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1. Introduction
Let K (r) # 0 be a nonnegative nonincreasing lower semicontinuous (l. s. c.) function
for r > 0. We assume that
lim K (r) = oo and lim K(r) =0.
r—0

7—>00

For z € RY we define K(r) = K(|z|), and assume that K (z) is locally integrable on
RY | in other words
/K(t)tN—ldt < oo.
0
We define the capacity C'x by

Ckx(E) =inf{||p||: K*u>1on E}.

Let Ko (r) = r*~ % for 0 < a < N. This is the Riesz kernel of order a. If K(r) = K,(r),
then we write C, for Cx and call it a-capacity.

Let h(r) be a positive nondecreasing function for » > 0 and ~(0) = 0. Such a function
is called a measure function. We define the content M}, by

My(E) = inf{> h(r;): E C |JB(z;,m;)},

where B(x,r) stands for the open ball with center at x and radius r. If h(r) = r?, then
we write Mg for M}, and call it S-content.

It is well known that the capacity C, and the content Mg are closely related:

(i) If 8> N — «, then Co(E) =0 = Mg(E) = 0.

(ii) If 8 < N — v, then Mg(E) =0 = C,(E) =0.

Since C,, is countably subadditive and homogeneous of degree N — «, it follows that
Co(E) < AMN_o(F),

which readily yields (ii). It is noteworthy that we cannot put 8 = N — « in (i); there
is a set E such that Co(F) = 0 and My_o(E) > 0. Thus the C,-capacity does not
majorize the (N — «)-dimensional measure.

One of the main purposes of this paper is to compare C, with a certain (N — a)-
dimensional quantity. Hereafter we shall use the following notation. By the symbol A we
denote an absolute positive constant whose value is unimportant and may change from
line to line. We shall say that two positive quantities f and g are comparable, written
f =~ g, if and only if there exists a constant A such that A=1g < f < Ag. By |E| we
denote the Lebesgue measure of E. For a proper subset E we put dg(x) = dist(z, E°).
Let us consider the set

Eo = | B(x,6p(x)N-/N),

reE
It is easy to see that if £ = B(0,r) and r > 0 is small, then E’a is a ball with radius
comparable to rN=®)/N g0 that

|Eq| ~ vV~ for small r > 0.

Thus |Eq| is, in a sense, an (N — o)-dimensional quantity. We shall show the following
theorem.
2



Theorem 1. Let U be a bounded set. Suppose E C U and let E’a be as above. Then
|E,| < AC.(E),

where A > 0 depends only on N, a and U.

Let g, be the Bessel kernel. The Riesz and the Bessel kernels have the same asymp-
totics as r — 0. However, g,(r) decreases rapidly as r — oo and hence g, is integrable
on RV . It is well known that

Co(E) ~ C,, (E) for E C U,

where U is a bounded set. Hence Theorem 1 follows from Theorem 2 below. Let us
consider the capacity of a ball. Suppose Kxp > 1 on B(0,r). Then |B(0,r)| < ||K||1||u|
by Fubini’s theorem, so that

(1) Cr(B(0,r)) = [|K|l7*|B(0,7)]

by definition. We define a positive function n(r) by |B(0,n(r))| = Cx(B(0,7)) and let
n*(r) = max{n(r), 2r}. It follows from (1) that
(2) n(r) = n*(r) > Ar.

We put

Ex = | Ble,n"(65(x)))-

reE

This is a set enlarged from E if E is open.

Theorem 2. Let K be an integrable kernel. Then
|Ex| < ACk(E),

where A > 0 depends only on N and K.

Theorem 2 comes from the following quasiadditive property of Ck: if a set E is
decomposed into pieces Ej; dispersely, then C'k (F) is comparable to > Ck(E;). More
precisely we have the following theorem.

Theorem 3. Let K be an integrable kernel. Suppose {B(x;,n*(r;))} is disjoint and E
is an analytic subset of | B(xj,r;). Then

Ck(E) <) Ck(ENB(xj,1;)) < ACk(E),

where A > 0 depends only on N and K.

