is small on the discs ({,/2)D + xy, k — co. Estimating 1y we get that
H is small on the discs (1/10)D + vpo(xg), k — o0, that leads to a contradiction. I
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REMARK 8.5: We cannot get here a complete analog of Proposition 8.1 because the func-
tion F’ is bounded, and the implication

1
pe H*D), ¢l <1, m{ac €1[0,1] : log™ log™ o)) > F(a+s)} >e,e<l =
o(z
log™ log™ L > F(a), |z|< 1
o ()] 2

holds only for s > (log(c/e))/F'(a).

Now we turn to the investigation of the asymptotics of entire functions which are the
Carleman transforms.

PROPOSITION 8.6. Suppose that I, = 0, g € M}, and the Carleman transform of the
function g is an entire function Fg, Fg € L ({z : Rez < 0}) Then
. . M
(@aggwhﬂ%gggﬁfﬂ@D—x}Zggighﬂ%égngﬂ@D—wy:L (9)-
(b) For every s > LM (g),
FgFfo(-+s) € L(C),
where the function fo € L, NI, is constructed in Theorem 6.5.
(¢) If LM(g) = —oo, then g = 0.

Before turning to the proof, we state the following auxiliary statement, which permits
us to use different asymptotically holomorphic extensions.

LEMMA 8.7. Let a decreasing function m : (0,1) — (0,00) be such that lim,_, o m(z) =
0o, the function logm be convex, and let a function f, f € (L*NC")({z: 0 < Imz < 1}
satisfy the following conditions:

1
(Im2)(1+ |Rez|?)

fR=0,  [3fC)] < —

Then for some ¢ = ¢(f) we have

c
—_—— 0<I 1.
|f(z)|<m(1mz)’ < Imz<

PROOF: Put c
0=0(c)={:0< Imz <1, — =1
(c) z:0< Imz < |f(z)|>m(h’nz)
For sufficiently large c the strip ({z :1/2< Imz < 1}) does not intersect with €2. Put

o2) = fe(—+ [ H L))

T Jo f(w) z—w

Given z € €, let a and b be numbers such that
logm(Imz) =b—almz, logm(y) > b — ay, y > 0.
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Then
log |p(z + iy)| <logec — b+ ay, x + 1y € 082,

and by the maximum principle,
log|p(2)] <loge— b+ almz =loge — logm(Imz), z€Q. 1

PROOF OF PROPOSITION 8.6: Let us suppose that L™ (g) = 0 and there is a sequence of
points {xg}, £ — oo, such that

log log Qmax |Fg(2)| < F(zr —€).
e Z=T
Put
S = {x—l—iy:y>0, xr — v(Tk) <x<xk},
T =z — v(xK) /2.

The function ®, & = f5 - Fg, is analytic in Q]LO and is equal to zero on the set {z € wa :
Re z > ¢} for sufficiently big c¢. By Lemmas 2.1 and 6.3 (b), the function 0® is bounded.

Dividing ® by (z + 1)? we can assume that 0® is summable on C, . Furthermore, for big
k,

log |®(2)| < —F(zr —€/2), z € 0SNR,
log |®(z)| < F(xk — €), z€0(SNQH) \ (RUIN),

and by Lemma 6.3 (a),
log |®(z)] < 0, z € SNoNY,.
By the theorem on two constants applied to ® in .S N Qfo we get
log |®(z, + iy)| < 0, T +iy € Qf,, y>0.

Moreover, by Lemma 6.3 (a),

|P(2)] < 1, z €S\ Q.
The same argument applied for the lower half-plane gives us that

|D(zy +iy)| <1, yeR

As in the proof of Proposition 8.1, the maximum principle leads to contradiction.
Assertions (b) and (c) are verified as in Proposition 8.1. Here we apply Lemma 6.3 (b)
and Lemma 8.7 which imply that

j-v"fo(- +5)Fg € L®(C) <= fa(-+s)Fge L>*(C). 1
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THEOREM 8.8. Suppose that l, = 0, and g € L3\ {0}. If the Carleman transform of g is
an entire function Fg, Fg € L*>® ({z : Rez < 0}), then

lim [h(log max |Fg(z)|) —x} > —00.

T—+00 Rez=xz
THE PROOF is analogous to that of Theorem 8.2. |
In the case [, > 0 we can prove in an analogous way only a weaker statement.

