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HARMONIC FUNCTIONS OF MAXIMAL GROWTH:
INVERTIBILITY AND CYCLICITY IN BERGMAN SPACES

ALEXANDER BORICHEV AND HAKAN HEDENMALM

ABSTRACT. In the theory of commutative Banach algebras with unit, an el-
ement generates a dense ideal if and only if it is invertible, in which case its
Gelfand transform has no zeros, and the ideal it generates is the whole algebra.
With varying degrees of success, efforts have been made to extend the validity
of this result beyond the context of Banach algebras. For instance, for the
Hardy space H? on the unit disk, it is known that all invertible elements are
cyclic (an element is cyclic if its polynomial multiples are dense), but cyclic
elements need not be invertible. In this paper, we supply examples of func-
tions in the Bergman and uniform Bergman spaces on the unit disk which are
invertible, but not cyclic. This answers in the negative questions raised by
Shapiro, Nikolskii, Shields, Korenblum, Brown, and Frankfurt.

1. Introduction and main results

In the Gelfand theory of commutative Banach algebras with unit, an element
generates a dense ideal if and only if it is invertible, in which case its Gelfand
transform has no zeros, and the ideal it generates is the whole algebra. With
varying degrees of success, efforts have been made to extend the validity of this
result to the more general context of Banach (or even topological vector) spaces of
functions. To do this properly, we need the space M (X) of multipliers on the given
space X: a function f, defined on the same underlying region, is a multiplier on X
if fX is contained in X. If X contains the constant functions, then M(X) C X. In
the Banach algebra case, M (X) = X. Observe that M (X) forms an algebra, and
if X is a Banach space, then M (X) is a Banach algebra. An element f € X is said
to be multiplier-cyclic in X if fM(X) is dense in X. In the Banach algebra case,
an element is multiplier-cyclic if and only if it is invertible, or, which is the same,
its Gelfand transform lacks zeros.

We illustrate the situation with two well-known spaces: L2, the square integrable
functions on the unit circle T, and H?2, the Hardy space on the unit disk D. For
X = L2, the multiplier space is M(L?) = L™, the space of essentially bounded
functions on T. A function in L? is multiplier-cyclic in L? if and only if its zero set is
a null set with respect to arc length measure on T. For X = H?2, the multiplier space
is M(H?) = H®, the bounded analytic functions on D. By Beurling’s invariant
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subspace theorem, a function is multiplier-cyclic if and only if it is outer. Invertible
functions in H? are all outer, but not all outer functions are invertible.

The above-mentioned results suggest that invertible elements are multiplier-
cyclic in a more general setting. However, this intuition is wrong: as we leave
the Nevanlinna space setting, new phenomena appear, which may prevent invert-
ible elements from being multiplier-cyclic. What makes this possible is a curious
combination of growth and decrease. We shall supply examples of functions in the
Bergman spaces (and in certain uniform Bergman spaces) on the unit disk which are
invertible, but not multiplier-cyclic (neither are they polynomial-cyclic; see the def-
inition below). This answers in the negative questions raised by Shapiro, Nikolskii,
Shields, Korenblum, Brown, and Frankfurt.

We also need the concept of polynomial-cyclicity. Let X be a complex-linear
topological space of analytic functions on . Suppose X is closed under multipli-
cation by the coordinate function z, so that the multiplier space M (X) contains
the polynomials. We say that an element f € X is polynomial-cyclic (the term
weakly invertible is also common) in X if the set of polynomial multiples of f is
dense in X. Generally speaking, it is harder for a function to be polynomial-cyclic
than multiplier-cyclic, although in many cases the two concepts coincide, as in the
case of H? above.

Let dS(z) = 7~ 'dzdy (2 = x + iy) be normalized Lebesgue area measure, and
p a real parameter, 0 < p < 4o00. In this paper we look at the Bergman space L?,
which consists of all functions f holomorphic on D, subject to the norm boundedness
condition

1l = ( / |f(Z)|”dS(Z)>l/p < 1.

It is a Hilbert space for p = 2, a Banach space for 1 < p < 400, and a complete
metric space for 0 < p < 1 (the invariant metric being given by the p-th power of
the norm expression). We shall also be interested in the related spaces A™?, A,7,
and A=, defined as follows. The space A™P is the (nonseparable) Banach space
of all functions f holomorphic on D that satisfy

1£lla-» = sup {(1 = [2])?|£(2)| : 2z € D} < +o0,

and A,” is the closure of the polynomials in A7P. The space A,? is supplied with
the norm topology of A™P, which makes it a Banach space, too. One shows that a
function f € A7P is in A,? if and only if

(L—|z))?|f(z)|—0 as |z| = 1.

As the parameter p increases, the spaces AP and A,? get larger, and L gets
smaller. We will refer to the A™7 and A" as uniform Bergman spaces. The
Korenblum space A~°° is the union of all A™P, with the inductive limit topology.
It is also the union of all Bergman spaces LZ, as well as the union of all the A,”,
and the various inductive limit topologies it inherits this way are the same.

The space of multipliers on any one of the above Bergman or uniform Bergman
spaces is H*. The Korenblum space A~ is a topological algebra, and as such its
multiplier space is A~ itself.

No single function in the space A™P is polynomial-cyclic, because A™P is non-
separable. A slightly more sophisticated argument is required to show that there
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are no multiplier-cyclic functions either. Let f € A™P; one readily checks that
there exists a sequence {z;}; of points in ) tending to the unit circle such that
(1 — |2))?|f(2)| approaches 0 along it. Any function in the norm closure in A~P
of fH® must also have this property for the same sequence. However, there are
functions g € A7P that do not, so f cannot be multiplier-cyclic. The existence of
such functions g follows from the following argument: by thinning out the sequence
{#;};, what remains can be made interpolating for A™P, so that there are func-
tions growing maximally there (see, for instance, [18]). This suggests the concept
of weak-star cyclicity: a function in A7P is said to be weak-star multiplier-cyclic if
fH®> is weak-star dense in A™P, and weak-star polynomial-cyclic if the polynomial
multiples of f are weak-star dense in A™P. The weak-star topology refers to a fixed
predual, to be supplied shortly.

Let L°~P be the space of (equivalence classes of) complex-valued Lebesgue
measurable functions f on D with (1 — |z])Pf(z) in L*°(D), so that AP is the
intersection of L°~P with the holomorphic functions on ID. The predual of L°~P
is the space L"? of all complex-valued functions g with (1—|z|)7Pg(z) in L'(D). It
gives L 7P a weak-star topology. The space A™P is a weak-star closed subspace of
L% 7P and as such it has as predual the quotient space L'?/~A~P where L AP
is the preannihilator of A7P. One shows that a sequence {f;}; of functions in
AP converges weak-star to f € A7P if and only if fx(z) — f(z) uniformly on
compact subsets of D as k — 400, and supy, || fi||la—r < +00. Aset Y C A7P is
said to be weak-star sequentially closed if all weak-star convergent sequences have
limit points in Y. Standard functional analysis machinery (the Banach-Alaoglu
theorem, Banach’s metrizability theorem for the weak-star topology on the closed
unit ball, and the Krein-Shmulian theorem; see [6]) together with the fact that L
is separable, shows that a convex subset Y of A™P is weak-star closed if and only
if it is weak-star sequentially closed.

A word should now be said about the relationship between the concepts of
multiplier-cyclicity and polynomial-cyclicity in the context of our Bergman, uni-
form Bergman, and Korenblum spaces. By approximating functions in H*° by
polynomials, one can show that in the spaces L2 and A,?, a function is polynomial-
cyclic if and only if it is multiplier-cyclic. Moreover, the same type of argument
shows that in the space A7P, a function is weak-star polynomial-cyclic if and only
if it is weak-star multiplier-cyclic. Functions in A~% may be approximated by
polynomials, so that multiplier-cyclicity is the same as polynomial-cyclicity for the
topological algebra A~ as well. Since these concepts coincide in all cases we are
concerned with, we shall drop the distinction between them, and talk only about
cyclicity and cyclic functions (and add the prefix weak-star when needed).

If, as is the case for the above-defined Bergman, uniform Bergman, and Ko-
renblum spaces, point evaluation functionals at points of D are continuous and
non-trivial, then an obvious necessary condition for a function to be cyclic is that
it should vanish nowhere on D. For the space A=°°, Boris Korenblum’s factoriza-
tion theory [13, 14] offers a complete description of the cyclic vectors based on the
notion of s-singular measure.

Theorem A. An element f in A= is cyclic if and only if it vanishes nowhere
on D, and the sx-singular measure associated with f equals 0.

Clearly, invertible functions in A7°° are cyclic in A~°°. Note that f € A7 is
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invertible in A~°° if and only if for some positive constants C, IV,
f()=C1—-[))Y, zeD.
Concerning cyclicity in A, ”, the following assertion is shown in [4].

Theorem B. (0 < p < +o0) If f € Ay® and f is cyclic in A=, then [ is cyclic
in every Ay ?, with p < ¢ < 4o0.

It is clear that cyclicity in Ay? implies cyclicity in the larger spaces A%, for
p < q¢ < 4o00. Leon Brown and Korenblum [4] raised the question as to whether
the two conditions that f € Ay and f is cyclic (or invertible) in A= imply that
f is cyclic in Ay”. Here this question is answered in the negative.

Theorem 1.1. (0 < p,q < 4o00) There exists a function f in Ay" such that
1/f € A™9, but f is not cyclic in Ay”.

The first example of a Banach space of analytic functions in D where invertibility
does not imply cyclicity was constructed by Faizo Shamoyan [19] (see also [23],
Commentary).

The weak-star topology of A™P is non-metrizable, so the set of weak-star sequen-
tial limits of elements of a given subset need not be weak-star closed. To get the
weak-star closure, the operation of taking sequential limits may need to be applied
many times. The following example illustrates this point.

Theorem 1.2. (0 < p < +o00) There exists an outer function f in the Nevanlinna
class, such that f € A™P and 1/ f € NgA™9, where the intersection is over all ¢ with
0 < q < 400, but the function 1 is not a weak-star sequential limit of polynomial
multiples of f.

In the previous theorem, the constant function 1 does belong to the weak-star
closure of the set of polynomial multiples of f, as f can be shown to be weak-star
cyclic in A7P. Nevertheless, a genuine analog of Theorem 1.1 can be obtained.

Theorem 1.3. (0 < p,q < 4o0) There exists a function f in A™P such that
1/f € A79, but f fails to be weak-star cyclic in A7P.

The first result analogous to Theorem B for the Bergman space LY was obtained
by Harold Shapiro [20, 21] (Shapiro’s original result was for ¢ = 2, but according
to [4], it holds generally).

Theorem C. (0 <p < +o0) If f € LE and 1/f € A=, then f is cyclic in every
larger L1, 0 < g < p.