Theorem 2 and Theorem 3 have counterparts in LP-capacity theory. Let 1 < p < oc.
We define
Crp(E) =inf{||f]|): K*f>1on E}.
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Let us consider the capacity of a ball. Suppose K f > 1 on B(0,7). Then |[xp(0lp <
|K 1] f]lp, so that

(3) Crp(B(0,7)) = [IK|17|B(0,7)]
by definition. We define a positive function n,(r) by
1B(0,np(r))| = Cr p(B(0,7))

and let n;(r) = max{n,(r),2r}. It follows from (3) that

(4) Np(r) = my(r) > Ar.

We put N
EK,p = U B(%le(éE(x)))

reE

Theorem 4. Let K be an integrable kernel. Then
|EK,p| < ACK,p(E)a

where A > 0 depends only on N, K and p.

Theorem 5. Let K be an integrable kernel. Suppose {B(xj,ny(r;))} is disjoint and E
is an analytic subset of |JB(xj,r;). Then

Crp(E) <Y Crp(ENB(zj,15)) < ACk »(E),

where A > 0 depends only on N, K and p.

We note that the quasiadditivity in Theorem 3 and Theorem 5 is different from the
quasiadditivity considered in [3] and [4]. Theorem 2 and Theorem 4 have an application
to the tangential boundary behavior of harmonic functions. We shall later generalize
these theorems, in connection with Nagel-Stein approach regions ([8]). We shall intro-
duce a notion of “thin sets” and combine it with the generalized version of Theorem
2 and Theorem 4 to obtain precise description of the tangential boundary behavior of
harmonic functions given as the Poisson integral of certain potentials.

The plan of this paper is as follows. We prove Theorem 3 and Theorem 5 in Section
2 and Section 3, respectively. In Section 4 we prove Theorem 2 and Theorem 4. In
Section 5 we introduce the Nagel-Stein approach region and generalize Theorem 2 and
Theorem 4. The boundary behavior of harmonic function will be considered in Sections
6-10. We shall introduce a new notion of boundary thinness in Section 6.

Hereafter, we let K be an integrable kernel, unless otherwise specified.



2. Proof of Theorem 3

We shall need to give a lower estimate for the capacity. To this end we use the dual
definition of Ck.

Theorem A. Let E be an analytic set. Then
Cx (E) = sup{||p|| : p is concentrated on E, K * u <1 on RV }.

We prepare an elementary lemma.

Lemma 1. Let 0 < 2r < R. Suppose © ¢ B(xo, R) and let p = dist(z, B(zo,r)). Then
|B(x, p) N B(xo, R)| = A|B(x0, R)|,

where A depends only on the dimension.

Proof. Let x1 be the point on the line segment connecting xy and z such that |z, —xo| =
%R. It is easy to see that

3 1
p:|x—$0|—r:|x—$1|+ZR—r2|x—$1|+ZR.

We observe that

1
B(x1, ZR) C B(z,p) N B(xp, R),

since if y € (21, %R), then
1 1
|z —y| < |x—$1|+ZR§pand lzo —y| < |a:0—:1:1|+ZR:R.

Thus the required inequality follows.

Proof of Theorem 3. The countable subadditivity yields Cx (E) < Y Cx(ENB(xj,7;)).
Let us prove Y Cg(E N B(zj,r;)) < ACk(E). For simplicity we write E; for E N
B(zj,7;). Let ¢ be an arbitrary positive number. By Theorem A we can find a measure
pt; such that

p; is concentrated on Ej,
K xp; <1on RY,
il = Ck (Ej) —27e.

Let po =) p;. Observe that p is concentrated on E. We claim

(5) Ksxp<AonRVN.
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If we have (5), then Theorem A yields
Cx(E) 2 Allull =AY [l = AY_ Cx(E)) —e.

