ESTIMATES FROM BELOW AND
CYCLICITY IN BERGMAN-TYPE SPACES

A. A. BORICHEV

1. INTRODUCTION.

Let X be a linear topological space of analytic functions on the unit disc D, closed
under multiplication by the independent variable z. An element F' in X is called cyclic
(or weakly invertible) in X if

cgt()s L{z"F,n>0}) =X,

where L(F) is the linear hull of E.

Usually, to describe cyclic vectors is a major step in investigating the lattice of all
(closed) subspaces of X invariant under multiplication by z. Two important examples
here are the Hardy spaces HP and the Korenblum space A~ (see [1,2]), the space of the
functions f holomorphic on D and such that for some c,

1f(2)] <c(l—|2])7¢ z € D.
If the point evaluation functionals,

are bounded, then an immediate necessary condition for f to be cyclic is that f(z) # 0,
z € D. This is the case for the spaces HP, A=°°, and the Bergman spaces BP,

B ={F ¢ Hol(D) : /D|F(z)|p dma(z) < oo}

Since A~ is a topological algebra, the invertibility condition,
|f(2)] = (1= |2])°, z €D, (1)
for some positive ¢, cq, is sufficient for cyclicity.
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For a long time, it was an open question (posed by H. S. Shapiro in [3,4]) whether con-
dition (1) implies cyclicity in the space B?. Recently, a counterexample was constructed
in [5,6].

The next natural question (see, for example, Question 6 in [7]) is whether a stronger
condition,

If(2) = e(lz]),  zeD,

is sufficient for cyclicity, where ¢ has lim;_,; ¢(t) = 0. Note that the corresponding
question for Hardy spaces has a negative answer (see, for instance, [7, p.327]). Here we
prove that the answer is positive for the Bergman spaces with sufficiently slowly decreasing
functions ¢ like

1 )1/ (2+€)]

w@)zexpf—OOg———

0.
1—¢ &2

The proof uses estimates on the sets of big values of functions harmonic on the unit
disc. Our main results are formulated in Section 2. Lemmas on harmonic functions are
given in Section 3. Main results are proved in Section 4.

The author is thankful to the referees for helpful remarks.

2. MAIN RESULTS.

We say that a positive nonincreasing continuous function  on (0, 1], 0 < lims_,¢ ¥ (t) <
+o00, is a weight function if it does not decrease too rapidly near the point 0, namely if
for some positive c,

Y(t?) < ep(t), 0<t<l.

For weight functions u and w consider the Banach spaces A(u), Ap(u),

A(u) = {F € Hol(D) : ilelgUF(zﬂ exp(—u(l — |z]))] < oo},
Ap(u) = {F € Hol(D) : lim [|F(z)|exp(—u(1 - |z]))] =0},

|z]—1

and the Bergman spaces BP(w), 0 < p < 00,

B(w) = { F € Hol (D) :/D|F(z)|pexp(—w(1 ~ [2l)) dma(z) < oo},

which are Banach spaces for 1 < p < oo, and complete metric spaces for 0 < p < 1. Here
dmsg is Lebesgue area measure. Clearly, Ag(u) = {0} if lim;_o u(t) > 0.
Note that for the spaces X = Ag(u), BP(w),

cl)(()sﬁ({z”F,nZO}): cgt()sHoo-F, FeX.
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Theorem 1. Suppose that weight functions u and v satisfy the condition

> v2(exp(—t)) dt
| ey < @

If a function f € Ag(u) satisfies the condition

f(2)] = exp(—v(l—z])),  zeD, (3)

then f is cyclic in Ap(u).

Theorem 2. Suppose that weight functions w and v satisfy the condition

/OO vz(exp(—t)) @<OO. (4)

t +w(exp(—t)) ¢
If a function f € BP(w), 0 < p < o0, satisfies the condition
1f(2)] > exp(—v(1—|2])), z€D,

then f is cyclic in BP(w).

Remarks. (1) If the weight function u satisfies the condition

/00 —dt < 00
tu(exp(—1)) ’

then there exists a weight function v such that (2) holds for the pair u, v, and lim;_,g v(t) =
+00.

(2) For every weight function w there exists a weight function v such that (4) holds
for the pair w, v, and lim;_, v(t) = 400.

(3) In a similar way one can deal with smaller Bergman spaces like

{F € Hol (D) : /D|F(z)|p(1 1) dma(z) < oo}, 0<s<l.

