Invariant subspaces of given index
in Banach spaces of analytic functions

ALEXANDER BORICHEV

0. ABSTRACT

For a wide class of Banach spaces of analytic functions in the unit disc including all
weighted Bergman spaces with radial weights and for weighted ¢ spaces we construct
z-invariant subspaces of index n, 2 < n < 400, without common zeros in the unit disc.

1. INTRODUCTION

Consider the operator M, of multiplication by z acting (continuously) on a Banach space
B of analytic functions on the unit disc D. We assume that

(i) B is a linear subspace of the space Hol(D) of all analytic functions on D equipped
with the topology of uniform convergence on compact subsets, and the imbedding
B — Hol(D) is continuous.

A (closed) subspace E of B is called (z-)invariant if zE = M,E C E. The index of E
is the dimension of the quotient space E/Clos g(zF). It is denoted by ind F, and takes
values in {0,1,2,...,400}. Clearly, ind E = 0 <= FE = {0}.
Given f € B, denote
[f1=[f]B = Clos pL{z" f,n > 0},

where £ stands for the linear hull. Then ind[f] = 1 for every f # 0. In particular,
Beurling’s theorem implies that every non-zero invariant subspace in the Hardy space H?
has index 1.

If we assume that the operator of multiplication by z — A is bounded from below on
B for every A € D, then for every invariant subspace E, A € D, (z — A\)FE is closed, and
dim(E/(z—A)E) = ind E does not depend on A € D. Furthermore, under this assumption,
ind £ = 1 if and only if E satisfies the division property: for every (some) A € D which is
not a common zero of the functions in F, and for every f € E such that f(\) = 0, there
exists g € E such that (z — A)g = f (for this and other information on index see [16]).

Results of Apostol, Bercovici, Foiag and Pearcy [2], [4, Corollary 5.5, Theorem 10.5]
imply the existence of invariant subspaces of arbitrary index in the class H of weighted
Hilbert spaces

H = B ({¥bnz0) = { = 3 a0z 11 (000 = D Vilanl® < 00},

n>0 n>0

that satisfy the conditions ||M,| =1, M, € Cy, 0(M,) = ClosD. These conditions mean
that

lim ||2"f||=0, fe€H, M| =1, n>1,;
n—>00
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they can be rewritten in terms of the sequence {7, }n>0 as follows:

0<Yns1 <Yp, n>0, lim +, =0, sup7k+":1 n > 1.

n—o0 k ’yk

Y

In particular, given a finite positive measure g on [0,1] with 1 € supp p, u({1})=0, the
spaces

B2(n) = { 1 € Hol(D) : 1] = / £ (re®)Pdbdp(r) <

reif €D
belong to the class H.

Furthermore, Eschmeier [8] proved the existence of invariant subspaces of arbitrary index
in the spaces BP, 1 < p < o0,

B = {f e B®) : 17 = [ 1f()dma(e) < o},

where dms is Lebesgue planar measure.
The arguments given in [2,8] are pure existence proofs. The first explicit construction of
a subspace in the Bergman space B? having index 2 was given by Hedenmalm [11]. This
construction includes two ingredients. First, a result by Richter [16] implies that given
two invariant subspaces F1 and E5 of index 1, the smallest invariant subspace containing
their sum, E; V E5, has index 2 if the following inverse triangle inequality holds for some
e > 0
If1+ Foll Z e(lFall +MI720), o€ Ev, fa € Ea. (1.1)

Note that for ind 1 = ind Fs =1,
ind (E1 V Ez) =2 — EiNky= @ (12)

Second, Seip’s results on sampling and interpolation in Bergman spaces [17] are used to
produce in an explicit way F; and Fs satisfying property (1.1).
A construction of invariant subspaces of arbitrary index in the spaces

B'(¢) = { € Hol®) : 1117 = [ 17" p(lz]dma(z) < o0},

with o(r) = (1 —=72?)%, 0 < p < 00, =1 < a < oo, is given in [12]. Let A be a finite
or a countably infinite set. Once again, to verify that ind (Vne NEn) = card NV, with
ind F,, = 1, n € N, the authors of [12] prove an inequality similar to (1.1). Furthermore, to
produce F,, satisfying this inequality, they use results of Seip [17,18]. So, this construction
depends heavily on specific properties of the weight .