Since € > 0 is arbitrary, the required inequality follows.
For the proof of (5) we put

5]
d,u/' = - XB(z;,m*(r;
) By ()

)d.’l?

and p' =) pj. This kind of measure was introduced by Borichev [5]. Since
5]l < Cre(Ej) < Cr (B(wj,75)) = | B, n(ri)] < [Blwg, n*(r;)];
it follows that
A <Y XB(a e (ry) 0o < d,

where we have used the disjointness of B(x;,n*(r;)) in the last inequality. Hence

(6) Kxp <Kxl= Kdr < oo on RV,
RN

Let us compare K * y and K * p’. Suppose first © ¢ B(xj,n*(r;)). We apply Lemma
1 with 29 = zj, R = n*(r;) and r = r;. Let p; = dist(x, B(zj,r;)). We have

K () > / K(z —y)du;(y)
B(=z,p; )NB(z;,n*(r;))

> K(pj)uj(B(w, ps) N B(xj,n"(r;)))
= K () ) 122 D B (1)

B ()
> AK (p) 1]
Obviously, K * p;(z) < K(pj;)||p;ll, whence
@ K 5y (@) < AK 5 (o).
Now suppose z & |J B(zj,n*(r;)). Then (7) holds for all j. Hence we have from (6)
Ksp(m) =Y Kxpj(z) < AY K pli(z) < AK « ' (z) < A

Suppose z € |JB(zj;,n*(r;)), say « € B(zj,,n*(rj,)) for some jo. Then, by the
disjointness of { B(x;,n*(r;))} we have x & |J B(zj,m*(r;)). Hence (6) and (7) yield

J#Jo
Y Kxpi(x) <A K« pf(z) < AK « pf (z) < A,
J#Jo J#Jo
Since 1, is an equilibrium measure, it follows that K = pj, <1 on RY. Thus
K+ () = K 5 gy () + 3 K+ py(a) < A.
J#Jo
Therefore (5) follows. The theorem is proved.
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3. Proof of Theorem 5
First we prepare fundamental facts for C'x ,. We have the dual definition ([6, Theo-

1 1
rem 14]). Let — 4+ — = 1.
p q
Theorem B. Let E be an analytic set. Then

Cr p(E) = sup{||pl|P : p is concentrated on E, || K * p|l; < 1}.

Proof of Theorem 5. The proof will be carred out in a fashion similar to that of Theorem
3. It is sufficient to show that )  Ck ,(E N B(zj,7;)) < ACk p(E) in case the left hand
side is positive. For simplicity we write E; for E N B(zj,r;). Let ¢ be an arbitrary
number such that

0<e<> CkplE).

By Theorem B we can find a measure p; such that

p; is concentrated on Ej,
K pujllg = 1,
Crp(Ej) =277 < ||u; ||” < Ck p(Ej)-

Let puf = Cr p(Ej)Y; and let p* = > 1. We observe that

(8) Crp(Ej) =277 < ||pfl| < | K * p} || = Ck p(E;).
We claim
(9) |K + p*||2 < A Ckp(Ej).

If we have (9), then
" —-1/a |
i= (> CralE)) n

satisfies ||K * ||, < A. Obviously p is concentrated on E and by (8)

el = (Z CK,p(Ej))_l/q (Z Crp(Ej) — 8) :

Since ¢ is arbitrary, it follows from Theorem B that

Crp(E) > A)  Ckp(Ej).

Thus the required inequality follows.



For the proof of (9) we put

-l

= . XB(xj,m:(r; dx
T 1B gy (r)) [P

(10) /[ =l <D Crep(Ey)

Let du' = fdz. Then, we observe from the disjointness of B(z;,n,(r;)) that

f= XBGmzor) <L
Hence by (10)
(11) K * '3 = [[K = fI|2 < | K[TIf11E = Allf112
SAIFISHIN < Alfll = Al < A Ok p(Ej).-

Let us compare K * pu* and K * p/. Applying Lemma 1, we obtain
(12) K x p}(z) < AK * p(x) for x & B(xj,n,(r5)).

Thus
K x p*(z) < AK * ' (z) for z & UB(xj,n;(rj)).