PROPOSITION 8.9. Let I, > 0, g € L\ {0}, and let the Carleman transform of g be an
entire function Fg, Fg € L™ ({z: Rez < 0}). Then

liminf[h(log max |Fg(z)]) — x} > —o0.

T— 400 Rez=zx

If
liminf[h(log nax | Fg(z)]) — a:] < 0,

Tr— 400

then for some s € R, N
Fg(-+ s)F fo € L=(C),

where the function fo € L, NI, is constructed in Theorem 7.2.

The results proved in the beginning of this section imply that if f € M, \ {0}, and
L(f) > —oo, then Ff is sufficiently small near R. The following statement shows how
small should be F f outside Q{']' in the case [, = 0.

PRroPOSITION 8.10. Letl, =0, f € £, \ {0}, and L(f) > 0. Then for some ¢ = c(f),
|Ff(2)] < cexp(—exp N(|Imzl)), v(Rez) <|Imz| <1, Rez > 0.
PROOF: Pick g, 0 < e < min(L(f),1), and for h, 0 < h < e, and a, a € Ry, put
Oup={r+iy:a—e<z<a+e 0<y<h},

and introduce ¥y, = w(:-, RN Og p, Og,p).
We are interested in the function ¢y,

en(y) = sup . Yn(z +iy) = Pn(a +iy), 0<y<h.
a—e<zr<a+te

Estimating ¢, in O, we obtain for some cy, cg, c3 depending only on e,
, 0<y<h,

) <1
0<c1 < —hyj(y) < e, 0<y<h,
| < s, 0<y<h.



Recall that @ = exp N is a strictly convex function. We introduce y(t), 0 < y(t) < t,
uniquely depending on ¢ > 0, such that

(y(t) = )Q"(y () = Qy(t)).

Put B(t) = t|Q'(y(t))|/c1. Clearly, B(t) depends on ¢t continuously.
Let us prove that the equation

B(t)py(r) = Q'(r), (8.11)

has a unique solution r in the interval (0,¢] for small ¢. Indeed,

Q' (y(1)] < =B@)@i(r) < (c2/c))|Q(w®)l,  0<r <t

. ! -
}Eg%cg (T) - o0,

and both B(t)¢, and @' are continuous. Therefore, there exists at least one solution of
(8.11) and all solutions are in (0, y(t)]. For sufficiently small ¢,

B(t)gy (r) < esB(t) = (est/c1)|Q (1) < Q"(r), 0 <r <y(h),

because of Lemma 5.15 and the convexity of ). This inequality proves the uniqueness of
the solution of (8.11). Now, this solution 7y = ro(¢) depends on ¢ continuously for small
t > 0, because the family By} is equicontinuous for By < B < 2By, hg < h < 2hg. If t¢ is
such that y(to) = v(a), then r¢(t9) < v(a), and by Lemma 5.16, for big a,

B(to) < exp F(a).

Put
A(t) = sup (B(t)ee(y) — Qy)) = B(t)pe(ro(t)) — Q(ro(t))-

o<y<t

Since
Cllg(t)

Bt)pu(®) - Q) > ™5

(t—y(t)) — Qy(t)) = 0,

A(t) is positive.

Thus, for big a and every r between y(a) and a fixed ¢, independent of a, we have a
number ¢, 0 < ¢t < e, such that r = r((¢), and a function ¢ = B(t)1 — A(t) harmonic in
O, such that

vy ‘ RN 0O, < expF(a),

(i ‘ 004, \R <0,
Yr(z+is) < Q(s), 0<s<ta—e<z<a-+e,
Yr(a+ir) = Q(r).
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Let {/)V,’f be the function harmonically conjugate to ¢, and ® = F f-exp (1/);‘ + zi/;v:) Then
by (8.2), for some c, B
|0®(2)| < ¢, 2 € Ogt.

Furthermore, since L(f) > €, we get for big a,
|®(2)| <1, z € 00q,4.