We want to extend these results to more general spaces B. Let us return to the inequality
(1.1). One possibility for this inequality to be fulfilled (in a weighted space of functions)
is that

supp f1 N supp f2 = 0, J1 € Ey, fr € Es. (1.3)

Of course, (1.3) is impossible for analytic functions.
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Assume that B is a subspace of an ideal normed space By. It means that || f||z = || f]|B,,
f € B, and

if f € By, g is a measurable function on D, |g(2)| < |f(2)], |2] < 1,
then g € By and |lg||5, < [|/]|5o-

Now, to get (1.1), we can try to find such invariant subspaces E; and E3 and disjoint
subsets €27 and Q5 of D that for some € > 0

||f1+f2||B > 6max{||XQ1f1||Boa ||X92f2||Bo} > 62 maX{HleBa ||f2||B}a fl € Elaf2 € Es.

Furthermore, these inequalities hold if f; are very big on ();, and sufficiently small on €2,
J # i. Finally, what we need is to find invariant subspaces E; and E5 such that all their
elements have this specific behavior along €2;. Such subspaces can be generated by lacu-
nary power series with prescribed asymptotics. This idea turns out to work under some
natural assumptions on the space By. Moreover, the resulting construction looks quite
elementary. We just use repeatedly the maximum principle and its (integral) analogs.
Furthermore, this construction permits us to produce invariant subspaces of index bigger
than 1 without common zeros in the unit disc. Previously, similar method was used by
Krasichkov-Ternovskii [14, Section 7]. The problem of constructing invariant subspaces
without common zeros in different spaces of analytic functions in the unit disc was consid-
ered in recent papers by Atzmon [3] and Hedenmalm—Volberg [13]. See also earlier results
by Beurling [5] and Nikolskii [15, Section 2.8].

Weighted Hilbert spaces of sequences of class H are, generally speaking, not covered by
our scheme: they are subspaces of (ideal) weighted L? spaces (against planar Lebesgue
measure) only for logarithmically convex weight sequences {vy},>0. However, our con-
struction can be adapted for such spaces, and, more generally, for spaces £ ({75 }n>0),
1 <p<oo.

The formulation of the main result is given in Section 2. We list general conditions on
B implying the existence of invariant subspaces of arbitrary index and produce several
examples of such spaces. An analog of condition (1.1) necessary to deal with the case
ind (VE,) = 400 is given in Section 3. The proof of the main theorem is contained in
Section 4. In Section 5 we deal with the spaces ¢4 ({5 }n>0). Final remarks are given in
Section 6.

2. MAIN RESULT
We deal with a Banach space B of analytic functions satisfying condition (i) and assume
that
(ii) 1 € B.
This condition implies that B contains all the polynomials.
We suppose that

(iii) B is a subspace of a (radial) ideal normed space By: if f € By, 0 <a<b<1,Iis
an interval (closed, open or semi-open) with endpoints a and b, g(2) = f(2)x1(|z]),
|z| < 1, then g € By and ||g]|B, < ||f]|Bo-
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(iv) Two natural assumptions on the norm in By are that

. . 2" x10,0) (12Dl B,
1 . =0, 1 ’
al_)ni“X( 71)(|Z|)||Bo ngrolo ||Zn||Bo

=0, 0<a<l

The final of condition could be interpreted as a possibility to extract the circular part
of the norm in By.

(v) Given a function h analytic in a neighborhood of ClosD, there exists a bounded
function A(-, h) : (0, 1] — [0, 00) satisfying the inequality

172" X151 (12]) | 3o
127 Xta,01(12) [ 3

|h(0)] < Aa, h) < < A(b, h),
for every a,b, 0 < a < b <1, and for every n > 0.
A weaker form of this condition is

(vi) For some ¢ = ¢(By) > 0, and every function h analytic in a neighborhood of ClosD,
there exists a bounded function A(-, k) : (0,1] — [0, c0) satisfying the inequality

hz"X[q 1
12" X101 (12Dl B0~ €

for every a,b,d, 1/2 < d < a® <a < b <1, and for every n > 0.

THEOREM 2.1. Let B be a Banach space satisfying conditions (i)—(v) (or (i)—(iv) and
(vi)). Then B contains invariant subspaces of index n, 2 < n < 400, without common
zeros in the unit disc.

For a function f defined on D, 0 < r < 1 put f,.(z) = f(rz), z € ClosD; for f(z) =
Ym0 nz", 2 € T=0D, define [|FfIF =350 lanl”, |Fflloo = supp>o lanl.

THEOREM 2.2. (a) If ¢ is a positive decreasing function on [0, 1), lim;_,; ¢(t) = 0, then
the spaces

NI
AP(p) = {f € Hol(D) : ||, :oiugl[@(r) . %/_ |f(reze)|pd9] < OO})
NI
(@) = { € Hol(D) : (r) g/_ Fre®)Pdg = o(1),r = 1, [|fl]ag(e) = 1/ a0) }-

where 1 < p < o0, and
4%(p) = { € Hol(D) : | Flla(e) = sup IF (2)l(l2)] < o0},
z€D

A (p) = {f € Hol(D) : [f(2)le(lz]) = o(1), |z[ = L, [Ifllag(p) = ||f||A°°(tp)}
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contain invariant subspaces of index n, 2 < n < +00, without common zeros in the unit
disc.