Suppose x € |J B(w;,n5(r;)), say € B(wj,,m;(rj,)) for some jo. Then, by the disjoint-
ness of { B(z;,n,(r;))} we have z & |, _; B(x;,n,(r;)). Hence (12) yields
Ko p*(v) < K oxpj (o) + A Z Koxpl(x) < K x5 (x) + AK * /().
J#3jo

It follows from (8) and (11) that

K nly= [ (1 s+ [ (K« ) ids
RM\U B(z;,m5(r;)) U B(=z;,m;(r;))

< A|K * ! ||q—|—AZ/ (K * ;) %da

B(=; M (r5))

<A Crp(Ej)+ A |IK * ||
<A Ckp(Ej).
Therefore (9) follows. The theorem is proved.
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4. Proof of Theorem 2 and Theorem 4

Let Cx1(E) = Ck(E), m(r) = n(r), ni(r) = n*(r) and EKJ = Ex. Hereafter we
let 1 < p < co. Then we can prove Theorem 2 and Theorem 4 in the same way with
the help of Theorem 3 and Theorem 5.

Proof of Theorem 2 and Theorem 4. Take an arbitrary compact subset F' of EKyp. By
the usual covering lemma we can find z; € E such that

F c | B(aj. omy(ry),
{B(zj,m;(ry))} is disjoint,

rj = 0p(z)).

Let E' = |JB(zj,r;). By definition this is a subset of E. We apply Theorem 3 and
Theorem 5 for B(zj,r;) and E’. We obtain

Y Crp(Blzj,r))) < ACk p(E') < ACK 4(E).
On the other hand we have

[FI < Y 1By, 5y ()| = A 1Baj, 5 (r)]-
It follows from (2) and (4) that
(13) |B(0,m, (1)) = |B(0,1,(r))| = Cr p(B(0,7)).

Hence
|F| < AC’K,p(E).

Since F' is an arbitrary compact subset of E K p, the required inequality follows. The
theorems are proved.



5. Generalization
In this section we let 1 < p < oo and use the convention for Ck ,(E), 1,(r), n55(7)

and E'K,p as in the last section. Let Q be a set in RY ™! with @ N oORY*! = {0}. For
simplicity we assume that Q@ D {(0,y) : y > 0}. Put Q(y) = {z : (z,y) € Q}. We say
that (2 satisfies the Nagel-Stein condition (abbreviated to (NS)), if

(i) [2(y)] < Ay™ with A = A(Q);
(ii) there is a > 0 such that

(x1,y1) € Qand |z —z1| < aly —y1) = (z,y) € Q.

For E we put

Expo=J (& - Q5 0p()).

el
Theorem 6. Let Q satisfy (NS). Then

|E'K,p;9| < ACK,p(E)v

where A > 0 depends only on N, K, p and €.

Proof. The proof will be carried out in the same way as in the proof of Theorem 2 and
Theorem 4 if we use the covering lemma due to Nagel-Stein [8, pp.90-92]. But, for the
completeness we give a proof.

Let Q(y) = UwEQ(y) B(z,y). Obviously, Q(y) C Q(y). In particular,
Expo C | (v = Qny(0p()))) -
TeE

For a moment we fix y > 0. By [8, Lemma 1 (d)] we find points uy, ...,up € Q(y) so
that Q(y) C U]]Vil B(uj,3y). Note that the number M is independent of y. We put

Q)= | {w —ur + U B(u;,9y)}.

J,k=1
We observe that
(14) Q)| < Ay™,

where A > 0 is independent of y. N
Take an arbitrary compact subset F' of Fk ;,.o. We follow the same argument as in
[8, pp90-92] and find points 1, ...,x; € E such that

(15) FC U Tj— @(yj)v y; = 1, (0r(z;));

{z; — Q(y;)};]-, is disjoint.
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We assumed that Q D {(0,y) : y > 0} and hence Q(y) D B(0,y). Hence, in particular,
{B(xj,y;)}/=, is disjoint. Let

J
E' = | B(xj, 65(;)).

j=1
Obviously, E’ is a subset of E. We apply Theorem 3 and Theorem 5 to E’ to obtain
> Crkp(B(j,08(x;))) < ACk »(E') < ACk (E).
On the other hand, by (13), (14) and (15) we have

[F| < AY yY =AY |B(z,m5(0m(x5))] < AY  Ck p(B(zj, 0u(x5)))-
Hence

|F| < ACKk p(E).