By [4], the following analog of Theorem B holds for the spaces LZ.

Theorem D. (0 < p < 4o00) If f € LY and f is cyclic in A=, then f is cyclic
in every larger L1, 0 < g < p.

The question of whether the conditions
(a) feLb 1/f € A== or
(b) f € Ll fiscyclicin A=
imply that f is cyclic in L? was first raised in [20], and later in [17], p. 93, [1],
[22], Question 25, [15], [23], [24], Question 5, and [12]. A variant of this problem is
whether the conditions f € LP, 1/f € L% imply that f is cyclic in L2. When ¢ = p,
the question is whether invertibility in LP implies cyclicity (weak invertibility) in
LP. In this form, it was mentioned in [17], p. 93, [22], Question 25’ [23], and [9].
We construct an example answering these questions in the negative.
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Theorem 1.4. (0 < p,q < +00) There exists a function f in LE which is not
cyclic in LP, although 1/f € A™1.

a’

In [16], Korenblum introduced the notion of an LP-outer function, and proved
that a cyclic function necessarily is LP-outer. Recent work by Alexandru Aleman,
Stefan Richter, and Carl Sundberg [2] has shown that the LP-outer functions are
precisely the cyclic functions. Thus Theorem 1.4 answers Question 2 in [16] in the
negative: there are functions in L? that are cyclic in A7*°, and yet not LP-outer.

The underlying idea behind the constructions of non-cyclic functions in the func-
tion spaces considered here is that not only decrease, but also growth can be an
impediment to cyclicity. The functions constructed will be in some sense extremal
in the given space. To be more precise, the set of points F in the unit disk where
the function is “maximally” big should be pretty massive: in Corollary 5.1, the
closure of F contains the unit circle T, in Corollary 7.1, E is dominating for H°,
and in Corollaries 9.1 and 11.1, T has zero harmonic measure in D\ E. We now
suggest a heuristic argument explaining why the indicated growth makes the given
function f non-cyclic. Let {h,}, be a sequence of functions in H>°, such that fh,,
converges to some element g in the given space X. The fact that f is “maximally
big” on E makes h,, grow modestly on F, and since F is massive, h,, must grow
modestly throughout D, with an estimate that is uniform in n. Given that f(z)
tends to 0 at a certain speed along a sequence tending to T, a little faster than the
uniform bound in n of h, (z) tends to infinity, we get that the limit function ¢ tends
to 0 along the sequence. Then f is not cyclic, because we cannot get the constant
function 1 in the closure of fH®°.

All the proofs of the theorems (1.1-1.4) stated here involve highly lacunary con-
structions of harmonic functions. The one associated with Theorem 1.2 resembles
an example by Nikolai Nikolskii [17], p. 84, Theorem 2. Like us, Nikolskii constructs
a certain harmonic function as a Poisson integral of a norm convergent sum of Borel
measures on T. Our other theorems (1.1, 1.3, 1.4) are based on the same idea, only
there, the sum of the Borel measures is norm divergent, though convergent in the
space of distributions.

The analytic functions that we construct exhibit bad boundary behavior every-
where on the unit circle. However, the constructions do modify so as to supply
non-cyclic functions that extend analytically across a given arc of T (if the arc has
length strictly less than that of the circle).

In the Hardy spaces HP, a function is non-cyclic if and only if it has a nontrivial
inner factor, and the latter implies that either the function has zeros, or that it
has a nontrivial singular inner factor. That the function has a nontrivial singular
inner factor means that it decreases at a critical rate near a subset of the unit circle
with zero length. Here we have found that a function in the Bergman or uniform
Bergman spaces can be non-cyclic due to growth. Growth and critical decrease
near a small set may combine forces, as we shall see. Let g be a function in a
Bergman or uniform Bergman space, and let v be a singular inner function. It is
natural to ask for which u the function ug generates the same invariant subspace
as g does. If g is the constant function 1, or, more generally, if g belongs to a
slightly smaller space (as in Theorems B and D), and is cyclic in A=°°, then the
answer is that ug generates the same invariant subspace as g does (that is, the
whole space) if and only if the singular measure associated with u places no mass
on any Beurling-Carleson set of zero length. However, if g grows too fast to belong
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to a slightly smaller space, the behavior of the singular measure associated with
on sets larger than Beurling-Carleson ones may become essential. For instance, let
us look at the space A™P, and let g be the extremally growing function which is
constructed for Theorem 1.3, and has the property that it generates the weak-star
closed invariant subspace gH> in A7P. Then ug generates the weak-star closed
invariant subspace ugH >, which coincides with g H*° if and only if u is constant
(which can be normalized so that w = 1). That is, the singular measure associated
with » must place zero mass on every Borel measurable subset of zero length. We
hope that this example will inspire further work toward a complete description of
the cyclic functions.

The exposition of the paper is as follows. Theorems 1.1-1.4 are proved in Section
12. The proofs rely on explicit constructions of harmonic functions, which are
carried out in Sections 4, 6, 8, and 10. Each construction is labeled 1, 11, 111, and
1v; I relates to Theorem 1.2, 11 to Theorem 1.3, 111 to Theorem 1.1, and 1V to
Theorem 1.4. The harmonic function constructions lead to the existence of certain
zero-free holomorphic functions by taking exponentials of the harmonic functions
plus ¢ times their harmonic conjugates, and the properties of them that we need
are stated in Sections 5, 7, 9, and 11. In Section 13, we apply the results to
the recent factorization theory in the Bergman spaces based on extremal functions
(inner divisors) [11, 7, 8, 12, 2]. Technical results on harmonic functions needed in
the constructions are supplied in Sections 2 and 3.

The results contained in this paper were announced earlier in [3].

2. Preliminaries on harmonic functions

For 1 < p < 400, let h? (D) denote the Banach space of complex-valued functions
f harmonic in the disk D, with

1 T ) 1/p
e = sup (5 [ 1seywas) < 4o,
0<r<1 T J)_x

Also, let h*° (D) be the Banach space of complex-valued bounded harmonic func-
tions on D, with norm

1 f[lnee = sup {|f(2)| : z € D} < +o0.

For a finite Borel measure p on T, its Poisson integral is the function

Pu(z) = 3= [ PG Q. zeD,

where
12

=2

is the Poisson kernel. For functions f € L'(T), we write Pf instead of Puy, with
dug(e®) = f(e?)df. The function Pf extends f harmonically to the interior D.
It is well known that a harmonic function belongs to h'(D) if and only if it is the
Poisson integral of a finite Borel measure. Moreover, for 1 < p < 400, the space
h? (D) coincides with the space of Poisson integrals of LP(T) functions. We shall
need to estimate the size of the Poisson integral of a measure with small support.
For a Borel measure p on T, ||| stands for its total variation.

P(2,0) (20 €D x T,
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Lemma 2.1. For 0 <t <2m, let J(t) be the closed arc connecting the point 1 with
e, running counter-clockwise. If p is a complex-valued Borel measure supported

on J(B), for some 3, 0 < B < 2w, which has ||p|| =1 and p(T) =0, then

B1-z?
P - z € D,
|Pu(z)| < T P ER
where d is the Fuclidean metric. In particular,
1 p
P < - D.
PuC) < - P e

Proof. Let M(e®®) be the function pu(J(f)), which is well-defined at 1 because
#(T) = 0. The function M is supported on J(f3), and its supremum norm has
the bound ||M||~ < 1/2. Integration by parts gives

P(z,e)du(e”?) = (1—[2*) | M(e") e z|72do,
and since 5
‘dG " =27 = e — 2|37 “=
we get

1— |22 [P || M|~ B 1|z
P \a ‘ - = gp < = — 2 D.
el [ P uen| < S5 [T < e+

The proof is complete. O

3. Building blocks

Our basic building blocks in later constructions will be the functions ®, g, for
0 < a < B < 27, which are defined as

By 5(z) = éw(z,[(a),ID)) _ %w(z,[(ﬁ),D), 2eD,

where w is harmonic measure, and for 0 < 7 < 2w, I(7) is the arc

I(T):{ :0e— 7',27']}
In case 8 = 2w, we write ®, in place of ®, on:

1 1
@a(z):aw(z,l(a),ID)) ~ 5 z € D.

We extend the function ®, g to the boundary T by declaring
0, zeT\I(B),

o p(z) = —1/8,  zel(B)\ (o),
1/a—1/p, z € I(a).



8 ALEXANDER BORICHEV AND HAKAN HEDENMALM

One checks that ®, 3(0) = 0. According to [10], pp. 41-42,

1 ei/2 _ 4 «
W(Z,I(a),]D)) = ; arg (m) — %, zZ € ]D),

with a suitable choice of the argument function, so that

1 1 — —ia/2
D,(2) = — arg <L> ) z €D,

T 1 — zeta/2

and ®, g = P, — ®g. For 0 <r <1, put

Qa,p(r) = max {®qp(2) : |2[ =1},

and extend the function continuously to [0,1] by declaring Q4 (1) = 1/ — 1/.
Note that it is increasing in r, and has the property that the function Q, g(e)
is convex on | — 00,0]. For geometric reasons, the above maximum is attained at
z =r, and an explicit computation yields

2 rsin 1o 2 rsin 13
r) = ®4.4(r) = — arctan ——2—— — — arctan ———2——,
Qo (r) 0 (r) T 1 —rcos %a B 1 —rcos %6

For 0 < a < m, the value at r = cos %a is readily estimated, and the resulting
estimate leads to

(3-1) é — % — % < Qap(costa) < Qap(r) <

To get a reasonable estimate on a longer interval, we proceed as follows. For

0<a< %7‘(‘, we have cos %a >1-— %sin %a, so that

, cos%a§r<1.

I~

| =

rsin%a 1.1
1< — 5, 1—gsinsga<r<l,
1 —rcos s«

and consequently,

(3-2) ,  l—isinja<r<l

=

1 1
— E < Qaﬂ(’f‘) < a

1
2c0
The second derivative of Q4 g(r) with respect to r is
" 4 (cosza—r)sinza 4 (cos3B—r)sinif

Qi plr) = — - =

e (1+T2_2TCOS%OZ)2 ™3 (1+r2—2rcos%ﬁ)2.

One checks that for 0 < a < 8 < , gﬁ(r) > 0 on the interval 0 < r < cos %a,

making ), p convex there. In the special case 8 = 27, we write ), in place of

Qa,27r7

rsin%a
Qa(r) = — arctan ——=——,
T 1 —rcos S0
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and observe that the above formula for the second derivative reduces to

4 (cossa—r)singza

TQ (1472 — 2rcos %a)z

It follows that @ is convex on [0, cos ], and concave on [cos 3, 1]. The value at

2
the inflexion point is

2 sintacosia 1 1
Qaolcos i) = — arctan —2——2— = — — —,
T 1 —cos? 5a a 7
so that by convexity (0 < a < 7),
T—
(3-3) Qu(r) < ———, 0<r<cossa

T COS 50!