(b) If p is a finite positive Borelian measure on [0,1] with 1 € supp u, u({1}) = 0,
1 < p < o0, then the spaces

BP(y) = {f € Hol(D) : [|£1%,.4(,) = /01( 1 /7r |f(rei9)|qd0)p/qd[1,(’f‘) B 00}7

2 ),

1< g <oo,

1

Bppo(,u) = {f S HOI(D) : ||f||%p,oo(u) = . —??é}éw |f(7“g"9)|pdu(r) < oo}

contain invariant subspaces of index n, 2 < n < +00, without common zeros in the unit
disc.

(¢) If p is a finite positive Borelian measure on [0,1] with 1 € supppu, p({1}) = 0,
1 < p < oo, then the spaces

o) = {1 € BOD) <y = = [ ([ e Pan)) a0 < oo},

1< g < oo,

| <
O = {1 € HoAD) : Iy = _sup [ 1) Putr) < o0)

contain invariant subspaces of index n, 2 < n < +o00, without common zeros in the unit
disc.

(d) If p is a finite positive Borelian measure on [0,1] with 1 € supp u, u({1}) = 0,
1 < p < oo, then the spaces

F2(0) = {1 € Hol(®) < 1 gy = [ IF () < o0

contain invariant subspaces of index n, 2 < n < +00, without common zeros in the unit
disc.
(e) If ¢ is a positive decreasing function on [0, 1), lim;_,; ¢(t) = 0, then the spaces

Flg) = {/ € HlD) : |fllrp) = sup [o(r) - [F(fr)llo] < oo},

Fol) = { f € Hol(D) : o(r) - |F(f)llso = 0(1).7 = L, | ll5yc0) = I/ L)}

contain invariant subspaces of index n, 2 < n < +00, without common zeros in the unit
disc.

PROOF OF THEOREM 2.2: To apply Theorem 2.1 we need only to define By, A(r, h), and
to verify condition (v) (or (vi)). For the spaces BP?(u), CP9(u), the function A(r,h) is
just the norm of h, in LI(T). For the spaces AP(p), Ah(p), the function A(r,h) is the
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maximum of |h(z)| on rT. For the space FP(u), the function A(r, k) is ||F(h,)||p; for the
spaces F'(¢), Fo(g), the function A(r, k) is || F(hy)||co-

A radial ideal normed space By for the space B = FP(u) is defined as follows: take the
set S of the Borelian measurable functions f on D such that the functions f., 0 < r < 1,
are continuous on T and are of the form f,.(2) =) ., a5,2". Then By is the space of the
elements f in S such that B

1
1£1, = / | () [Edu(r) < co.

The spaces F(p), Fo(p) are treated in an analogous way. When B is one of the spaces
AP (), AB(p), BP1(u), CP1(u), the space By is the space of the measurable functions on
D satisfying the same inequalities as that in the definition of B.

Condition (v) evidently holds for the spaces AP(yp), Ab(p), BP4(pn), FP(u), F(p) and
Fo(p). Let us prove that the spaces CP9(u) satisfy condition (vi). Indeed, if A} is the
radial maximal function for |h,| (see, for example, [10, Chapter 3, Section 3], then

= / ( / hre®)rrrdp(r)) "o < - / / i @) o =
™ —T a
1 b a/p .
-2 </ ) " e~
1 /
- h+ 10 ng _/ / npd'u ))q de <

27r

gc@.;ﬁ / ey L ([ )"

The case ¢ = oo is evident.
To get the estimate from below we deal with the cases p > ¢ and p < ¢q separately. If
p > q, then by the Holder inequality applied to the inner integral we get

—/ / \h(re®®)|PrPdpu(r )) pd&z
%/ / |h(re®)|9rmPdu(r )) (/a r"Pdu(r ))(q_p)/pdez
- ( / rdu(r) L / F / [h(re™) 472 dbdp(r) >

> 1 _ﬂ| (aei®)[1d0 - - ﬂ(/abr”pd,u(r))q/pdﬁ.