Since F'is an arbitrary compact subset of E K,p:0, the required inequality follows. The
theorem is proved.

Remark 1. Let 2 be as in Theorem 6. Then
| (& +Q;(6s(2)))) | < ACK ,(E).

TeE

We record counterparts of Theorems 1-6 for energy capacity. The energy capacity
for the kernel K is defined by

ex (E) = sup{||p||? : p is concentrated on E, /K « pudp < 1},

We define 7.(r) by

|B(0,ne(r))| = ex (B(0,7))
and let n¥(r) = max{n.(r), 2r}.
Theorem 7. Let 2 satisfy (NS). Then

U @ - Q@:(0s(x))))

reE
where A > 0 is independent of E. In particular,

| U Ble,ni(05(2)))] < Aex(E).

Theorem 8. Suppose {B(xj,n%(r;))} is disjoint and E is an analytic subset of
UB(zj,7j). Then
ex(B) <Y ex(EN B(zj,r))) < Aek(E),
where A > 0 is independent of E.
We can prove Theorem 7 exactly in the same way as in Theorem 2 and Theorem
4, if we invoke Theorem 8. The proof of Theorem 8 is somewhat mixture of those of

Theorem 3 and Theorem 5. The details are left to the reader.
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6. Boundary behavior of harmonic functions

In what follows we are interested in the boundary behavior of harmonic function in
RY*!. Hereafter we let 1 < p < oo. Following the idea in [2] and [5] we introduce the

notion of thinness at the boundary. For a set E C Rﬁ“ weput By = {(z,y) : 0 <y < t}
and E* = J, ,yep B(z,y). Werecall that B(z, y) is the N-dimensional ball with center

at = and radius y, so that the set E* is a set on the boundary RV = 8Rj\_r 1. We shall
combine the above notation and write

by = U  By).

(z,y)EE,0<y<t
Definition. Let E C RY*'. We say that E is C p-thin at ORY Tt if

Remark 2. If E is Ck p-thin at 8Riy+1, then the essential projection of K
{z : for any ¢ > 0 there is a positive number y < ¢ such that (z,y) € E }

is of Uk j,-capacity 0, and hence of measure 0.
We shall show the following theorems.

Theorem 9. Suppose Q satisfies (NS). Let
Qkp=A{(z,y) : 3 € Qny(y))}-

If E is Ck p-thin at 8Rf+1, then

{z: (z+ Qxp) N E # 0} =0.

t>0

In other words, for almost all x € 8]1%1“, x + Qg p lies eventually outside E, i.e., there
ist =1ty >0 such that Ey N (z + Qg ) = 0.

Remark 3. Tt is not so difficult to see that n;(r)/r — oo asr — 0 (cf. [1]). Hence Qk
is a tangential region.
For a function f on 3]1%1 *1 we denote by PI(f) its Poisson integral. More precisely,

let p(z) = AN(|:L‘|2 + 1)—(N+1)/2 and (,Dy(x) _ y_N(p(x/y), where Ay > 0 is such that
le||t = 1. Then we see that

PI(f)(w,y) = @y * f(x).
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Theorem 10. Let Q C Rﬁ“ and suppose ﬁﬂ@RﬂY“ ={0}. Ifp =1, then we assume
that

(16) K(r)~ T‘_N/ K(&)tN~tdt for small v > 0.
0

Suppose f € LP(RY). Then there is a set E C Rﬂ\f“ such that E is Cg p-thin at 8]1%1“
and that

(17) Pam,PléI(I;:—i-Q)\EPI(K x f)(P) =K * f(x)

for Crp-a.e. x € ORYT! i.e. there is a set F C ORY ™! such that C,(F) = 0 and
(17) holds for v € ORY '\ F.

As a corollary to Theorem 9 and Theorem 10 we have the following theorem. This
is a generalization of [7, Theorem 2.9].

Theorem 11. Let Q) C Rﬂg“ and suppose  satisfies (NS). If p =1, then we assume
that (16) holds. Suppose f € LP(RN). Then

bl PG« )(P) = K+ f(@)

for almost all x € 3]1%1"’1.