For 0 < a < %71’, we have m—a < (17— %a) cos 1y, since 1 — %az < cos . Therefore,

2
by (3_3)7

(3-4) Qa(r) < <l — i) T, 0<r<cos %a.

a 27

We also need to estimate the first derivative with respect to r of Q4 (r),

2 Sin%a
T 14 r2 — 27"(:05%04

Qo (r) =

It attains its maximum at the inflexion point r = cos %a for Q.(r), so that for
O<a< %7‘(‘,

2 V2
. 1 S 27
Tasin o «

QL (r) < Ql(cos 3a) = 0<r<l1.

We use here that (sinz)/x > 232771 for 0 < = < w/4. The function Q’,(r)
1

increases on [0, cos 5, and decreases on [cos %a, 1], so by estimating its values at

r=0and r =1, we see that (0 < a < 3m)

(35) Lequn <Yl o<zt
(3-6) é <QL(r) < g, cosga <r <1
If A(r, ) and B(r,«) stand for

rsin 2o

"2
)
1 —rcos%a
)1/2

B(r,a) = (1+ 1> —2rcos 1a

A(r, ) = arctan

Y
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then
rQ’,(r) sin A(r, )

Qua(r)  A(r,a)B(r,a)’
Using this identity and the elementary estimate 2r~! < (sinz)/z < 1 for 0 < z <

s
3, we get

1 rQL(r) 1

- — e/ <1 < —

(3-7) 2< NOR 0<r< ,0<oz_27r,
2 r@l (r) 3 1 1
- S _var / — loy<r< < Zo.
(3-8) 30z<Qa(r)<a’ cosza_r_1,0<oz_27r

At some point, we shall also need to be able to handle the function Qaor_(r), for
small positive angles . One shows that for 0 < a < %7‘(’,

rQax—a(r)

< <1, 0<r<1I.

QZTF—C!(T)

4. Iteration scheme, I

(3-9)

> =

We shall now produce an iteration scheme that produces harmonic functions
with certain prescribed properties.

Lemma 4.1. Let two continuous increasing functions u,v : [0,1[— [1,+oo[ be
given, with limits

lim u(r) = lim v(r) = +o0,
r—1 r—1

lim (1 —r)u(r) =0.
r—1
Suppose that f € h*°(D) is a real-valued function which satisfies
—u(lz]) < F(z) <u(lz]), zeD
Let (o €T, 0 < R<1, and e, N > 0 be given. Then there is a real-valued function

g € h**(D) and two points zg,wo € D, with |zo — (o| < € and |wy — (o| < €, such
that

and
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Proof. By replacing f with 7f, for some constant 7, 0 < 7 < 1, close to 1, we may
assume that
—u(lz]) < f(2) <u(lz]), zeD.

Moreover, by rotation invariance, we may assume (y = 1.
We will construct g as a suitable constant multiple of the function hy (with
appropriate choices of the real parameters a, 3, and A, A > 0),

(4-1) ha(z) = f(2) + A®q p(2), z € D.
For 0 < r < 1, let D(1,r) be the Iunula (partial moon)
D(l,r)={zeD:|l—z <r}.

For 0 < 8 < r, the distance from D\ D(1,7) to I(8) is at least r/2, so that by
Lemma 2.1,

(1) Pu() < 2 Lol 48

S or AT S w2 ED\DLY),

holds for all Borel measures p with p(T) = 0 and ||u|| < 1 that are supported on
the arc I(3).
Let 0 < < 8 <r <1, and let &, g be as before. Then the measure p, g,

dptonp(e?) = s=—— 04 p(e") db,

2(8 - a)

has pq g(T) =0, ||a,gll = 1, and it is supported on the arc (/). Moreover,

Plu'aaﬂ(z) = (bang(z)’ z € ID)’

_h
2(8 - )
so that by (4-2), it follows that

Do 5(2)| <87 12 (B - a), zeD\ D(1,r).

If we write £ = 87~ 18r~2, we then have, by the above estimate, (4-1), and the
assumptions on f,

(4_3) ‘hk(z)_f(z)‘ <§>‘7 ZE]D)\D(LT))
—v(]z]) = EX < ha(z) < u(|z]) + &N, ze D\ D(1,r).
We clearly want the product £ to be small. Choose A, 0 < A, such that
(4-4) sup {ha(z) —u(|z]) : z€ D(1,7)} =0;

if we rewrite this condition, we get

! 1_ su —(I)a’ﬁ(z) Dz r
) 1w { i e P
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The function u(|z]) — f(z) is positive throughout D, by the argument where f
was replaced with 7f. Since the function u(|z|) tends to infinity as |z| — 1, the
supremum in (4-4') is attained at some point zp € D(1,r). By (4-3) and (4-4), we
have

{ ha(z) < u(lz)) +€A, zeD,

ha(zo) = u(lzo]),
so that what we now need is an estimate of £\, and a corresponding estimate of hy

from below. To this end, we estimate the size of A. Since f € h*°(D), and u(t), v(t)
both tend to +o00 as ¢ — 1, we can, by taking r small enough, make sure that

(4-5) 2N + || flln= < % min {u(l—r),v(1—r)}, z€ D(1,r).

By (4-5) (or the less restrictive condition which results when N is replaced by 0)
and the fact that ®, g(z) > —B~! throughout D, the function h, is estimated from
below as follows:

(4-6)  ha(2) +v(|z]) = f(2) + APa,p(2) + v(|2])

v(|2]) + A®q p(2) > %v(|z|) - %, z € D(1,r).
We now fix the parameter r, requiring it to satisfy all the previous smallness con-
ditions, and in addition r < min {6, 1 - R}. This assures that the point zg is
sufficiently close to (p = 1, and that the disk |z| < R is contained in D\ D(1,r).
As we shall see later, given an arbitrary 0, 0 < 6 < 1, (4-5) makes it possible to
choose the parameters «, 8 such that the following holds:

>

DO | =

max{\, A} < 6,
(4-7) 2N + || flln= < % < % min {u(l —r),v(1—r)}.

Taking (4-7) for granted, we can now bring the proof of the lemma to its conclusion.
It follows from (4-3), (4-4), (4-6), and (4-7) that hy satisfies

‘f(z)—hx(z)‘ < 0, zeD\ D(@,r),
—v(]z]) = < ha(z) < u(]z]) + 6, z €D,

inf {hx(2) : 2 € D1,7)} < || flln~ — % < —2N.

The last line implies the existence of a point wy € D(1,r) with hy(wg) < —2N.
Finally,

1 " 7 7 A 4 i A Q
o _ﬂ‘h*(eg)_f(eg)‘dgzg _W\‘Pa,ﬂ(eg)\dG:; <1_E> <

Since we also have hy(z0) = u(|z0]) and hy(wp) < —2N, the function g(z) = ohx(z)
meets all the conditions of the lemma, provided 9 is close to 0, and o E]%, 1] is close
to 1.
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We turn to the demonstration of (4-7). Observe that the function that we take
the supremum of in (4-4’) is continuous up to the boundary of D(1,r), that it is
positive somewhere in D(1,r), and that it depends continuously on the parameters
a, 3, a < (. It follows that A is positive, and depends continuously on «, 3, for
a < fB. Write a = 93, where 0 < 9 < 1. As 8 — 0 with ¢ fixed, the point 2z
where the supremum in (4-4’) is attained tends to 1. Since the function S®ys g is
bounded above (and below), and u(t) — +oo as t — 1, it follows that §/A — 0 as
B — 0, with fixed ¥. We claim that for fixed 3, /A — +o0o0 as 9 — 0. To this
end, we note that since 0 < a=98<r<1,1—-r<1-— %195 < 1 holds, making

— 98 € D(1,r). We plug in the point z =1 — 1943 into the supremum in (4-4'),
using (3-2) (which applies since 1 — $sin 296 < 1 — 298 < 1) and (4-5) (with N
replaced by 0), the result is, for 0 < ¥ < %,

91 —2

(4-8) 3u(l — Lvp)

<?
A

As we let ¥ — 0, the left-hand side tends to +o00, because of the growth assumption
on u that (1 —¢)u(t) — 0 as ¢ — 1. The claim follows. To get (4-7), we require ¥
to be small, 0 < 9 < %, and note that by (4-8),

308 u(l— $9p)

<
0<As —F—

<696 u(l — 290).

From the above formula and the growth control of u we see that we can find a
Bo so small that 0 < max{\,éA} < d forall B, ¥, 0 < B < fy, 0 < ¥ < L (the
parameter £ tends to 0 as 8 — 0). Fix, for a moment, a 9 €]0, i[, and note that
since A/ — +o0 as # — 0, we can find a 8, 0 < 8 < [y, such that A/ exceeds
2 max{u(l — r),v(1 — r)} for the fixed value of ¥. By now letting ¢ move closer
to 0, we can reduce \/f in size, and by the intermediate value theorem, it must at

some point hit the given interval. The proof is complete. O
Theorem 4.2. Let two continuous increasing functions u,v : [0,1[— [1,400] be
given, with limits
lim u(r) = lim v(r) = 400,
}L}H}(l —r)u(r) =0.
Then there exist a real-valued function f € h'(D), which is the Poisson integral of

an LY(T) function, and a sequence Z = {z,}n of points in D which accumulates at
every point of T, such that

—o(lz]) < f(z) Swullz]),  zeD,
u(lz]) =1< f(2), z€7Z,
inf {f(z) : z€ D} = —oc0

Proof. We produce iteratively functions f,, € h°°(D) and points z,,w, in D as fol-
lows. We start with f; = 0. Let {(,}, be a dense sequence of points in T. Suppose
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we have f,_1, and points Z,, 1 = {z9,...,2n_1}, Wp_1 = {ws,... ,w,_1}, such
that
—v(lz]) < fa1(2) Sullz]),  zeD
u(lz]) = 14+27" T < f._1(2), z2 € Zp-1,
fn—l(wk;) S —k — 2—n~|—17 wg € Wn—1~
In the setting of Lemma 4.1, let R, 0 < R < 1, be bigger than any of the numbers
|zal, ..y |2n—1], lwal], ..., |wp—1], let e = 27", and let N = n+1. If we plug in f,,_1

in place of f and (, in place of (p in Lemma 4.1, we get a function f,, = g € h>°(D)
and points z, = 29 € D and w, = wy € D, which are both close to (,, € T. The
function f,, then has

—v(|z]) < fal(2) <u(lz]),  z€D,
u(lz]) =14+27" < f(2),  2€Zn=Zn-1U{z},
fn—l(wk) < —k - 2—n, wy € W,,.