— 27 27

In the case p < ¢, we use subharmonicity of |h|? in the following way. Put
. b . .
H (se') :/ |h(rse®)|PrPdu(r), se'® € ClosD.
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Then H, and consequently, H%/P are continuous and subharmonic in the unit disc, and for
a > 1/2 we have

1 s b _ / 1 s _
). /|h<re19>|pr"pdu<r>)”d9=— (H ()" a0 >

27

> H i(6+68)\\4/P >
“27-2(1—a)(1—a? /_7r / 1+a a2 (se )" doddds
=z i/ ( / H se’(9+5))d6ds) /pdez
- 21 - 2(1 — a ]_ — a2 T
1 [" 1 I
= o FYZEEEEY i(640)y|p.np >
27 /_ﬂ(z(l_a) /_1+a 1_a2/ / |h(rse )PP dp(r )ds)d&) o >
(Cabs)q/p ™ 1 l1—a (6+5) p
> — ¢ p PP _
- 2 _W(2(1 —a) J 14, a _ a2 |h s€ )|Pds ; d,u(r))dé) de
)q/p

_ (Ca.bs H{846)(p a/p
27 (2(1 —a)(a—a2) ) 110 o |h se )| dsd&) dO x

= _W( / redu(r)) " db >

1 s _ 1 s b /
> ()P [ (26|70 - — (/ rrdu(r))" do,

- abs
2 J_ . 2m

—T

where c,ps and ), are absolute constants. An easy modification of this argument works
for g = oco. 11

3. LEMMA ON SUMMATION OF INDICES

We construct invariant subspaces Vpen E, of index card NV from invariant subspaces
E,, ind E,, = 1, using a statement which is just Theorem 2.1 of [12]. We give the proof
here to make our presentation self-contained.

LEMMA 3.1. Let B be a Banach space of analytic functions satisfying conditions (i), and
let N be a finite or countably infinite set. Suppose that E,, are invariant subspaces of B,
indE, =1, f, € E,, f.(0) #0, n € N. Furthermore, suppose that for every n € N there
exists ¢, > 0 such that

cnlg(0)| < llg + Rl|B, g € Ep,h € E) = Vien\(n) Bk (3.1)

Then ind E = card N, where E = Vyen Ey,.

PrOOF: First, ind E < card N (for a proof see [16, Proposition 2.16] with insignificant
modifications). Furthermore, denote by ) the quotient map @ : E — E/Clos (zE). If
ind E < card N, then the set {Qf,}nen is linearly dependent, and for some n € N,
f € E°, we have Qf, = Qf, that is f, — f € CloszE. Therefore, there exist f* €
E,, f* € E9 such that ||f, — f — zf* — zf¥||p — 0, k — oo. Since f, — 2fF € E,,
(fn — 2f%)(0) = £,(0) # 0, f + 2f* € E2, we get a contradiction to (3.1). I
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This lemma is a generalization of the corresponding result for n = 2 given in [16]. A
similar statement for a special case is contained in [14, Theorem 5.4].

In our construction the spaces F,, will be just [f,] for some f, € B, f,(0) # 0. Then
the condition (3.1) of Lemma 3.1 can be rewritten as follows:

There exists a sequence {c,} of positive numbers such that for every finite sequence of
polynomials P,, (all P, except a finite number of them are 0) and for every n we have

enl(Pufn) O] < D Pific| -

4. THE PROOF OF THEOREM 2.1

We assume that conditions (i)—(v) hold. If condition (v) is replaced by condition (vi),
then the argument does not change much.

A. We begin with an auxiliary construction. From now on we use the notation || - || for
the norm in By.
Consider the function

12" X101 (12])
®(a,b,n) = |[|z"]|| .

By (iii), ®(a, b,n) depends monotonically on each of the first two variables. Since

12" X, 11 (I2D1] = 12" ] = [[2" X[0,0) (|2
property (iv) implies that for every a, 0 < a < 1,

lim ®(a,1,n)=1.

n— 00

Choose a sequence a,, — 1, 0 < a,, < 1, in such a way that

1
®(ay,,1,n) > 37 n > 0.

Furthermore, properties (iv) and (v) imply that

12" X1 (12D < AL, 2) X, (12D = 0, b= 1L,n >0,

1
lim ¢ ny Y 5 > 0.
lim (ap,b,n) > 5 n>0

Thus, we can associate to every n > 0 an interval I, = [ay,, b,], a, < b, < 1, in such a
way that

1 n n n
I < l="xr, (2D < (12", (4.1)
and
nli)ngo ap =1, (4.2)
Tim [, (121 = 0. (4.3
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Denote n
Zn(2) = Hz—H 1Z|=1, n>o0.
zn

B. We are going to produce a sequence of functions {f;}, fi € B, and a sequence of
positive numbers {¢; } such that for every finite sequence {h;} of polynomials and every m,

e (frnlim) O] < D filu)-

The functions f; are constructed as the sums of lacunary series,

filz) =27+ Zgp2 ™", 1L
k>l

where the numbers s(k,l) > 0 will be fixed later. Clearly, f;(0) = 272, f; € B, ||fil| <
27142 Put Xs(k;,l)(z) = XIs(k,l)(|z|)'

The numbers s(k,[) are to satisfy three properties:

(Pr) the intervals I, ;) are disjoint.