We note that Theorem 10 gives a sharp characterization of exceptional sets.
Proposition 1. Suppose E is Ck ,-thin at 3]1%]1"'1. Then there is f € LP(RY) such
that

(18) inf PI(K x f)(z,y) — o0 ast — 0.
(z,y)€E,0<y<t

Finally we observe that the region 2 C Rf *1 in Theorem 10 is necessary. In fact,
we have

Proposition 2. Let g be an integrable function and let o € 8R]¥+1. Suppose there is
a set E such that the essential projection of E is of measure 0 and

(19) P—>:1::IOI7I}3€E PI(g)(P) = c.
Then
(20) egs_}lé?g(a:) = .

Remark 2 and Proposition 2 assert that if h(P) = PI(K x f)(P) approaches a limit
as P approaches xy € 8R§_’+1 outside a set Ck ,-thin at 3]1{1"'1, then K = f must be
13



essentially continuous at z¢. Unless a point has positive Cx p-capacity, there exists f €
LP(RYN) such that K xf is essentially discontinuous at every point. In fact, assume that a
point has null Ck ,-capacity. Let £ be a countable dense subset of RY. Then we see that
Ck p(E) = 0, so that there is a nonnegative function f € LP(RY) such that K x f = oo
on E. Since K * f is lower semicontinuous, it follows that esslimsup,_,, K f(z) = oo
for every zo € RY. At almost every point, K * f is discontinuous even in the extended

sense, since essliminf, ,,, K * f(r) < oo for a.e. k9 € RY by the local integrability of
K xf.

7. Proof of Theorem 9

We begin by an elementary geometrical observation.

Lemma 2. Let Q C Rﬁt”rl and suppose Q(y) is increasing, i.e., if y1 < ya, then
Qy1) C Qya). Let E C RYT and let E* be as in Section 7. Then

(21) {zeRY: @+ QNE#£0}c | (@ - Qe (2))),
where 0« (x) = dist(z, E*°).

Proof. We take an arbitrary point xp from the set in the left hand side of (21). Then
(o + Q)N E # (. Assume that (z,y) € (o + Q) N E. This implies

(i) € zo + Q(y) and hence zy € z — Q(y);
(ii) (x,y) € F and hence B(z,y) C E* by definition, so that dg«(x) > y.

By the monotonicity of Q(y) we have
xg € x — Q0p~(x)),

which yields (21). The lemma is proved.

Proof of Theorem 9. We apply Lemma 2 for Qg ), replacing Q. Note that Qg ,(y) =
Q(n;(y)). Then (21) becomes

{g e RV : (2 +Qrp) NE# 0} C | (0 = Q0+ (2)) = | (& — QU (65- (2)))).

reE* rzeE*

Hence Theorem 6 yields
{z € RN : (z+ Qxp) NE # 0} < ACk ,(E¥).
Apply this inequality for E; replacing F. Then the definition of thinness implies that
He: (x+Qkp) NE # 0} < ACk p(E}) — 0 ast — 0.

Thus the theorem follows.

14



8. Proof of Theorem 10 in case 1 < p < o©
In this section we let 1 < p < 0.

Lemma 3. Let f be a nonnegative function in L (RN) and let € > 0. Put
E(f.e) = {(x,y) € RY™" : PI(K « f)(x,y) > e},
E*(fe)= |J B(y).
(z,y)€E(f.e)
Then
£l )"
Crp(E*(fe)) <A :

€
where A is independent of f and .

Proof. Let
E'(f,e)= | Bla,y) x{y}

(z,y)€E(fe)

Then the projection of E’(f,e) is equal to E*(f,e). Since PI(K x f) is a positive
harmonic function, it follows from the Harnack inequality that

(22) PI(K x f) > Ae on E'(f,¢),
where A depends only on the dimension. Let us put

F(z) =supp, * f(x),
y>0

where ¢, is the Poisson kernel as defined in Section 7. Then, the maximal inequality
shows that

(23) 1], < All £l
([9, Theorem 3.7]). By definition
K+ F(@) > K+ (g, * [)@) = oy * (K = [)(@) = PI(K « [)(z,) for all y > 0.