The proofs of Theorems 1 and 2 are presented in Section 4. They are based on results
about harmonic functions given in Section 3. Under the conditions of Theorems 1 and 2 on
u, v, and w we obtain that every function f in X = Ag(u) or BP(w) such that 1/f € A(v)
can be multiplied by a bounded outer function in such a way that the product is a
(bounded) multiplier from A(v) to X.
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3. LEMMAS ON HARMONIC FUNCTIONS.

Let h be a harmonic function on the unit disc such that

';(0) N } 5)

—v(l = [z]) < h(z) <u(l - [2)),

where v and v are two weight functions.
For a fixed o, 0 < & < 1, denote

Ey={zeD: h(z) > au(l —|z|)},
E,=Epn{zeD: 27" <1—|z|<27"}, n>1

Given a subset F' of D, consider its “shadow” F* on the unit circle T,
F*={z€T: for some w € F, |argw —arg z| < 1 — |wl|}.
Lemma 1. For some c = ¢(a, u,v),

v(27")
u(2—")’

m(E;) <c n > 1.

By m we denote normalized Lebesgue measure on the unit circle or on the circles 7T,
0<r<l1.

To prove Lemma 1, we need first to verify an auxiliary statement. Let K, K > 2, be
a number to be fixed later. Given z € D, 272" < 1 — |2z| < 27", consider the set

F,={weD: |w=1-27"|argw —argz| < K(1 — |2|)}.

Lemma 2. For sufficiently big K, K = K(«,u), there exists ¢ = ¢(a,u) > 0, such that

if z € By, then
1

where h* (¢) = max(h(¢),0).

/F B () dm(Q) = cu(1 — |2)),

Proof. Consider a subdomain €2, of the unit disc,
Q,={webD: 27 <1—|w|<4K - (1 - |2|), |argw — arg 2| < 2K - (1 — |2])}.

When K is fixed and |z| — 1, the domain 2, looks more and more like a square; the
distance from z to the middle point of the side of 0€2, closest to T is approximately ﬁ
of the “side length” of €2,. Now a geometric argument shows that for z sufficiently close
to T, r(K) < |z| <1,

w(,,09, \ F,,z) < c(K), (6)
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where ¢(K) depends only on K and tends to 0 when K tends to +oo, and

c2(K) < w($2,,dC, 2) c_a
L=z = dm(() ~ 1—|z|’

(EeF,, (7)

where ¢; > 0 is an absolute constant, and c¢o(K) > 0 depends only on K. Here w(-,-,-) is
harmonic measure.
Since h is harmonic, we have

au(1—|z|)§h(z):/ h(C) w(S, dC, 2).

o0,

Furthermore, we know that

h(¢) < u(l —|c]).

Since u is a weight function, we obtain that

1-— < 1—
s u(l — [¢]) < eu(t - J2)

for some positive ¢ which depends only on u, and by (6) we have

/ B(C) (s, dC, 2) < oru(l — |2])/2
O\ F,

for sufficiently big K = K(«,u). Now,

/F B(CQ) (e dC, 2) > au(l — |2])/2,

and (7) implies that

7 L P am(@) = cut — 2]

for K = K(a,u) and some positive ¢ = ¢(a, u) independent of z, z is sufficiently close to
T. O

Proof of Lemma 1. Lemma 2 claims that the average value of h™ on F, is sufficiently big.
We are going to use this information to estimate from above the size of the union of F,,
z € E,.

Our argument runs as follows. Fix K mentioned in Lemma 2 and apply the Vitali
lemma (see, for instance, [8, Sections 1.1.6, 1.1.7]; the argument there works also in the
circle case) to the family of the arcs F,, z € E,, on the circle T = {|w| =1 — 273"}, By
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the lemma, there are finitely many disjoint arcs of the type F,, where z € E,,, enumerate

them F, ,...,F, ,such that
Urc U F.

z2€E, 1<k<m

where F is the arc on T with the same center as F,, and 5 times longer.
Now, by the harmonicity of A,

0— /T h(z) dm(z) > Z /F B+ (z) dm(z) — v(27°") > (by Lemma 2) >

m
Zm 2 Bn)
k=1

Since v is a weight function, we get

m
v(27™) > cru(2 Z

k=1
Finally, note that for z € E,, and big n, n > n(K), we have {z}* C (F,)*, m((F2)*) <
2m(F? ). Therefore,

m(E':;) = m(UzeE {Z}*) < m((UzEEnFZ)*) < m(UlﬁkSm (ij)*) <

v(27™)
22 < Czw.