(Ps) for every k,l,p,n, (k,1) # (p,n),

||Xs(k,l)Zs(p,n) ||22k+2|n—l|+5 <1

(Ps) for every k,l,

s (e lle®F242 < 1.

We choose the numbers s(k, ) by an inductive process in such a way that
s(1,1) < s(2,1) < 5(2,2) < s(3,1) < 5(3,2) <s(3,3) < ...

As a consequence of (4.2), condition (Py) is fulfilled if each next s(k,[) is taken sufficiently
big. Therefore, on every step (k,l) we need only to verify that if s(p,n) < s(k,l) (and,
hence, p < k), then the following inequalities hold:

||Xs(k,l)Zs(p,n)|| < 2—2k—2|n—l|—57
| < 9= 2k—2ln—1-5

||Xs(p,n)Zs(k7l)
ooyl < 27247272,
The first inequality holds for sufficiently big s(k,[) because of (4.3) and (v), the second
and the third inequalities follow from (iv).
Put agi = as(k,1)s bkt = bse,t)s Xkt = Xs(k,l)s Lkt = Zs(i,l)-
Properties (P)—(Ps) imply that for every k,I, k> 1> 1,

Ixkal272 4 D Xk Zpall27? < 2724, (4.4)
p>l, p#k

Xkt 12727 4D Ixka Zp 277 < 272R72=H=4 0y 2, (4.5)
p2n



C. For 0<c<2%put gf = f1, 1 > 1, g§(2) = f1(2) — ¢, |2| < 1.
Suppose that HZl<n<N gthnH <1, N < oco. Since all h,, are analytic in a neighborhood
of ClosD, for some k > N we have
Magi1,1, hn) < 2893, 1<n<N. (4.6)

Put hy =0, N < s <k. Then by (iii)

1> H > gohn| > ka,z > gihn
1<n<k 1<n<k

_n_

1 <1<k

Y

Therefore, for every [, 1 <[ < k,

Xk, Zrahall27F < 1+ HXkJ Yo guhal| + Ixaa (97 = Ziae ™) hal].

1<n<k,n#l

By (v) we obtain

Mak W) IxeaZed 1278 <14 > Ixkagshall + Xk (9F = Zrae ™) ]|
1<n<k,n#l

Furthermore, by (v), (4.4) and (4.5) we have

Magg, ) |IxeiZe |27 < 1+ Z [||Xk7lhn||2_2n + ZHX’%lZp,nhnHQ_p}jL

1<n<k, n#l p>n
Hixwaull27? + Y xkaZpatul|277 <
p2>l, p#k
<1+ Z (b1, hn) [||Xk,z||2_2" + ZHXk,lZp,n‘|2_p:| +
1<n<k,n#l p>n
A ) [+ Y eaZpal277] <
p>l, p#k
<1+ Z )\(bk;,la hn)2_2k_2|n_l|_4 + )\(ka, h1)2_2k_4. (47)

1<n<k,n#l

Here we use estimates like

F H <
X B, <X IEds,
E>1 E>1

in the situation where limy_,o || >~ Fr|lB, = 0. That is why we do not need to assume
By to be complete. B

By (4.1), ||x#,1Zk,

| > 1, and we obtain from (4.7) that

Maga, ) < 2551 (142724 37 92ty p)).
1<n<k
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Finally, inequality (4.6), the monotonicity of A(-, h) and property (P;) imply that

§)g2k+2, 1<1<k

Aag,i, i) < 2k+1(1%_2—2k—4‘2k+3‘ ’

Arguing by induction, we get

Maug, h) < 2"+1(1 +272mt N 92l hn)) <

1<n<k

< 2u+1 (1 + 2—2u—4 Z 2_2|n_l|)\(au+1,n7 hn) + 2—2u—4 Z 2_2|n_l|)\(an,n7 hn)) <
1<n<u u+1<n<k
< qu+tl (1 | g—2u—d Z 9—2[n—l+(u+3) | 9—2u—4 Z 22(u—n)~|—(n+2)) <
1<n<u u+1<n<k
< Qut?, 1<i<u<k.
As a result,
My s b)) < 2012, 1<u<k.

Finally, by (v),
(g hm)(0)] < 272" [hn (0)] < 277F2, m > 1,

and this bound does not depend on the sequence {h,}.