Hence by (22)
K« F > Ae on E*(f,¢).

Creal* () < A (1E2)" < 4 (1)

Thus, by (23),

The lemma follows.

In [2] we proved a theorem similar to Theorem 10 by using oscillation. Here, we
present a more direct proof without using oscillation. By B(P, r) we denote the (N +1)-
dimensional open ball with center at P and radius r.
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Lemma 4. Let f € LP(RN) and let § > 0. Then there exist E C RY ™! and F c ORY
such that

(1) CK’p(E*) <0 and CKJ,(F) < (5,'
(ii) for each € > 0 there is > 0 such that

(24) sup sup |PI(K * [)(P)— K * f(z)] | <e.
z€ORYT\F \ PEB(z,r)NRYT\E

Proof. In view of the definition of Ck ;, and Lemma 3, we can choose a sequence g; €
Cs° (RY) such that
Crp(Fj) < 27796 with Fj = {z: |K x gj(v) — K * f(z)] > 277},
Ckp(E;) <2776 with E; = {P : |[PI(K % g;)(P) — PI(K * f)(P)| > 277}.
Let F' = U;2, Fj and E = J;Z, Ej. Then Ck ,(F) < § and Cg ,(E*) < 6. Moreover
we observe that
K % g; — K [ uniformly on 8]1%5"’1 \ F,
PI(K % g;) — PI(K  f) uniformly on RY*!\ E.
Hence we can find jo such that
€
sup K = gj,(2) — K+ f(a)] <
z€dRY T\ F
€
sup  [PI(K % g3,)(P) = PI(K « [)(P)| < £,

PerRYTI\E

Since PI(K # gj,) is uniformly continuous on Rﬂ\_’ *1 and has boundary values K * g;,,
we can find 7 > 0 such that

€
sup sup |PI(K % g;,)(P) — K xgj,(x)] | < 3
z€oRY T \ PEB(z,r)NRY !

The above three inequalities altogether imply (24). The lemma is proved
We prepare a geometrical observation for €. We assume that QN 3]1%14\_’ = {0},
which implies that for each r» > 0 there is ¢ > 0 such that
Qn{(zr,y): 0 <y <t} CB(O,r),

or equivalently

Q\B(0,7) C {(z,y) 1y > t}.
16



Hence, if we have a decreasing sequence r; | 0, then we can find ¢; | 0 such that
(25) tj <Tji1
and QN {(z,y): 0 <y <t;j} CB(0,7j41), or equivalently

Q\B(0,7j41) C{(z,y) 1y > t;}.

Observe that

QNB(0,r;) = QN B(0,7;) \ B(0,7;11) € [JB(0,r;) N {(z,y) 1y > t;}

j=i j=i
By translation we have for z € 8Rﬁ +1
(26) (¢ + Q) N B(a,ry) € JBe,r) 0 {(e,y) 1y > 1),
j=i

Proof of Theorem 10. Take ¢; | 0. By Lemma 4 there are E; C ]Rj\_”rl, F; C 3]1%1"’1
and r; | 0 such that

(27) ZCK#’ ) < oo and ZCKJ" ;) < o0,
j
(28) sup ( sup |PI(K * f)(P) — K x* f(:l:)|) < gj.
zedRY T\ F; \PEB(z,rj)\E;

We choose t; | 0 so that (25) and (26) hold. Let E; = E; N {(z,y):y > t;} and put
E = U;E}. Then (27) yields

Ckp(E <C’KpUE <ZCKP ) — 0 as i — oo,

so that E is Ci p-thin at ORY T, Again by (27) we see that F = (2, Uj=; Fj satisfies

Ckp(F) = 0. Take z € 9RY ™' \ F. We shall show that (17) holds. By definition there
is jo = jo(x) such that x ¢ F} for all j > jo. By (28)

sup |PI(K = f)(P) — K * f(z)| < ¢
PEB(:Eﬂ"j)\Ej
17



for all j > jo. Let ¢ > jo. In view of (26) and the definition of F

sup |PI(K * [)(P) — K x [(z)|
Pe(z+Q2)NB(z,r; )\ E

< sup sup |PI(K  f)(P) — K * f(z)]
Jj2i \ PeB(z,r;)N{(z,y):y>t; }\E

< sup sup |PI(K * f)(P) — K * f(z)]
Jj2i \ PEB(z,r;)N{(z,y):y>t; }\ E;

<supgj =¢; — 0 as 1 — oo.
Jj2i

This implies (17). The theorem is proved.