For a summable function g on the unit circle, its Poisson integral Pg is defined as
1 27 1 — |Z|2 .
Pg(z) = — — = _g(e*) do.
9(2) 27r/0 |e’9—z|29( )
Lemma 3. Suppose that a harmonic function h and two weight functions u and v satisfy
condition (5), and

U

ZM<OO' (8)

= u@)

Then for every a, 0 < a < 1, there exists a non-positive summable function g on the unit

circle such that
Pg(z) < —v(1 — |z]), z € E}. (9)

Proof. For a subset S of T denote by xg its charactersitic function. We construct g just
as the sum of the functions

_2’"‘
_C”(Z )X(E2n)*
for a suitable C. Lemma 1 and condition (8) garantee that the sum converges in L!(T).
Since u is a weight function, we can choose C' in such a way that for z € Eon, n > 0,
Pg(z) < —C’v(2_2n) w(D, (Ean )*, 2) < —CU(Z_zn) w(D, {z}*,2) < —v(l - |z]).
To get (9) for z in (1/2) D we additionally increase C. O
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4. PROOFS OF THEOREMS.

Proof of Theorem 1. Without loss of generality assume that f(0) = 1. Since f € Ag(u)
and estimate (3) holds for f, the function h = log|f| satisfies the conditions of Lemma 3.
Furthermore, (2) is equivalent to (8) for weight functions v and v. Therefore, applying
Lemma 3 to a = 1/2 and h we get a summable function g satisfying (9), and a bounded
outer function G, log |G| = Pg. Denote f.(z) = f(rz),0<r <1, E = E,ll/z. Now, for
every r, 0 <r <1,

f
—G e H™f.
fr
Furthermore,
‘iG :sup[ f(z) |G(Z)|€_u(1_|z|):| <
fr Ao (u) z€D fr(z)
f(2) | Pytz)—u(1-| |)} { f(2) | —u1- |)}
sup | |-——=|e 9 TUETIEV L L osup || == e YV TIFV T <
zEE{ fr(2) 2¢E fr(2)
sup [|f (2) e M1 DH A=) =00 12D] 4 gup [ (=rlsD=u0-12D/2] < | ] 4 ¢,
z€E 2&E
farwa
fr
Here we use that under condition (2),
v(z) = o(u(x)), z — 0. (10)

Indeed, if v is bounded, then u should be unbounded. On the other hand, if v is un-
bounded, and v(exp(—t)) > eu(exp(—t)), then

2t 2 —t
/ vi(e”) di > cev(e™?),
t

u(e=t) ¢

where ¢ depends only on u and v. For fixed e, the expression in the right hand side tends
to oo as t — oo, which contradicts to (2). Now, (10) follows.
As a result, we obtain that for the outer function G,

G € clos H* f.
Ao(u)

Hence,

1 € clos H*f,
Ao(u)

and f is cyclic. [0
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Proof of Theorem 2. We assume that f(0) = 1. By the mean value property for harmonic
functions, since f € BP(w), we have

1
+ —w(|z|), z € D,
, (lz])

1
log|f(2)| < ¢ log T

for some positive ¢, depending on f and p. Put
1 1
t) =clog -+ —w(t).
u(t) cogt+pw()

Then wu is a weight function, v and v satisfy condition (2), and as a consequence, property
(10).
We can fix a small positive £ such that

/eZepu(1—|2|)—w(1_|Z|)dmz(z) < 0. (11)
D

Note that condition (4) on w and v is equivalent to condition (8) on u and v. Therefore,
we can apply Lemma 3 to « = ¢ and h = log|f|. As a result, there exist a summable
function g and a bounded outer function G, log |G| = Pg, such that

|G(2)| < exp(—v(1 — |z])), z € Ej.

As in the proof of Theorem 1, we denote f,.(z) = f(rz), 0 <r < 1, E = Ej;, and obtain

f(z) [F AP (1=12)) gy (4
|53 e ama (2) <
J@) P mpoa-zh—wa-tz) g, SE N —wata) g
L6 @)+ [ 156 tmal?) =

/|f(z)|pepv<1—r|z|>—pv<1—|z|)—w(1—|z|>dmz(z)+
E

/ eepu(l—|Z|)+P’U(1_T'|Z|)_w(1_|z|)dmZ(z) <
D\E N

[ 1Pt dma(z) +
D

where ¢ does not depend on r and f. The last integral over D\ E is estimated using (10)
and (11).
Now, our argument is completed like in the previous proof. [
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