Therefore, for some c,

|q)(z)| S ¢, S Oa,ta
[Fflatir)| < cexp(=Q(r)),  y(a) <r <t
[Ff(2)] < cexp(=Q(|Im2]),  v(Rez) <|

9. PRIMARY IDEALS IN BEURLING-TYPE ALGEBRAS.

Let A = £, or M, and let p = log p satisfy the conditions in the beginning of Section 8.
In this section we show how the numbers Ly (f) := L(f(£-)) and LY (g) := LM (g(£"))
determine whether the ideal generated by f in 2l is orthogonal to a functional g with empty
spectrum. (For the definitions of L and L™ see Propositions 8.1 and 8.6.)

After that, we describe primary ideals at infinity in £, and in M,,, and the asymptotics
of elements of FL,(R) and of the Carleman transforms of elements in Lo°(R) which are
entire functions.

THEOREM 9.1. If f € A\ {0}, g € A*\ {0}, Fg € A(C), then f * g = 0 is equivalent to
the pair of inequalities

LM(g) < Lo(f), LM(g) < L(J).

Thus, when we solve convolution equations in the case of empty spectrum, Fg € A(C),
it suffices to use the information contained in the usual Fourier transforms.

PROOF OF THEOREM 9.1: Replacing p by p and convoluting f with some u € C§°(R),
as in the proof of Theorem 8.2, we can assume that f € £, N K, g € Mj. Taking into
account Theorem 3.1, we see that it is sufficient to verify that
Ff-FgeL™(C) < LY (g) < Ly(f), LY (9) < L_(f).

Moreover, Lemma 2.1 shows that for some g, € M7,

Fge(2) = (Fg(2) — Fg(0) — 2(Fg)'(0)) /2.
Now, an elementary argument involving Lemma 3.2 implies that

Ff-Fge L*(C) < Ff-Fg, € L=(C).
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Therefore, the general case can be reduced to the case Fg € L™ ({z : Rez < 0}) Conti-
nuity of the convolution operation implies that

(f(x)expicz) xg(x) =0 foralle >0 = fxg=0.

Thus, again by Theorem 3.1, it is enough to verify that for Fg € L*>° ({z : Rez < 0}),
Ff-Fge L®(C) = LM(g) < L (f) = for every e > 0, Ff(-+¢)Fg € L=(C). (9.1)
(a) The case I, = 0. The first implication in (9.1),

Ff-Fg e L¥(C) = L¥(9) < Ly ()),

is verified through the usual technique of asymptotically holomorphic functions. Let £ > 0
be fixed, = be sufficiently big, N(t) = expQ(t) = F(z + LY (g) — 2¢), t < e, and

Q={z:z< Rez<z+e, |Imz| <t}

We define also
J={z:2 < Rez<um+e,|Fg(z)| > expexp F(z + LY (g) —¢)}.
By Proposition 8.6,

loglog max |Fg(w)| > F(z+ LY (g) <),

and by Lemma 2.1, J C € for large z. Since Ff - Fg € L (),
1
Ff(z)

If o= Hff@’ then, by (2.5) and (2.8),

loglog‘ ‘ > F(z+ LY (g) — 2¢), z€
1 M
loglog‘w‘>F(a:+L+ (9) —3e), ze€.

By the theorem on two constants applied to ® in the connected component O of Q\ J
containing the point = + ¢/2 and a simple estimate of the harmonic measure,

w(z+¢e/2,J,0) > c,

for some absolute constant ¢ > 0, we get

1
log 1 ‘7‘ F(x+ LM (g) — 4¢),
oglog TR > F(x+ Ly (g) — 4¢)

1

Li(f) > L3 (g) 6.
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Since € is arbitrarily small, Ly (f) > L% (g).

On the other side, suppose that Lﬂ\_/[(g) < 0 < Ly(f), and put & = ﬁf - Fg. By
Lemma 2.1 and Proposition 8.10, for some c,

|z +iy)| <c, ly| > ~(z).

Furthermore, we know that [0®| is bounded and can assume that it is summable. If ® is
unbounded, then the function H, H = Hg ¢ is also unbounded. Replacing, if necessary, H
by (H(z) — H(0) — zH'(0))/2* we can guarantee that H = Fh for some h € M because
of Lemma 2.1. Since H is bounded on the boundary of the domain Q(J{, Warschawski’s
theorem together with the Phragmen—Lindel6f theorem for the strip imply that Lf (h) >0
that contradicts to the condition L (g) < 0. As a result, we conclude that

®=Ff-Fge L=(C),

(b) In the case [, > 0 our argument is somewhat different. The second implication in

(9.1),
LM(g) <0< Ly(f) = ®:= Ff-Fgec L®(0),

is verified in the following way. The function H, H = Hg c, is bounded on the lines R,
R + 31,i/2. However, the growth of Fg and, as a consequence, that of ® is not sufficient
for H to grow in a strip of width 3/,/2 and to be bounded on its boundary on account of
the Phragmen—Lindel6f theorem for the strip.