9. Proof of Theorem 10 in case p =1

In this section we let p = 1. In this case we cannot use the maximal inequality in the
proof of Lemma 3. Instead, we estimate the kernel K, (z) = K * ¢, (x). Let

1 T
m&ﬁ:K€)+r+ﬁfNZ;K@ﬂN4ﬁ

and let x(z) = k(|z|) for z € RY as usual. The following lemma is a substitute of
Lemma 3.

Lemma 5. Let f € L1 (RY) and let ¢ > 0. Put
Ei(f.€) = {(z,y) € RYT 10 <y <1, PI(K * f)(w,y) > e},
Ei(f,e)= |J By

(may)EEl (f76)

Then

Cu(mi(f,e)) < Al

where A is independent of f and .

Proof. First we claim
Ky (z) < Ak(z) for 0 <y < 1.

In fact we have

K, (z) =An - K(z—2)

Y

dz
(= + )72

|$| Y
= 9 dz
- N/|$—2|2|w|/2 ( 2 7 (|22 +y2)(N+1)/2
Yy
n AN/ Klr s
lz—z|<|z|/2 ( )((|$|/2)2+y2)(1\’+1)/2
|z| 1 1 /
<KEZy+aAa—— K(2)dz
2 lz|/y+ 1 |z|V 21<|al/2

< Ak(x).

dz
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In view of the claim and the Harnack inequality we have
kx f(z) > Ae on Ej(f,e),

whence the required inequality follows.

We observe that if (16) holds, then x(r) ~ K (r) for small » > 0, so that
Ck(E) ~ Cy(FE) for E C U,

where U is a bounded set. From this fact and Lemma 5 we can prove Theorem 10 in
the same way as in Section 8 with a slight modification.

10. Proof of Proposition 1 and Proposition 2

Proof of Proposition 1. By definition there is ¢; | 0 such that
Crp(E;) <277

We find nonnegative functions f; € LP(RY) N C§°(RY) such that
K« fj >1on Ef

and || f;||2 <277, Let f =3 f;. Then f € LP(RY). We show that this f satisfies (18).
Since K * f; is continuous, it follows that PI(K * f;) has continuous boundary values
and

PI(K = f;) > 1 on Ej .

Observe that if (z,y) € Ey;, then B(z,y) C Ej. Since the harmonic measure of
B(z,y) evaluated at (x,y) is greater than a positive constant A depending only on the

dimension, it follows that
PI(K * f;) > Aon E,.

Therefore
PI(K = f) > Aj on Etj.

This implies (18). The proposition is proved.

Proof of Proposition 2. We prove the proposition by contradiction. Suppose (20) does
not hold. Then there is g > 0 such that

(29) {z € B(zo,r) : |g(x) — a| > 20} >0
for all » > 0. By (19) we see that there is 79 > 0 such that

(30) |PI(g)(P) — a| < eq for P € B(xg,m9) NRY M\ E.
19



Let us consider the boundary values of PI(g) on B(zo,ro). It is well known that PI(g)
has nontangential boundary values g a.e. on 8Rj\_r *1. Hence, by (29), we can find a set
F C B(xg,ro) such that |F| > 0 and

|n1‘glimPI(g)(P) —a| > 2¢ for z € F,
—x

where ntlimp_,, PI(g)(P) means the nontangential limit of PI(g) at z. In particular,
there is a positive function ¢(z) on F such that

|PI(g)(x,y) —a| >ep for x € F and 0 < y < t(x),

or, in other words
|PI(g) —al >eoon A= | ] I(w),
zEF

where I(z) = {x} x (0,t(z)). By (30) we see that AN B(xp,rg) C E. Obviously, F is
the essential projection of AN B(xg,rp), Hence the essential projection of E has positive
measure. This is a contradiction.
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