D. As a result we obtain
ind (\/lsk[gf]) =k, 1<k<+400,0<e<273,

Put X ={ze€D: fa(2) =0}, Y = {fi(2),z € X}. Since X and Y are countable, we
can find b € [0,273]\ Y. Now the invariant subspaces V;<;[g’] are of index k, and have no
common zeros in the unit disc, 2 < k < +o00. 1

5. WEIGHTED BANACH SPACES OF SEQUENCES
We deal with the Banach spaces

Ei({’Yn}nZO) = {f = ;}anzn : ||f||€g({%}n20) = §7£|an|p < Oo}a 1 <p<oo,

G (dnz0) = {7 = 32 a0 11 e (69,1200 = S0P [t < 00},

n>0

CA({"Yn}nZO) = {f = Zanzn : nli)n;o7n|an| =0, ||f||c,4({'yn}n20) = ||f||@3°({’7n}nzo)}‘

n>0
where sequences of positive numbers {,},>0 satisfy the following conditions:

sup Tntl 00, lim inf v, /™ = 1. (5.1)

n  Tn n—0o

11



If the sequence {yy}n>o0 is bounded and liminf,,_ o v, > 0, then &5 ({vn}n>0) is just the
usual unweighted space £%,. From now on we assume that
liminf~y, = 0. (5.2)
n— oo
Our spaces satisfy property (i) of the Introduction. Furthermore, if {v,},>0 is non-
increasing, then the class of spaces ¢4 ({7, }n>0) considered here is contained in the class
‘H defined in Introduction.
The following statement is rather standard.

LEMMA 5.1. Let {8y }n>0 be the maximal logarithmically convex minorant of the sequence
{W}n>0. Then B, < v, n >0, for some infinite subset T of N we have 3, = y,, n € T,
and

Br < Burfusr, n=1,  lim f,=0,  lm /" =1 (5.3)

n— oo
LEMMA 5.2. (a) Given a decreasing sequence {3y },>0 satisfying properties (5.3), and p,
1 < p < oo, there exists a positive continuous function ¢, : [0,1) — (0,00) which is
summable in the case 1 < p < oo, which is decreasing on [0,1) if p = 0o, lim;—,1 oo (t) = 0,
and such that the sequence {3} }n>0,

1 1/p
B = (/ rp"gop(r)dr) , n>01<p<oo,
0

Br = sup 1" (1), n>0,p=o0, (5.4)
0<r<1

is equivalent to the sequence {f3,}n>0, that is for some ¢ > 0,

cBn < By, < Bn/c.

(b) If
Gr(R) = sup r"pso(r), n>00<R<1,
R<r<1
then 0 < B%(R) < 0%, limp1 B5(R) = 0, n > 0, and for every R < 1 there exists
N = N(R) such that 8% (R) = 3, n > N(R).

PROOF: (a) In the case 1 < p < oo the claim of the lemma is just a discrete version of [6,
Proposition B.1] (for p = 2 a detailed argument describing adaptation of [6, Proposition
B.1] is given in [9, Lemma 5.2]).
In the case p = oo just take
Voo (1) = igfﬁnr_”.
Then equality (5.4) and the part (b) of the lemma follow from standard properties of the
Legendre transform. i

We use the following notation. Given two Banach spaces A, B of holomorphic functions
in the unit disc, such that A and B coincide as subsets of Hol(D) , and for some ¢ > 0,

1
cll-la<|-[B < EII'IIA,
we write A~B.

12



LEMMA 5.3. If p, {fn}n>0 and ¢, are as in Lemma 5.2, then

i ({Brtnz0)~FP (pp(w)dr), 1 <p< oo,
U3 ({Bntnz0)~F(p0),
CA({Bn}nzoyVPb(wuﬂ-

PRrROOF: First,

1
n. n P .
HZ Fp(g,p(m)dm) /0 H]:(Z anT 2 )Hp(pp(r)d/r_
/ > lanlPr" Py (r)dr =Y lanl’(8,)7, 1< p < oo,

n>0 n>0

Furthermore,

| anen
n>0

= sup [H]—" Zanr 2" (poo(r)} =

Flex) o0<r<i

= sup sup[|an|r"pe(r)] =sup|la,|B;].
0<r<l n n

Finally,

Zanz € Fo(poo) <= 11m sup [ [sup |an|r™] oo (r)] = 0 <=
n>0 izl rar<a "

. n B
= 11311?1 Slép[|an| [RS<1:E1T Poo(r)]] = 0.