Let us state two auxiliary statements.

LEMMA 9.2. Let l, > 0. Under the conditions of Theorem 9.1 if
Ff-Fge L>(C),

then
LM (g) = limsup [h(log [nax | Fg(z)]) — :1:} < 00. (9.2)

Tr—r00

THE PROOF is analogous to the reasoning in (a) and uses Proposition 8.4. 1

LEMMA 9.3. Let I, > 0, and let p = logp satisfy the conditions in the beginning of Sec-
tion 8. If a function g € My\{0}, Fg € A(C), Fg € L>({z : Rez < 0}), satisfies condition
(9.2), then there exists a curve S, S = {x +is(x),z > 0}, such that lim,_,, s(x) = 0, and

LM(g) = EEHSI [h(logﬂ]—'g(z)‘) — Re z}.
Rez—00

PROOF: Suppose that LM (g) > 0. By Lemma 5.12, exp N(vy(z)) = o(exp F(x)),  — oo,
and by Lemma 2.1 we have

limsup[h(log sup |Fg(z)|) —z] > 0. (9.3)
T—00 Reaim
SO
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Let 1 be the conformal map of Q, onto €y which is inverse to 1¢y. By (6.3), replacing if
necessary, 1 by (- — ¢), we obtain

0 <z — Rey(F(z)+iy) = 0(1), x — o0, |y| < /2. (9.4)

Put G = Fg(¢). Then for some ¢ we get, using (9.4) and Lemmas 2.1 and 5.12 that

log |G(F(z) + iy)| < cexp M (v(x)),  y==£7/2,

wli)ngo (log¥ log™ |G (z + iy)| — ) = —o0, y=+m/2, (9.5)

and by (9.3),
liin_)s;}p(log log max_ |G(2)] — z) > 0. (9.6)

Furthermore,

00 + . 00 + .
/ log |G(long:z7r/2)|dx§6/ log |G(F(t)j:m/2)|F’(t)dt§

x? exp F(t)
= e MO0 e [TAONO [T
c/ WF(t)dt—c/ = / /(1) dt < oo,

Therefore, there exists a function (G1, outer in the strip €2,, with the modulus of boundary
values equal to max(|G|,1) on 9Q, N C;.. Standard estimates of outer functions and
estimate (9.5) imply that

lim (loglog Jnax |G1(2)| — ) = —oc. (9.7)

T—00

Put G2 = G/G1. Then |G2| is bounded on 9. By (9.6) and (9.7) we obtain

lim sup (log log nax |G2(2)| —z) > 0.
e Z=T

T—00

By condition (9.2) for some ¢ we have

log log nax |G2(2)| <z +c.

Now the lemma is a consequence of the Ahlfors—Heins theorem (see [4, Chapter 7]), esti-
mate (9.7), and property (9.4) of ¢». We find a curve Sy in 2] approaching to R at infinity
and such that the maximal growth of G2 (and, as a consequence, that of G) is almost
attained along Sp:

Jiny, [log™log™ [G(r+i9)| — ] = Jim [loglog o |G (2)] — 2],
Tty 0

and map it into Qj by ¥. 1
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COROLLARY 9.4. Let [, > 0, and let p = log p satisfy the conditions in the beginning of
Section 8. If g € L3\ {0}, Fg € A(C), Fg € L™ ({z: Rez < 0}), then the limit

lim [h(log nax | Fg(z)]) — a:]

T— 00
exists and is finite or equal to +oo.

THE PROOF consists in applying Proposition 8.9 and Lemmas 9.2 and 9.3. i

Let us return to the proof of the first implication in (9.1) in the case I, > 0. Lemma 9.3
claims that the limit LY (g) is attained on a curve approaching to R. This fact and an
elementary estimate using the theorem on two constants like that for the case [, = 0 imply
the required inequality. [

Now we pass to equations on the half-line:

(f*g)-=0.