Moreover, the functions f,, in A*°(D) form a Cauchy sequence in h'(D), so they
converge to an element in h'(D) which is the Poisson integral of an L!(T) function,
with all the required properties. 0]

5. Construction of extremally growing functions, I

Here we draw a conclusion from Theorem 4.2, which will be used to prove The-
orem 1.2.

Corollary 5.1. Let two continuous increasing functions u,v : [0, 1[— [1,+oo[ be
given, with limits

lim u(r) = lim v(r) = +o0,
r—1 r—1

}1_)11{(1 —r)u(r) =0.

Then there exist an outer function F' in the Nevanlinna class on D and a sequence
Z of points accumulating at every point of T, such that

exp (— 0(12]) < F(2) < exp (u(lz]), 2 €D,
e (u(lel) ~1) < F(),  z€7,
inf {|F(2)|: z€ D} =0.

6. Iteration scheme, II

We now describe another iteration scheme that produces harmonic functions with
certain desired properties. First, however, we need some terminology. Associate
to each point of T the standard open Privalov “ice cream” cone with a symmetric
straight opening angle (%7‘(’ radians) at the point. Given a compact set K in the
open unit disk D, its Privalov shadow is the set of points on the unit circle whose
Privalov cones have nonempty intersection with K it is a relatively open subset of
T. We say that a Borel measurable subset F of T is A-dense down to scale § provided
that when it is intersected with an arc L of length at least d, the one-dimensional
Lebesgue measure of £ N L is at least A times that of L.
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Lemma 6.1. Let u(t) = 1 —log(1 —t) and v(t) = Pu(t), for some positive real
number (3. Let X\ be the smaller of the two numbers 1/8 and B/(27m). Suppose
[ € h*°(D) is real-valued, and that for some non-negative constants A, B,

—v(]z]) = A < f(2) < ul|z|) + B, z € D.

Let 0,0 < p< 1, ande, € > 0, be given. Then there are a radius R with o < R < 1,
a constant C = C(f) only depending on 3, a function g € h*° (D), and a compact
subset E of the annulus R < |z| < 1 whose Privalov shadow is A-dense down to
scale €, such that

f(z) —g(z)l<e. 2] <o,
—o(lz]) —A—e<g(z) Sullz]) + B+e,  o<[|z/ <R,
—o(lz]) <g(2) <ullz)) + €, R<|2] <1,

and
u(lz]) —C < g(2), z€E.

Proof. By replacing f(z) with f(7z), for some constant 7, 0 < 7 < 1, close to 1,
we may assume that f is continuous on the closed disk D.

Before we proceed further with the proof, we investigate an auxiliary function
¢n, harmonic in D. Let &, and @), be as in Section 3, and for 0 < o < %7‘(‘,
let pn(2) = @o(2V) and qn(r) = Qu(rY), for a positive integer N. Then ¢ is
harmonic in the unit disk, and ¢x(r) is the maximum of ¢ (z) on the circle |z| = r.
For k=0,1,... ,N —1, let Ix(c, N) and Ji(cr, N) be the arcs

Ii(a, N) = {ew 0 € ] %(%k — 1a), %(2#1@ + 50) [}
T, N) = {e” he } (2 + 3a), < (2n(k +1) - Ja) {} .

The harmonic function ¢x(2) extends continuously to the unit circle except for
a finite set of points, and equals 1/ — 1/(27) on Uglx(a, N), and —1/(27) on
Uk Ji(a, N). We shall later specify in detail how small o should be in relation to
the parameter 8 to suit our purposes. As a matter of notation, let us agree to write
Ii(a, N) and Ji(a, N) for the closures of the respective arcs.

PART 1. For real ¢, consider the function

(6-1) An(t) = sup {uq(’f)(i)t Lo(t) <1 < 1},

where
o(t) =max {3, 1—e %}

Note that the denominator of the expression in brackets in (6-1), u(r) — ¢, is at
least 1 for o(t) < r < 1. By the properties of the functions u(r) and o(t), we also
have that

(6-2) su(r) <u(r) —t, o(t) <r<1.
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It is clear by inspection that the supremum in (6-1) is attained at some point,
because the function u(r) tends to +oo as r — 1. Since

d gn(r) _ an(r)(u(r) —t) —an(r)u'(r)

dru(r) —t (u(r) — t)2

Y

the left-hand side has, after some simplifications, the same sign as

Qua(rN) N u(r)

QLN ()
—1

(6-3)

Suppose the variable ¢ is confined to some given finite interval [—7',T]. The first
term of (6-3) is > 1, by (3-7). For r = o(t), the second term tends to 0 as N grows
to infinity, so that for large IV, the signs of (6-3) is positive, and the supremum in
(6-1) is not attained at the left boundary point. So, for NV large, any point r = ry (t)
where it is attained is an interior point, and hence, by elementary calculus, we have
that

Quir™y _ v W)
6-4 N *a = — , = rn(t).
(6-4) ™) T N u(n) -1 r=ry(t)
This identity, together with (3-7), (3-8), and (6-2), shows that for large N we can
pinpoint, with a reasonable degree of accuracy, the position of a point where the
maximum in (6-1) is attained,

Ch

&
-2 <y
Nlog N —

6-5 1 e ——
(6-5) NlogN’

n(t) <1

where the constants C; and Cs only depend on the parameter «; we may pick Cy
to be 2a, and Cy to be a/4.
PART 2. For large N, put

a”t—(2r)7 1t

Avlt) = log(NlogN) —t

One then calculates that

(6-6)

1 1
— <C,
‘ An(t)  Ax(®) ‘ N

for some positive constant C' = C'(«) that only depends on «, provided N is large
enough. This is so because as we plug in the point r = ry(¢) into (6-1), and use
the estimate (6-5), the value of the denominator on the right-hand side of (6-1) is
close to A% (t)~1, and the numerator is close to 1, because 1 — rn(¢)Y =< (log N)~!

and gy (ry(t)) = Qa(rv(H)Y).
By the way the parameter Ay (t) was defined,

on(2)
An(t)

< u(|z]) —t, o(t) < |zl < 1.
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For large N, we get, by the above estimate (6-6), that the above inequality holds
approximately when Ay (t) is replaced by AN (%),

on(2)
Ay ()

with a positive constant C' that only depends on a.

Put r = 1—(Nlog N)~!, which is close to the points 7y (¢) where the maximum
in (6-1) is attained. We shall now show that for some positive constant C' = C(«),
which only depends on «, the following estimate holds for large IV,

N (2)
=30

where UgIi(3c, N) is the union of arcs corresponding to the smaller parameter
value . We first observe that by the definition of ry(t),

o (2)
An(t)

where E(N) is the set of N-th roots of unity (with elements ey (N) = exp(2wik/N),
k=0,...,N—1). Next, by using (3-5), we see that replacing Ay(t), rn(t) with
Ay (t), ri carries the cost of introducing a positive constant C' = C'(«) depending
only on «, in the sense that

(6-7)

<u(lz) —t+C, o)< |2 <1,

(6-8) u(lz]) =t - C z/rn € Uplp(3a, N),

=u(lz]) =t,  z/rn(t) € E(N),

o (2)
=20

Extending the estimate beyond the set E(N) to the union of arcs Upl,(3c, N)
requires some simple estimates of harmonic measure, which are left to the reader.
The argument is simplified if one introduces the complex variable w = 2V, and
recalls that ¢ (2) = ®o(2V) = Oy (w).

PART 3. Recall that in the above, the parameter ¢ is confined to a prescribed
interval [—T,T], and N is chosen large, depending on T' (and, to some extent, on
a). We now fix T to equal the supremum of |f(z)| on D. Let e (V) = exp(27wik/N)
be an N-th root of unity, and set tx(N) = f(ex(N)). Then ¢4 (N) is confined to
the interval [T, T], and we are now at liberty to consider

L log(Vlog N) — £(ea()
a~l — (2m)~1

u(lz]) =t - C z/ry € E(N).

pr(N) = Ay (t(N))

and the associated function
1 N—1
XN(Z) = N kz_;) p,k(N) q)a/N727r/N(ék(N)z)a z € D.

The points é;(N) = exp(—2mik/N) are the complex conjugates of the ex(N). The
size of the function ®,/n 2x/n(2) is estimated by means of Lemma 2.1, and for
large N, this results in (0 < a < )

log N 8«

D.
N (-2 *S

(6-9) v (2)] <
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The function ¢n(z) may be written as

N-1

Z Py /n,2n /N (€1(N)z), 2z €D,
k=0

o () = %

and it is now intended to compare xn(z) with the more easily analyzed function
Xk, N (%) = pr(N)on(2). It too enjoys (for large IV) the estimate

log N 8a
N (1—|z])*

(6-10) i (2)] < 2eD.

The difference is

N-1

% __ (,Uj(N) — ,uk(N))(I)a/N,zfr/N(éj (N)Z)

J

XN (2) = Xk,N(2) =

N-—-1
11

= (@7 = 2m ™) T 5 2 (F(el)) = F (e (V) ) Payam/ (25(N)2).

I
=

By the uniform continuity of f on D, we can fix a §, § > 0, such that |f(2)— f(w)| <
1 whenever |z — w| < §. Split up the index set {0,1,..., N — 1} in two parts,
with one, X (k,N), consisting of those j for which |e;(IN) — ex(N)| < 0, and the
other, Y (k, N), where the opposite occurs. Then, since the various building bricks
Do/N 27 /N (éj(N)z) are supported on disjoint arcs of T for different j, we get that

(a_l—(27r)_1)_1% S [(FerN)) = £(e(N))) @aym i (75(N)2)

JEX (k,N)

<1.

Summing over the remaining indices in Y (k, N), noticing that
|/ (er(N)) = f(e;(N))| < 2T,
we obtain similarly, for N so large that 27 /N is considerably smaller than %(5 ,
_ -1 1 _
(@ =en ™)' Y () = F(e5(N) ) Paynan/n (e (N)2)]
JEY (k,N)

< 2T w(z,T\ Lg, D),

where w is harmonic measure, and Ly = Ly () is the arc on T of points within
distance 36 from ey, (N). These two estimates combine to

(6-11) Ixn(2) = xe,n(2)] <14 2T w(z, T\ Ly, D), z € D.