By Lemma 5.2 (b),

11%i—>ml [s%p |an|6;;(R)] =0 << nli)n;o lan |6 =0 <— Z:Oanzn €ca({Btn>0)- 1

THEOREM 5.4. Let A be one of the spaces ¢5 ({vn}n>0), 1 <p < 00, ca({Vn}n>0), where
{n}n>0 is a sequence of positive numbers satisfying conditions (5.1) and (5.2). Then A
contains invariant subspaces of index n, 2 < n < 400, without common zeros in the unit
disc.

ProoOF: We apply Lemma 5.1 and define a Banach space of sequences B in the following
way: if A = ({y}n>0), then B = 5 ({Bn}n>0), and if A = ca({yn}n>0), then B =

CA({Bn}nZO)
Introduce linear subspaces T', Ty of Hol(D) ,

T = {Z a,2" € Hol(D) } T, = { Y a.2" € Hol(D) }

neT neTuU{0}

13



Then ||f||ls = ||flla, fEANT =BNT,

Iflls <Iflas  f€A (5.5)

By Lemma, 5.3 there exists a Banach space F' of analytic functions of one of the classes
considered in Theorem 2.2 (d) and (e) such that B~F. Then, the proof of Theorem 2.1
shows that there exist elements g,, € F' and positive numbers c¢,, such that the inequality

| 52, <

1<n<N
where h; are polynomials implies that
|hn (0)] < cp, n > 1.

Furthermore, g; and go have no common zeros in the unit disc.
Since 7 is infinite, the proof of Theorem 2.1 can be easlily modified in such a way that
the functions g,, are chosen in F'NTy. Then g, € BN Ty, g, € A. Put

Er = Vi<ik|gi]a.

It remains to verify that

ind £y, = k, 1<k < +o0. (5.6)
Suppose that
H Z glth < 17
1<n<N A

with some polynomials h;. By (5.5),

|5 o, =1

1<n<N

| 5 o, <

1<n<N

and since B~F',

for some ¢ depending only on B and F'. Therefore,

|hn (0)] < ¢ - cp, n>1,

and by Lemma 3.1, (5.6) is proved. 1
COROLLARY 5.5. Let A be one of the spaces £5({¥n}n>0), 1 < p < 00, ca({n}n>0),

where {vy }n>0 is a sequence of positive numbers satisfying conditions

1/n

D Tn+1 < 00, lim inf v,, = 0, ~v = liminf~, > 0.
oo

n  Yn T,—00 n—

Then A contains invariant subspaces of index n, 2 < n < +o00, without common zeros in
the disc yD.
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6. FINAL REMARKS

EXAMPLE 6.1: The construction in the proof of Theorem 2.1 gives us a possibility to
produce concrete examples of subspaces of arbitrary index. In particular, for the Bergman
space B? put
3
fi(z) = 92 4 Zzz% +6k’2k3+3kl—k, 1>1.
k>l

Then

fl€B27 l>]—7

ind (vlgk[fl]) =k, 1<k < +o0.

REMARK 6.2: The claim of Theorem 2.1 holds also for F-spaces, that is linear spaces that
possess a complete invariant metric, if this metric is homogeneous of degree p, 0 < p < 1,
and if natural analogs of conditions (i)—(v) ((i)—(iv) and (vi)) are fulfilled. This class
includes the spaces BP%(pu), 0 <p<1,1<qg < oc.

REMARK 6.3: An easy corollary of our results is that every space B satisfying the con-
ditions of Theorem 2.1 contains an uncountable family of invariant subspaces with trivial
pairwise intersections, and the same is true for every space B listed in Theorem 5.4 .
(Indeed, let f; and f2 be two elements of B constructed in the proof of Theorem 2.1,

ind ([f1] V [f2]) = 2. Since
L[]V f2] = U1+ af2] VIf1+ Bf2l, a,B€C a#p,

we get

ind ([f1 + afa] V [f1 + Bf2]) = 2,
and then (see (1.2))

1 +af]n[fi+ 6/ =10}, aBeCa#p)

Earlier, Abakumov [1] proved this property for ¢4, and weighted ¢4 spaces. His methods
and precise conditions on weights and exponents p are different from ours.