THEOREM 9.5. Let A = L, or M,,, and p = logp satisfy the conditions in the beginning
of Section 8. If f € A4, g€ (A*)_, Ff(z) #0 for Imz > —I,

i 108 \F f(iy)]

Y—00 y

=0,

and (f *g)— =0, then g = 0.
PrOOF: Theorem 3.4 and Lemma 3.5 imply that Ff-Fg € L°°(C). Since Ff € H>*(C, —

ilp)7

1 —l

/ og Ff( 5 ily) dx > —oc. (9.8)
R 1 +x

An easy argument using the Phragmen—Lindel6f theorem for angles (see, for example, [27])
shows that unless g = 0, the entire function Fg, bounded in C_ — (I, + 1)¢ and belonging
to the Smirnov class in C; — (I, — 1) should grow along R — [, sufficiently rapidly: for
some o > 0,

max loglog|Fg(z)| > oz, xr — 00.

| Re z|=x
Therefore, the function F f is small enough on a massive set. Applying the theorem on
two constants, we get a contradiction with (9.8). I

Let us formulate once again our conditions on p.

The function p = log p is positive, C2-smooth and strictly concave on Ry, )
p(0) =0, p(z) =lx +o(z), = — oo,
/oo P(*'E)x; lpr dz = oo,
and the function ¢(z) = log[p(exp x) — I, exp z] satisfies the following
conditions:

for some ¢ > 0, the function ¢(x) + clogx is concave for big z,

for every A, the function g(z) — A/x is convex for big z.
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The functions h and F' are defined as

2 x
h(a:):—/ %ds, x>1,

T

F(z) =logh™(z).

Let us recall that if R(z) = —Q'(z), Q(z) = sup,>o(logp(y) — ry), then
2 T
h(expz) = — / R™Y(eb) dt + o(1), T — 00.
T

THEOREM 9.6. Under conditions (9.9) every primary ideal at infinity in algebras A = L,
or M,, is of the form
J:J(j+aj—)a —00 < jx < 00,

where
J(j+7 J—) = {f eA: L:I:(f) Z j:l:}a

L (f) :k@iﬁf[h(log*\%\) il

i = inf L.(f).
jx = inf +(f)

In this situation J(—o0,—o00) = A, and we have J(a, b) = J(c, d) if and only if a = c,
b=d.

This theorem is just a corollary of Theorem 9.1 (and of Theorems 6.5 and 7.2 for the

last statement). Analogously, as a consequence of Theorem 9.5, we get the following result
on the ideals on the half-line.

THEOREM 9.7. Under conditions (9.9) every (closed) ideal J in algebras 2, = (L,)4 or
(M,)+ without common zeros for the Fourier transforms in C; — l,i is of the form 7,21,
t>0.

Furthermore, for entire functions, subordinate to a majorant depending on |Im z|, we
deduce from Theorem 8.8 and Corollary 9.4 the following result.

THEOREM 9.8. Let () be a monotone decreasing convex function on (l,,00), such that
the function p, p(x) = expinf,; (Q(z) + zy), satisfies conditions (9.9). If G is an entire
function, which is unbounded in the right half-plane, and

|G(2)| < exp Q(| Im z|), (9.10)

then the limit
lim [h(log [nax 1G(2)])) —x]

T—00 € Z=T

exists and is finite or equal to +oo.

It is useful to compare this statement with the log-log theorem of Levinson-Sjoberg (see
[11,15,24,35,38]) and with the Phragmen-Lindel6f theorem for the strip.
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Theorem 9.8 and Examples 5.7 and 7.1 show that in the cases Q(z) = exp(1/x), Q(x) =
exp(1/ max(0,z—1)), if an entire function G satisfies condition (9.10), and the function H,
H(x) = max| Re »|=¢ |G(2)], is unbounded, then H should grow at least as, correspondingly,
exp exp exp(5x + c) and expexp(§x —logz + c).