Let Dy = Dg(0,T) be the intersection with D of a disk centered at the point eg (V)
with radius depending only on T, §, such that 2T w(z, T\ L) < 1 for z € Dy; then,
by (6_11)7

(6—12) ‘XN(Z) — Xk,N(Z)‘ <2, z € Dy,
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There is no restriction in assuming that all the Dy are contained in the annulus
o(T) < |z| < 1, and that the radius of each Dy, is at most $6. By (6-7) and (6-8),

Fer (V) + () S ulls +C, o) < P2l <1,
u(|z|)—C'§f(ek(N))—|—Xk,N(z), z/ryn EUjfj(%a,N),

so that since |f(z) — f(ex(N))| < 1 for z € Dy, we get from (6-12) that

(6-13) f(2) +xn(2) < fen(N)) + xn,n(2) +3 <u(]z]) + C, z € Dy,
and

(6-14) wu(|z]) = C" < f(ew(N)) + xx,n(2) — 3 < f(2) + xn(2), for ze€ Dy
with z/ry € U;L; (3, N),

where C' = C' + 3, if C = C(«) is the constant appearing in (6-7) and (6-8). For
large IV, the distance between the centers ex (V) of the lunuli Dy, gets much smaller
than the radius (which is independent of £ and N), so that UgDj contains an
annulus S < |z| < 1, where S = S(4,T) has 0 < S < 1. Moreover, for large N, the
set 75 Uj Ij (3, N) will be contained in the annulus S < |z| < 1, by (6-5). It hence
follows from (6-13) and (6-14) that

J(2)+xn(2) Su(lz) + €, S <]z <1,
u(lz]) = C" < f(2) +xn(2),  z€ryU;Li(za,N).

The set ri Uj I;(3c, N) will play the role of E in the formulation of the lemma.
For large N, the radial projection of E, U;I;(3a, N), will be A\-dense down to scale
e, with A = a/(4m), so clearly the same will be true for the Privalov shadow of FE,
which contains the radial projection as a subset.

PART 4. Let R( be the bigger of the two numbers g and S. Then by (6-9), we get,
for large N, that |xn(2)| < e on |z] < Ry, so that the choice

9(z) = f(z) +xn(2),  zeD,

has been shown to meet all the required conditions, save the control from below.
To do the remaining chore, let R = R(p,S,f) be such that Ry < R < 1 and
1f(2)] < 3Bu(]z]) on R < |z| < 1. By making N a bit larger we can ensure
that |xn(z)| < € on |z| < R, so that if we can show that —xn(2) < 1Bu(|z]) on
R < |z| < 1, the function g(z) will satisfy all the required conditions.

PART 5. We turn to estimating the function xn(z) from below. For z € Dy,
X~ (%) is at most 2 units apart from xx n(z), so we estimate this simpler expression
instead, noting that we might as well have assumed |f(z)| to have been two units
smaller than what was done above, by making R a tiny bit bigger. We solve the
problem of estimating —xx n(2)/v(|z|) = —pr(IN)dn(2)/v(|2]) from above by first
noting that along any concentric circle |z| = r, the value is the biggest when 2V
is real and negative. It is easily checked that —®,(—w) = (2ra™" — 1) ®or_qa(w),
and since ¢y (z) = @, (2"), we obtain

(6-15)

sup{_f’(“’ijz\];z): zeD} — aﬁf;(;:m) sup{%%;()rjv):()<r<l}.
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The extremal problem on the right hand side is of the same kind as (6-1), and based

n (3-9), one shows with the same methods as were used for problem (6-1) that the
point where the above supremum is attained satisfies the analog of the estimate
(6-5), only this time the constants are absolute. When this information is inserted
into (6-15), one obtains, using (6-6), that for large N,

—Xk,N (2) a
—e s Dy <—.
S“p{ o(a) 7 E }—w
If we choose a to be the smaller of the two numbers 26 and %7‘(’, the assertion that

—xn(z) < 3Bu(|z]) on R < |z| < 1 is immediate. This completes the proof of the
lemma. U

A relatively closed subset E of D is said to be dominating for H*® provided that

sup {|f(2)| : z € E} =sup {|f(2)|: z € D} = ||f|lg~

holds for all f € H*. The following characterization is well known [5]: a relatively
closed subset F of D is dominating for H* if and only if almost every point of T
is a non-tangential accumulation point of F.

Theorem 6.2. Let u(t) = 1 —log(1 —t) and v(t) = Bu(t), for some positive real
number 3. Then there exist a real-valued harmonic function f on D, a positive
constant C = C(8), only depending of 3, and a relatively closed subset E of D
which is dominating for H*°, such that

(|Z|)—1<f()SU(|Z|)+C, z €D,
u(lz)) =C < f(z), z€k.

Proof. We produce iteratively functions f,, € h>° (ID)) radii 7,,, and compact subsets
E, of D, as follows. We start with f; = 0, r; = 5, and F; = (). In general, the
radius 7, will be chosen such that r,_; <r, <1, and such that the set U" 1E is
contained in the disk |z| < r,. Moreover, as n — +o00, we want r, — 1. Suppose
we have f,_1 and U" 1E , such that

—v(|z]) =14+ 27" < f_1(2) < u(lz]) + C — 27" z €D,
u(|z]) — C 427" < f(2), z € U?:_IIEJ-.

Lemma 6.1, with ¢ = 27", will then deliver a compact set E,, contained in the ring
rn < |z| < 1, and a function g = f,, € h°°(D) such that

—v(]z]) =14+ 27" < fu(2) <u(lz))+C —277, z €D,
u(lz]) —C+ 27" < fu(2), z € Uj_ 1 Ej.

This way we get a sequence of functions { f,, },, in h°°(D), which converge, uniformly
on compact subsets of D, to a function f, harmonic in D, such that

(|Z|)—1<f()SU(|Z|)+Cv zeD,
u(lz)) -C < f(z), z€E,
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where B2 = U2, E;. It remains to check that E is dominating for H>. To this
end, it suffices to show that for each k, the Privalov shadow of Us2 B has full
arc length measure on T. By the construction, each F; has the property that
its Privalov shadow is A-dense down to scale 277, where X is a positive constant,
specified in Lemma, 6.1. The Privalov shadow of U352 i £j, which is open, then has
the property that it is A-dense down to any positive scale, no matter what £ is. By
elementary measure theory, any such set has full measure. 0]

7. Construction of extremally growing functions, II

Here we draw a conclusion from Theorem 6.2, which will be used to prove The-
orem 1.3.

Corollary 7.1. Let B > 0 be real. There exists a function F' which is analytic on
D and satisfies

L. sup{(1—|2])|F(2)| : z € D} < +oo,

2. |F(2)| > (1—2))’, z€D,

3. Theset E(F)={z€D:|F(2)|(1 - |2|) > 1} is dominating for H>.

Remark 7.2. The function F' constructed in the corollary has the additional prop-
erty that

inf {|F(z)|: z€ D} =0.

To see this, we argue as follows. If this were not the case, we would have 1/F € H*,
and since bounded analytic functions possess finite radial limits almost everywhere,
F' cannot satisfy condition 3 of the corollary.

8. Iteration scheme, III

Let us plunge back into the details of the construction in the proof of Lemma 6.1.
We shall make some adjustments that will make it possible to produce functions of
a slightly slower rate of increase.

Keep a = min {%7‘(‘, 26}. For a fixed real parameter £, we consider in place of

te(N) = f(ex(IN)) the values t5x(N,&) = f(ex(N)) + &, and hence put

u (N, €) = A}‘V(tk(N,é))_l _ log(N log N) —tk(N,§)7

a=!t—(2m)~1t
and consider the function
| V-1
XNg(2) = N kz_;) px (N, €) (I)a/N,27r/N(ék(N)Z), z € D.

For large N, one obtains, for some positive constant C' = C(«), that

f(2) +xne(z) Sullz)) =€+ C, S <]z <1,
u(lz]) =€ = C < f(2) +xwe(z),  z€ryU;Ii(ze,N).

These considerations lead to the following rather technical lemma.
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Lemma 8.1. Let u(t) = 1 —log(1 —t) and v(t) = Pu(t), for some positive real
number 3. Suppose [ € h*° (D) is real-valued, and that for some constants A, B,
A,B >0,

—u(lz]) —A< f(z) u(lz)+ B,  zeD.

Letr,0<r <1, and e, € > 0, be given. Then, given a real parameter &, there is a
radius R with r < R < 1 and a constant C = C(f3), such that for large N,

|f() g(2)| <e, |2 <,
—v(]z]) —A—e<g(2) <u(lz]) + B+e, r<|z| <R,
—v([z]) < 9(2) <u(lz]) —€+C, R< |z <1,

and
u(lz]) —§—C<g(2), z€L,

where E = ri U; I; ( a,N), and « is the smaller of the two numbers 23 and %7‘(’.

We now turn to the problem of estimating a subharmonic function A, about which
we know a priori that it is bounded from above by some unspecified constant, and
that it meets, for n = 1,2,3,..., the conditions h(z) < &, for z € E,,, where &, is
a sequence of real numbers tendmg to +oo slowly, E, equals ri U; I; ( a, N) with
N = N(n), and N(n) is a sequence of positive integers tending to +oo rap1dly. To
this end, we look at the following simpler situation.

Lemma 8.2. Let h be subharmonic in a neighborhood of D, and let r have 0 <
r < 1. Suppose that h(z) is bounded from above on D, and that h(z) < £ on
U;1; ( a,N). Then, if N is sufficiently large, we have

hz) < ;zaé+ (1— $50) M, |z| <,

where M = sup{h(z) : z € D}.

Proof. If M < & there is nothing to prove, the assertion being obvious. So, we
suppose £ < M, and use the maximum principle to conclude that

h(z)g(1—E)M+4—§—(M £) 30 oy (V)
:(1—1—3)M+1—§— (M—é)(%—%%—%@a/z(zjv)); zeD.

For |z| < r and large N, ®,/2(z") is as small as we want, so the assertion follows
from the observation that 47 < 13. O

Lemma 8.2 permits us to solve the above-mentioned problem.

Lemma 8.3. Let h be a subharmonic function on D, which is bounded from above,
and has the estimate

h(z) < &, Z € TNy Yj Ij(a,N(n)),

for a sequence {N(n)}, of integers tending to +oo, and a sequence {&,}, of real
numbers, all > 0. Then, if the N(n) grow sufficiently rapidly (keeping all else fized),
we have

c.o|"‘

o0
Z §n+]+17 2] < TNy
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Proof. Let L be a constant such that h(z) < L on D. We will show that for
J=0,1,2,3,...

(8-1)

|/\
c,o|"‘

Z §n+y+1 + (1~ 1_13,O‘)JL7 2] < TN
=0

We get (8-1) by using a backward induction argument. Clearly, (8-1) holds for
J = 0, no matter what n is. Suppose (8-1) has been obtained for a particular
J, and all n. Let N(n) be so large that the assertion of Lemma 8.2 holds with
N =N(n),r= r}‘v(n_l)/r;‘\,(n), ¢ =&,, and with M equal to the right-hand side of
(8-1) (no matter what integer J is). In Lemma 8.2, N grows to oo as r tends to
1, so to see that this does not concern us, note that for large N(n), this r is close
to r}“v(n_l) which is fixed away from 1 in the construction. By that lemma and a
slight dilation of the unit disk, (8-1) now holds when .J is replaced by J + 1, and n
by n — 1. Induction shows that estimate (8-1) holds for all n and J.

The assertion of the lemma follows from (8-1) by letting J tend to +o0. O

We now combine Lemmas 8.1 and 8.3.

Theorem 8.4. Let w and v be as in Lemma 8.1, and « related to B as before.
Moreover, let N(n) be an increasing sequence of positive integers tending to 400,
and EY be the union over n =1,2,3,... of the compact sets

En_rN(n)U I( a, N(n ))

in D. Then, if the N(n) increase sufficiently rapidly, there are an increasing func-
tion ug : [0, 1[— [0, 400, with ug(t) = o(u(t)) ast — 1 and lim;_y1 uo(t) = 400, a
positive constant C = C(«), and a function f, harmonic in D, such that

—o(lz]) =1 < f(2) <ullz]) —uollz)) + €, 2 €D,
u(lz]) —uo(lz)) = C < f(2),  z€E,
inf { f(2) + uo(]2]) : z € D} = —o0,

and such that if a function h is subharmonic and bounded from above in D, and has

h(z) < wup(|z]) for z € EY, then h(z) < uo(|z|) + C holds for all z € D.

Proof. The proof follows more or less the lines of that of Theorem 6.2, except the
function wy must be defined. We produce iteratively functions f,, € h*°(D), radii
Tn, and compact subsets E, as follows. Along the way, we will define increasing
functions ug 5, : [0, 1[— [0, +oo[ which tend to the desired function ug as n — +oc.
We start with fo = 0, ro = 3, and EY = 0. We also set ugo(t) = 0 on [0,1[. In
general, the radius 7, will be chosen such that r,_; < r, < 1, and such that the
set B | is contained in the disk |z| < r,,. Moreover, as n — +o0o, we want r,, — 1.

Suppose we have f,_1 and E;_;, such that

—v(|z]) =14+ 27" 1 < fu1(2) < u(]z]) —uon-1(]2]) + C —27"F, z €D,
u(lz]) —won-1(2]) = C+27" " < f(2),  ze By,
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If N(n) is large enough, Lemma 8.1, with ¢ = 27" and £ = ,, = n, will then deliver
a radius R = R,, with r,, < R,, < 1, a compact set

En = N Yj Ij(a, N(n))

contained in the ring R, < |z| < 1, and a function g = f,, € h*° (D) such that (use
a slightly different constant than in the lemma)

—o(|z]) = 1+27" < fu(2) S u(lz]) —wopn—1(l2z)) + C=27",  |2| <Ry,
—v(]z]) < ful(z) <u(lz]) =n—-1+C, R, <|z| <1,
u(lz]) —won-1(l2]) =C+27" < fulz),  z€ By,
u(lz])) —n—C+1< fr(2), z € B,

Declare g ,(t) to be up,—1(t) for 0 <t < R, and n for R,, <t < 1. It is readily
checked that this defines an increasing function. Also, put E; = E~_; U E,,. The
above estimates then simplify,

—v(]z]) =14+ 27" < fn(2) < u(|z]) —uwon(|z]) +C —277, z €D,
u(l2]) —uom(|2)) —=C+27" < ful2),  z€E,.

As n — 400, the functions f, € h*°(D) converge, uniformly on compact subsets of
D, to a function f, harmonic in D, and the functions ug , converge to a function
ug. These two limit functions enjoy the estimate

—o(lz]) =1 < f(2) Sullz]) —wo(lz)) + €, 2 €D,
u(lz]) —uo(lz]) = C < f2),  z€E",

where EY = U2, E;. For rapidly increasing N(n), the R(n), being contained
between r;‘\,(n_l) and r;‘\,(n), tend to 1 very rapidly in n, so that we can make wug(t)
g0 to +o0 as slowly as we like as ¢ — 1. In particular, we can get ug(t) = o(u(t))
ast — 1.

We now turn to the assertion that f(z) + ug(|z|) is unbounded from below on
D. Since ug(t) = o(u(t)) as t — 1, we have, for z € Ey with |z| close to 1, that
1u(|z]) < f(z). By the mean value property of harmonic functions, it follows that
f(z) must be big negative for many z on "N Ts for each n, and the order of
magnitude is a negative constant times u(|z|). It follows that f(z) + uo(]z|) cannot
be bounded from below.

Finally, we turn to the assertion that a subharmonic function h on D which is
bounded from above and has h(z) < ug(|z|) satisfies h(z) < ug(|z|) + C throughout
D. To this end, we apply Lemma 8.3, with &, = n, and conclude that

o0
) < i3 Z (n+j+1)
7=0
=n+13a7" <wug(lz]) + 14+ 137", TRy < |2l < i

The proof is complete. U
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9. Construction of extremally growing functions, III

Here we draw a conclusion from Theorem 8.4, which will be used to prove The-
orem 1.1.

Corollary 9.1. Let 8 > 0 be real. Then there are an increasing function ug :
[0, 1[— [0, +oo[, with ug(t) = o —log(1l —t)) ast — 1 and lim_; ug(t) = +o0, a
function F' holomorphic on D, and a relatively closed subset E of D, such that

|F(2)] < C(1—z])texp (—uo(|2])) on D, for some positive constant C,

(1— |2|)? < |F(2)| for all z € D,

(1= [z Texp (- uo(|2)) < [F(2)] for all 2 € B,

inf { exp (uo(|2])) |[F(2)| : z € D} =0, and

if h is subharmonic and bounded from above on D, and has h(z) < uo(|z])
on E, then h(z) < ugp(|z|) + C on D, with a constant C that does not depend
on h.

otk Lo =

10. Iteration scheme, IV

We return to the setting of Section 8. Our first observation is that the assertion
of Lemma 8.1 remains valid if the set E is replaced by E*, where

(10-1) ={re . vy <r <1y, € ey;li(a,N)},

and 7"9\7 = 1-2(Nlog N)~!. We need to have an additional estimate of the function
g = f+ xn,¢ produced in Lemma 8.1, which is so accurate that it allows us to say
how big the integral

/Dexp (g(z)) dS(z)

is. To this end, we look again at the extremal problem in (6-1), for ¢ = 0, this

time for parameter values 2 < r < (cos 2a)/", and note by the considerations
involving the sign of (6-3) that the extremal value is attained at the right end point

r = (cos 3a)1/N, at least for large N. This entails that
-1 _ -1

, QN((COS2a)1/N)uT' B Qa(cosé) PR ol
W) = (cos o) )= (s Lo = lCeos Ty ")

u(r),

a—l

< —— <r< l/N
- 10gN+C'(a) <7< (cosza)

1
2

where C'(«) is a real-valued constant. In the setting of the estimate (6-13), with
the necessary modifications due to &, we then arrive (for big N) at

few(N)) + (N, ) pn (2) < f (en(N)) + mi(N, E)an (J2])

a 1
< Fen) + (1= 52) ulla, 5 < J2l < (cos Ja)/™.
For R = R(r, S, f,&,a), Ry < R < 1, (notation as in the proof of Lemma 6.1) suffi-
ciently close to 1, any fixed fraction of u(|z|) will come to dominate over f (e (N))+¢
for R < |z|] < 1, so that we can get

(10-2)

Flex(N) + m(N. g () < (1= ) ulls) =€ R <] < (cosa) /™.
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By (10-2) and the appropriate analog of (6-13) involving &, it follows that

a 1/N
(10-3)  f(2) + xvel(2) < (1 . g) u(lz)) —€+3, R<|z| < (cosia)'N.

By jacking up N further, we can ensure that |xny¢(2)| < € holds on |z2| < R. To
control f+ xn,¢ in the remaining annulus, we first need some elementary estimates
of Qq, namely, that for ro, cos 3o < r¢ < 1, the following holds, by (3-6),

Qu(r) = Qu(rg) — / QL(1)dt < Qalre) —a~>(ro— 1), cosla<r <,
Qa(r) = Qulro) + /7" QL (1) dt < Qu(ro) +V2a~2(r — 1), ro <r<1.
o
With 7o = (ri), these estimates lead to
an(r) < an(ry) —a 2 ()Y =), (costa)™ <r <y,
av(r) S an(riy) + V2072 (Y = (rp)™), R <r <L

For large N, we know that

f(en(N)) + 1 (N, €) an (rx)

is within an additive constant (depending only on «) from wu(ry) — & = 1 +
log(Nlog N) — £ (look at how we got (6-13) and (6-14)). Using the above esti-
mates of gn(r), we arrive (for large V) at

fen(N)) + (N, €) dn(2) < f(ex(N)) + pr(N, €) an(|2])

* log N N 1 \U/N *
<u(ry) —&— (1l —a/(2n)) (1= 27) + C(a), (cos3a) " <z <1y,
and
fen(N)) + (N, €) dn(2) < f(ex(N)) + pr (N, €) an(|2])
<u(ry) — &+ Cla), i < lz| < 1,

for some constant C'(«). By the localization trick of (6-13), these estimates lead to

(0-0) ) +ela) S ulri) — e b (L= 21Y) — 6+ C'(a),

(cos %a)l/N < |zl <7y,
and
(105) () el Sulrk) — €+ @),y <l <1,

for some other constant C’(«). It follows from (10-5) and u(r%) = 1+log(NN log V)
that

(10-6) / o TP UE) Fwe(2) d(2) < Clage,
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where C() is a positive constant. An exercise involving Taylor series shows that
for positive real 7,

4 1—e™ 7
[ (= - s™) ds(e) e+ £ 2
D

T

so that by (10-4), we have, provided that « is not too big, that is, a(1—a/(27)) < 1,

(10-7) exp (f(z) + XN,g(z)) dS(z) < C’(a)e_g,

/(cos La)l/N<|z|<ry

where C'(«) is a positive constant, possibly different from the earlier one. By (10-3),
we get, since 1 — /8 < 1,

(10-8) exp (f(z) + XN,g(z)) dS(z) < C’(a)e_g,

/R<|z|<(cos Lta)l/N

where C'(«) is yet another positive constant. Moreover, since |xne(2)] < € on
|z| < R, we obtain

(10-9) /| B () () dS(2) < / exp (f(2)) dS(2).

D

The above estimates (10-6) through (10-9) show that the following refinement of
Lemma 8.1 is valid. One last thing: the assertion is formulated in such a way that
the initial dilation, replacing f(z) with f(7z), for some 7, 0 < 7 < 1, very close to
1, is permissible.

Lemma 10.1. Let all parameters and functions be as in Lemma 8.1, with the
exception that o should be little smaller: o = min{1,20}. Then the function g can
be assumed to meet all the requirements specified in Lemma 8.1, with E replaced by
E!, and the additional condition that

/Dexp (9(2))dS(z) <Ce ¢ + 66/ exp (f(z)) dS(z),

D

for some positive constant C = C(f3).