Theorem 8.2 and an argument like that in the proof of Theorem 9.1 permit us to describe
the asymptotics of quasianalytically smooth functions. Let us sketch here the argument
for the case [, > 0. If f € M, \ {0}, then ® = Ff - Fgo(- + L(f) + ¢€) is unbounded
for go constructed in Theorem 7.2 and every € > 0. Put g = F~'(Hg ) € L\ {0}. By

Proposition 8.9, Lemmas 9.2 and 9.3, Fg¢ is big on a curve S approaching to R, and ]N-"f
could not be very small on a set of positive lower density on R. As a result we get the
following statement.

tn
THEOREM 9.9. If f € C{M,}(R) \ {0}, where M,, = sup;-q o0 p satisties (9.9), then
p

there exists a set E of density 1 on Ry, lim;_,oo m(EN(z,z+1)) =1, such that the limits

i [ )

A

exist and are finite or equal to —oo.

This statement improves earlier results of [10,29,34,39]. See also [1,18,19,20]. In the
description of the distribution of zeros of quasianalytically smooth functions we obtain
only a partial statement improving an earlier result of [30].

PRrROPOSITION 9.10. Under the conditions of Theorem 9.9 if nj is the number of zeros of
the function f on the interval [k, k + 1], counted according to their multiplicities, then for
some c,

ng < exp F(|k] + c¢).

A sufficient condition,

an exp(—F(|k| +¢)) < oo,
kEZ

for some ¢, was obtained in [31]. A theorem on the asymptotical behavior of quasianalyt-
ically smooth functions formulated in [20] permits to show in [31] that this conditions is
also necessary for p(z) < z/loglogz.

Let us sketch the proof of Proposition 9.10 for [, = 0. Without loss of generality we can
deal with zeros of f on Ry and assume that |f(™)(z)] < M, z € R, n > 0. If f has N
zeros in [k, k + J], k € R, then (see, for instance [30, p.402])

|f(x)] < My6N /N, E<z<k+d.

It follows from Lemmas 5.1 and 5.3 (b) that for some ¢

q(t) —t > q(q(t)) —q(t) —c, (9.11)
h(p(s)) + ¢ > h(10s).
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Therefore, if the estimate on n; claimed in the proposition does not hold, we can find s
and k such that k = h(p(s)) and f has at least p(s) zeros in I = [k, k + p(s)/(10s)]. Then

/o(s) tp(s) ep(s) t Py _1
T <o S o <3 10w 501 P pger) <7 €D

p
because the last supremum is attained at ¢t such that p(s) = tp'(t) < p(t) < p(100s/99)

(see Lemma 5.1). As a result,

|f(@)] < exp(=h~" (k)

on the interval I of length

p(s)/(10s) > cp(p(s))/p(s) = cv(h(p(s))) = ey (k).

Last inequality follows from (9.11). Now, Theorem 8.2 together with Remark 8.3 give us
that L, (F~1f) > 0. Since the same argument works for all 7, f, we have L, (F~1f) = oo,
and Theorem 8.2 implies that f = 0.

10. OPEN QUESTIONS.

Theorems 3.1 and 9.1 make the following statement plausible:

10.1. Let f € £y, g € L;. Then f g = 0 if and only if the functions Fg, and —Fg_
continue to a function Fg¢g meromorphic in the whole plane, the divisor of poles of Fg is
subordinated to the divisor of zeros of F f and

M, - Ff e L*(R),

where My(x) = sup ge ,—, | F9(2)].
This statement would imply that in order to solve convolution equations in this situation
it is enough to know just the behavior of usual Fourier transforms.

As potential objects of application of the methods used in this paper we would like to
point out

10.2. The question on description of primary ideals at oo in £, with strongly asymmetric
weights p (a weak asymmetry is considered in [21,22]).

10.3. The problem of description of all (closed) ideals in £, and all 1-invariant subspaces
there. (E C L, is called 1-invariant, if nE C E, n E # E, t > 0.)

It would be interesting to get any information on the multiplicative factorization of quasi-
analytically smooth functions in the classes considered in this paper.

10.4. Is it true that for every function f satisfying the conditions of Theorem 9.9 there
1

exist a number ¢; and functions f1, fa, f1 € H®(QF +¢y), fo, A € L>®(Qf + cf), such
2
that
f="r1-f2|R?
Positive answer would permit us to get a complete description of the zero sets for quasi-
analytically smooth functions.
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Theorem 9.8 extending the log-log Levinson theorem and belonging to the domain of
Function Theory is proved here via the Functional Analysis technique (duality, continuity
of the convolution operation).

10.5. Is it possible to prove Theorem 9.8 directly?
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