As in Section 8, our next job is to handle the following problem. Let N(n) be
a sequence of positive integers approaching +oo rapidly, and let E! be given by
(10-1), with N = N(n). Moreover, let &, be a sequence of real numbers greater
than or equal to 0, which tend to +oc rather slowly. For a Borel subset E of D, let
S(E) denote the normalized area of E (smaller than the usual area by a factor of
7~ 1), and if instead E is a rectifiable curve or a (relative Borel) subset of one, let
s(F) be the length of F, normalized by the factor (27r)~!. The latter definition is
related to ds, normalized one-dimensional Lebesgue measure in the complex plane.
Suppose h is a subharmonic function, about which it is known that it is bounded
from above by some unspecified constant, that

(10-10) h(z) < yu(|z]), z €D,
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for some positive constant v, and that

oo

- e &n L ex z z 0.
(10-11) > S(Eg)/E% p(h(z))dS(z) < A<+

n=1

We wish to estimate the average radial growth of h(z); to be more to the point, we
want to know how quickly the integral mean

/ ht(re') do
increases as r approaches 1, where h¥(z) = max {h(z),0}. Fubini’s theorem tells
us that there is a radius p,, T]n\/'(n) < pn < r}“v(n), such that with F,, = Eﬁ N pnT,

5(117]n) /En exp (h(,z)) ds(z) < S(E,) /En exp (h(z)) dS(z),

n

so that

oo

Z e—6n s(lj'l?n) /E exp (h(2)) ds(z) < A < +o0.

n=1 n

A crude estimate of each term leads to

1
(10-12) (B /En exp (h(2)) ds(z) < Ae.

We note that E, = p, U; I; (2, N(n)), so that s(E,) = ap,/(47) tends to o/ (4r)
as n — +oo. Introduce the union of rectangular boxes 3,,,

So={re? : pp<r <1, ¢ eul;(fa,Nn))},

and put a hat on each box to form II,, = E,,UY,,. The set 11,, looks like a collection
of identical mushrooms, with stems affixed to the ground, the unit circle. Let
Q, =D\ U352, 11, which is an open subset of D, possibly having many components,
and let Q2 be the connectivity component that contains the origin (see Figure 10-1
for a graphic illustration of the set %), which is easily seen to be simply connected.
The boundary 9 of Qf consists of a closed subset of the unit circle T, mushroom
hats £, or parts of them, and stem sides

%5 ={re’: p;<r<1, €’ euoli(3a,N(n))},
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FIGURE 10-1.

or parts of them, as well, for j = n,n 4+ 1,...; on the right hand side of the
displayed formula, the 0 is the boundary operation with respect to the topology of
T. Recall that we reserve the symbol w for harmonic measure; we will sometimes
write dw(z,(, ), and think of it as a measure, where the variable of integration is
¢. Since h(z) is subharmonic and bounded above in D, h*(z) is subharmonic too,
and bounded from above and below. If h,, is the function harmonic in Q8 defined
as

(@)= [ WO dola 08, e,

then, by the maximum principle, h*(z) < h,,(z) on Qf. For r such that rD C QI
by the mean value property for harmonic functions we have

{AW@mws%hmwwwzmwz/ B () dw(0,C,Q5).

r r BQE‘L

This calculation leaves us with the desire to estimate w(0, L, Q%) for various Borel
subsets L of dQ%. One quickly checks it is 0 if L is a subset of T N Q4. The
principle of extension of the domain states that the harmonic measure of a piece
of the boundary of a region with respect to a fixed interior point gets larger if
the region is expanded in such a way that the boundary piece remains on the
boundary. If L is a Borel subset of Y; 1, = ppl; (3, N(k)) C Ej, N 0Q, for some
k=mn,n+1,..., we replace Qf with D\ Y;, and see that

(10-13) w(0,L,Q8) < w(0,L,D\ Yj,) < C() s(L),

for some positive constant C(«). The remaining type of boundary parts is formed
by the stem sides. So, let L be a subset of 9°%j N o008 for some k=mn,n+1,...,
and suppose for simplicity that it is a subset of a single stem side of one mushroom.
Then, if we remove all the other mushrooms, the harmonic measure of L increases,
but it is still quite small, because if we think of harmonic measure as arising from
Brownian motion, to reach L, the particle has first to reach some point of the
opening between the hat and the unit circle, then it must also hit the stem, and in
particular, the part that lies on L. The hat and the stem define a “boxed” region
of dimension éa N(k)~™! by 1 — pg, so that an estimate of the second process using
harmonic measure for the boxed region shows that

(10-14) w(0,L, Q%) < C(a) N (k)™ s(L),

for some positive constants C(«), v(a); v(a) = «/6 should do. The estimates
(10-12) and (10-13) will be used to control

(10-15) | w0

on the hats of the mushrooms, and (10-10) and (10-14) to control it on the stems.
Not all mushrooms are so lucky as to form part of the boundary of Qf, as many
are contained in the stems of earlier generations of them, and some are trapped

between two bigger intersecting mushrooms. Approximately the proportion a//(8)
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of those remaining are lost with each new generation, and by jacking up the growth
of the N(n), we may safely claim that the proportion is between a/30 and «/20
each time.

We first do the stems. In generation k, (k = n,n + 1,...), there are N(k)
different mushrooms in Iz, but at most (1 — «/30)* "N (k) of them make it to
008 . The integral of u(|z|) along the two sides of a single mushroom is at most

2/p u(t) dt < %

k

where the estimate holds for large N (k). It follows from (10-10) and (10-14) that
the integral (10-15) taken only over the stems is bounded by the series

VZ (1= )" Ny,

which converges quite fast.

We turn to the hats. In generation k, (k =n, n+1,...), there are N (k) different
mushrooms in I, but at most (1—a/30)* "N (k), and at least (1—ca/20)*""N(k),
of them make it to Q. Since exp(ht) < exp(h) + 1, an application of Jensen’s
inequality shows that

L / W+ (2) ds(2)
s(Ex N 0Qy) JE.no04

< log (1 " exp ((2) ds<z>),

s(Ey, N OQ%) /E,mBQEL
and together with (10-12) and the fact that
k—n i k—n
(1_1) <5(Ekﬂ8§2n)<(1_g> ,
20 - S(IEk) -
it shows that

/Emana @) as(a) < (1 55) B og (1 -5 Aé’“) |

Since s(Ey) = apg/(47) < a/(4n), it follows that

oo

(10-16) kz:% [E )
43 z_: (1 - —)k_ log <1 + (1 - %)n_k Ae€k> ,

where the right hand side converges, provided

o) |
Z ( 30 & < +00
k=1
By the estimates (10-13) and (10-16), the integral (10-15) is controlled on the hats
as well. For the choice &, = 2logn, we get more specifically

1/ Wt (2) ds(z) < / (O dw(0,¢,95) < C + ', = C +2C" logn,
rT o092},

r

where C'= C(a, v, A) and C' = C'(«) are positive constants. We formulate this as
a lemma.
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Lemma 10.2. Let h be a subharmonic function on D which is bounded above, and
write &, = 2logn. Suppose h satisfies, for positive constants v, A,

h(z) < vyu(|z|), z €D,

and
y e ! ex z 5
nz::l S(EL) /Eg p (h(2)) dS(z) < A.

Then if the sequence N(n) increases sufficiently rapidly, there are two positive con-
stants C' = C(a,v,A) and C" = C'(«a) such that the following estimate holds, for
n=123,...:

1
—/ W(2)ds(z) < C+C'6ns 0<1 < pr.
rT

r

We now combine Lemmas 10.1 and 10.2.

Theorem 10.3. Let u and v be as in Lemma 8.1, and o = min{1,23}. Moreover,
let N(n) be an increasing sequence of positive integers approaching +oo, and E%Y
be the union over n =1,2,3,... of the sets

E! = {reie : T]n\f(n) <7 <T@y et e U;I; (30, N(n)) },

where Tgv =1-2(NlogN)~! andri = 1—(Nlog N)~!. Then, if the N(n) increase
sufficiently rapidly, there are an increasing function uy : [0,1[— [0, +o0[, with
uo(t) = o(u(t)) ast — 1 and limy_,q ug(t) = +o0, a positive constant C = C(w),
and a function f, harmonic in D, such that with the notation f~(z) = max{ —

f(Z), 0}7

—o(lz]) =1 < f(2) Swullz]) —uo(lz)) + €, zeD,
u(|z]) —uo(|z)) = C < f(2),  z€ EMY,

[ew(re)ase <c.
lim sup <% / e - /\uo(r)> — to0,

r—1

for each real X, 0 < A, and such that if h is subharmonic and bounded above on D,
and

[ exp (1) + n) asee) <1,

then
1

L @i sCrue) 0<r<,

Proof. We proceed as in the earlier proofs of Theorems 6.2 and 8.4, and produce
iteratively functions f,, € h°°(D), radii r,, positive constants C,,, and compact
subsets EXY as follows. Along the way, we will define increasing functions Uop
[0, 1[— [0, +-00[, which tend to the desired function ug as n — +oo. We start with
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fo=0,r0=3,Co=1, and E§7U = (). We also set ugo(t) =0 on [0, 1]. In general,
the radius r,, will be chosen such that r,,_; < r, <1, and such that the set Ef:l
is contained in the disk |z| < r,,. Moreover, as n — 400, we want r,, — 1. Suppose
we have f,_1 and EMY such that

n—1

_’U(|Z|) -1+ 2_n+1 S fn—l(Z) S U(|z|) — uO,n—1(|Z|) + C - 2—n—i—17 = ]D),
u(lz]) —ton_1(|2)) = C+ 27" < f(2),  zeERY,

/Dexp (fuo1(2)) dS(z) < Cpy.

If N(n) is large enough, Lemma 10.1, with e = 27" and £ =, = 2logn, will then
deliver a radius R = R,, with r,, < R,, < 1, a compact set

E! = {rew : T?\r(n) <7 < TN et ¢ U;L; (30, N(n))},

contained in the ring R,, < |z| < 1, and a function g = f,, € h°°(D) such that (use
a slightly different constant than in the lemma)

—o(lz]) = 14+27" < fu(2) Sullz]) —won-a(l2)) +C=27", 2| <Ry,
—v([z]) < fu(z) Sullz]) =& =140, Rn <2 <1,
u(lz]) = w1 (l2)) = C+27" < ful2).  z€ BYY,
u(lz]) =& — C+ 1< fu(z), z€ E}.

/Dexp (fn(2)) dS(z) < Cn,

where C;, = C e™5 +exp(2™") Cy,_1. Declare ug ,,(t) to be ug ,_1(t) for 0 <t < R,,,
and &, = 2logn for R,, <t < 1. It is readily checked that this defines an increasing
function. Also, put EbY = Eﬁfl U E!. Part of the above estimates then simplify,

—v(]z]) =14+ 27" < fn(2) < u(|z]) —uwon(|z]) +C —277, z €D,
u(lz]) —uon-1(l2]) =C+27" < fulz),  z€ ERY.
As n — 400, the functions f,, € h°°(D) converge, uniformly on compact subsets of
D, to a function f, harmonic in D, and the functions ug , converge to a function

up. Since Y, e74 =3 n~2 converges, also the constants C,, converge to a limit
Cw, so that in the limit, one has

—o(lz]) =1 < f(2) < wullz]) = wo(lz]) + €, z€D,
u(lzl) —uo(l2]) = C < f(2),  ze€ B,

/D exp (f(2)) dS(2) < Cns,

with E#Y = U?’;lEg. For rapidly increasing N(n), the R(n), being contained
between r}‘v(n_l) and r}‘v(n), tend to 1 very rapidly in n, so that we can make wug(t)
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go to +oo as slowly as we like as ¢ — 1. In particular, we can get ug(t) = o(u(t))
ast — 1.
We now turn to the assertion that

lim sup <% /MF F(2) — )\uo(r)> — toc.

r—1

Since f is big and positive on EY, the integrals

L[ rr@ase

are correspondingly big for r = r}“v(n), and the order of magnitude is at least a pos-
itive constant times u(r}‘v(n)). By the mean value theorem for harmonic functions,

the integrals where fT is replaced by f~ are of the same magnitude, whence the
assertion follows.

Finally, we look at the part of the assertion involving the function h. Since f
has the bound from below, the integrability of exp(f + h) on the unit disk forces
the subharmonic function to satisfy (10-10), for some v = v(«, ), by the mean-
value property of subharmonic functions on disks. In fact, if we take the liberty to
subtract off a suitable absolute constant from h, we can get v = 8 + 2. Moreover,
by the way the function ug was defined in terms of &, and the control from below
on f on E®Y (10-11) holds for some A = A(a). So, we can apply Lemma 10.2,
and get the desired estimate, by replacing the &, with the appropriate expression
in terms of ug. The proof is complete. O

Remark 10.4. (a) A more careful analysis of the construction part of the demon-
stration of Theorem 10.3 shows that the harmonic function f constructed has the
additional property that the associated function M[f](r) = sup|,—, f(2) is expo-
nentially summable, that is, exp (M [ f]) is in L1(0,1). Tt then follows, for instance,
that exp(f) dS is a Carleson measure on D.

(b) For the part of the theorem involving the subharmonic function h, by re-
placing the use of the exponential function in Jensen’s inequality with the function
¥, (t) = t7 for t > 0, and 9,(t) = 0 for t < 0, with exponent y bigger than 1 (so
that it is convex), we see that for 0 < o < 1, the conclusion can be sharpened to

say that the integrals

E /T exp (oh(z)) ds(z)

r

(with 0 < r < 1) are bounded by expressions of the type
C exp (Cup(r)),
where the constant C' = C(«, o) is positive.

11. Construction of extremally growing functions, IV

We draw a conclusion from Theorem 10.3 which will be used to prove Theorem
1.4.
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Corollary 11.1. Let B > 0 be real. Then there are an increasing function ug :
[0,1[— [0, 400, with ug(t) = o — log(1 —t)) as t — 1 and lim;_,1 up(t) = +oo,
and a function F' holomorphic on D, such that
L. [y |F(2)]dS(z) < 400,
2. (1—12])? < |F(2)| for all z €D,
3. limsup,_,, ((27r)_1 [T _log™ |F(rei)| do — Auo(r)) = +o0o for all X > 0, and
4. if h is subharmonic and bounded from above on D, and has
Jp |F(2)| exp(h(z)) xdS(z) = A < +o0, then
@2m) =t [T Kt (re®®)df < log* A+ Cug(r), for 0 <r < 1, with a constant C
that does not depend on h and A.

Moreover, an F' can be found with the additional property that
5. [F(2)| < C(1—|z)"texp (—uo(|2])) on D, for some positive constant C.

12. Proofs of the main theorems

Let O(D) denote the Fréchet space of all holomorphic functions on D, with the
usual topology of uniform convergence on compact subsets.

Proof of Theorem 1.2. Let F be outer function in the Nevanlinna class appearing in
Corollary 5.1, with u(r) = p (1 —log(1 — 7)) and v(r) = 1+ loglog (24 (1 —r)71).
Then F € A7P, and 1/F € NgA~9. Let p; be a sequence of polynomials, and
suppose that F'pp tends to 1 in the weak-star topology of A7P. But then Fpg
is uniformly norm-bounded in A~P, so that since |F| is maximally large on the
sequence Z, each pg is uniformly bounded on Z, by a constant that does not depend
on k. It follows from the maximum principle that the polynomials pj are uniformly
bounded in H°°. This, however, contradicts the assumption that Fp; tend to 1,
because F' fails to be bounded away from 0. This shows that the function f = F
works. ([l

Proof of Theorem 1.3. Let F be the function appearing in Corollary 7.1, with
B = q/p. Then the function f = FP isin A™P and |f(z)| > (1 — |2|)?. We intend
to show that the weak-star closed invariant subspace of A™P generated by f equals
fH®. Let gi be a sequence of functions in H*°, such that fgx converges in the
weak-star topology of A™P, which requires that the functions are uniformly norm-
bounded in A7P, and that they converge in the topology of O(D). Since the function
f is maximally big on the set F = E(F'), each function g is uniformly bounded
on F, by a constant that is independent of k. The fact that F is dominating for
H®° entails that the functions gx are uniformly bounded in H*°. It follows that
fH® is weak-star sequentially closed, and hence weak-star closed. It is therefore
the weak-star closed invariant subspace generated by f. That fH® is not all of
A7P follows, for instance, from Remark 7.2. ([l

Proof of Theorem 1.1. Let F be function in Corollary 9.1, with # = ¢/p. Then
the function f = F? is in Ay, and 1/f is in A=? We shall show that f is not
cyclic in Ay”. Let g be a sequence of functions in H*, such that fg, converges
in norm in Ag”. Since f grows almost maximally on F, we have that |gr(z)| <
C exp (u0(|z|)) on E for some positive constant C. But then, by property 5 of
Corollary 9.1, applied to the subharmonic functions log |gx| — log C, it follows that
|9k(2)] < C"exp (uo(|2])) throughout D, for another constant C’. By property 4 of
Corollary 9.1, fgr cannot tend to 1, whence f fails to be cyclic. ([l
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Proof of Theorem 1.4. Let F' be as in Corollary 11.1, with 8 = pq. Then the
function f = FY/? is in L2, and 1/f is in A=9. We intend to demonstrate that f is
non-cyclic in L?. Let g be a sequence of functions in H* such that fg; converges
in norm in L?. By property 4 of Corollary 11.1 applied to the functions log |gx|, we
have that

1 T )
%/ log* |gu(re®)[d0 < C (1 +uo(r)), 0 <r <L,

for a positive constant C'. By property 3 of Corollary 11.1, it follows that if ¢ is
the limit in O(D) of the sequence g, then

1 (7 : :
lim sup Py / (log™ |f(re®)| — log™ [g(re™?)|) df = +oo.

r—1 ™ —T

This, however, cannot be if the limit fg is the constant function 1, for then
log™ |f| = log™ |g]. -

13. Applications to inner divisors in the Bergman spaces

In [16], Boris Korenblum introduced the notion of an outer function in L? in
terms of domination, and proved that a cyclic function necessarily is outer. Recent
work due to Alexandru Aleman, Stefan Richter, and Carl Sundberg [2] shows that
the outer functions are precisely the cyclic functions. Korenblum [16] anticipated
that this would be so, and asked furthermore whether the classes of outer functions
and of cyclic functions in L? might both coincide with the class of functions in L?
that are cyclic in A=°°. By Theorem 1.4, this is not the case.

Another application of Theorem 1.4 concerns the factorization theory for the
Bergman spaces in a more direct way. Fix the parameter p, 0 < p < 400, and let
M be a proper closed subspace of L? which is invariant under multiplication by
z. Let m be the order of the common zero at the origin of the functions in M, and
consider the extremal problem

(13-1) sup{ Re "™ (0) : f € M, ||fllzz = 1}.

Suppose that M is singly generated, and that the generator is f € LZ. Some
notation: given a function g € LP, we write [g] for the invariant subspace generated
by g, and observe that it is obtained as the closure of the set of polynomial multiples
of g; the assumption on M therefore reads M = [f]. The above extremal problem
then has a unique solution, which is denoted by G = G ¢, and referred to as the
extremal function (or canonical divisor) for M. It is shown in [2] (see also [7, 8,
11, 12]) that M = [G], and that G is a contractive divisor on M:

(13-2) lg/Gllrz <llgllze,  geM.

The following question pops up: is G is an expansive multiplier on all of L%,
(13-3) lgllzz < Ggllee, g€ LE?

A closely related question is the following one. Is it true that

(13-4) GLP NIP = [G] = M?
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To answer both questions in the negative, we use as f the function of Theorem 1.4,
for some positive value of the parameter ¢, say ¢ = 1.

Since f is noncyclic, M = [f] is not all of L?. By (13-2), G has no zeros in D,
and f/G € LP. Because 1/f € A79, G cannot decrease very quickly radially, and
quantitatively, we have, for some positive constants ¢ and C,

(13-5) G(2)| > C(1—|2)°,  2eD,

that is, 1/G € A=*°. It follows that the function ¢ = G~° is in L? for some small
g, 0 < e < 1. The function pG = G'7¢ is in LY for some ¢, p < g, whence pG is
cyclic in L2 by Theorem C. The function ¢G therefore cannot be in M, although
©G € GLE N LP. This answers the second question in the negative.

We turn to the first question. For the same canonical divisor G = Gz, and ¢ as
above, consider the function

L(t) = /D(|G(z)|p C1)|G()|MAS(2),  0<t < pe,

which is continuous on the indicated interval. Since G has norm 1, we have L(0) = 0.
The integrand
(IGEF = 1)IGE)

decreases strictly in the ¢ variable on 0 < ¢t < +o0 for those values of z where |G(z)|
differs from 1, and equals 0 if |G(z)| = 1. Since |G(z)]| is not a constant function,
L(t) must therefore be strictly decreasing on the interval [0,pe[. In particular,
L(t) < 0 for 0 < t < pe. But then ¢ = G~¢ has bigger norm than oG = G'~¢ in
L? although ¢ € LP.

It is possible that given any positive o, there are non-constant inner divisors
G such that (13-5) holds for some small but positive C. This, however, does not
follow from the above arguments.
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