REMARK 6.4: The space £ ({¥n}n>0) introduced in Section 5 is dual to £4 ({1/vn}n>0),
and we can consider the corresponding weak® topology on this space. Furthermore, we
consider the weak* topology on A% () induced by the weak* topology on L (), the space
of the complex-valued functions f on D with sup,cp |f(2)|¢(|2]) < co. (For an analogous
situation see [7]). A sequence {fi}r>1 of elements in one of the spaces A = A>(y),
0% ({¥n}n>0), satisfying property (i), converges weakly* to 0 if and only if supy~ || fx|la <
o0, and fi(z) — 0, k — oo, uniformly on compact subsets of D. Like in the proof of
Theorem 5.4, consider 7 C N and F in the case A = £ ({Vn}tn>0). If A = A>®(p), just
put 7 = Nand F' = A. For A = A®(p) put MF = H*(D), for A = £ ({Vn}n>0) put
MF = F£>° = {f € Hol(D) : supgc,1 || F(fr)llo < o0}. The notion of index extends to
the linear topological spaces A.
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Now, for a countable index set N consider functions f, in Hol(D) of the type

fn:ZZkgm, neN.

s>1

Here kgl) = 0. If the sequences {kg")}szl, n > 1, grow sufficiently rapidly, then f, € A.
An argument like in [7] using estimates like that in the proof of Theorem 2.1 shows that

for sufficiently rapidly growing {kgn)}szl, B e T, the spaces

V=V{falnen) ={9=>_ fuhn € A:|lgllv = sup |[hn|mr < oo}
neN neN

(> _nen means here the sum in Hol(D) ) and Vo = V({zfn}nen) are weakly* closed in-
variant subspaces of A.

Indeed, we need only to verify that V and 2V are weakly™* sequentially closed. It is clear
that for some ¢ > 0, ¢®||gllv < c|lg|lr < ||lg]la, g € V. Furthermore, if @, = 3" s fnhnp €
V., |leplla < c1, and ¢, converge uniformly on compact subsets of the unit disc to a function
g € A, then ||g,llv < ca, ||hnpllMr < c2. Taking a subsequence {py} we can assume that
hp, p, converge uniformly on compact subsets of the unit disc to h, € MF, ||h,|mr < co.
As aresult, g =3 _ fnhn € V. The same argument works for V4 = Clos 2V

Now, clearly, fi € V, the vectors {fx + 2V} are independent in V/zV, {fr + 2V} ¢
Clos Licangiyifi + 2V}, k€ N, and

dim V/Vy = card V.

As a result we obtain the following statement. Let A be one of the spaces A (p),
% ({¥n}n>0), where ¢ and {7y, }n>0 satisfy, correspondingly, conditions of Theorem 2.2 (a)
and Theorem 5.4. Suppose that the space A is equipped with the weak* topology as
described above. Then A contains invariant subspaces of index n, 2 < n < 400, without
common zeros in the unit disc.

REMARK 6.5: The division property extends in the following way to deal with the case
ind £ > 1.

Let B be a Banach space of analytic functions in the unit disc, satisfying property (i)
(BSAF), and let the operators of multiplication by z — A, A € D, be bounded from below.
Take an invariant subspace E of B and a point A € D such that for some f € E, f(A) # 0.

Then ind £ <n, 1 <n < oo, if and only if for every fi,..., f, € F such that fr(\) =0,
1 <k <mn, there exist a1,... ,an, € C, Y 1<, |ax| > 0, such that

Z akfk € (Z — )\)E
1<k<n

PRrROOF: Put Ey = {f € E : f(\) = 0}. Clearly, (z — \)E C Ey C E, dimE/E, = 1.
Therefore dim E/(z — \)E < n <= dim Ey/(z — A\)E < n — 1. The last inequality means
just that there exists a nontrivial linear combination of fj belonging to (z — A\)E. 1
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REMARK 6.6: The space A>(y) considered in Theorem 2.2 (a) is non-separable. Let us
show that this space contains invariant subspaces E (without common zeros) with

dim(E/zE) = ¢, (6.1)

that is for every complete set {f,} er in E/zE, cardI' = ¢.

PrROOF: We begin with the space H* = A°°(1). One can easily produce a Blaschke
sequence {2k ;}ri>1, such that the points ; = limy_, 2 € T are dense on T, and the
Blaschke product B = [[ ;> bx,;, where the Blaschke factors by ; correspond to the points
2,1, satisfies the property7 a

|(B/bk7l)(zk,,)| Z 1/2, k,l Z 1.

Furthermore, one associates to every « € [0, 1] a subset S, of N such that for every finite

family ag,...,a, € [0,1], ag # a;, 1 < i < n,
card (Sao \ U Sai> = 00.
1<i<n
Put
B, = H bk,l; o€ [0, 1].
k>1,1EN\S,
Note that for every finite family «q, ..., a,, ag # a4, 1 < i < n, there exists a sequence of

natural numbers [, — 0o, p — oo, such that

|B(10(zk,lp)| Z 1/27 kap Z 17

6.2
|Bai(zk,lp)| =0, 1<i<n, kap > 1. ( )

We claim that E = V,cjo,1][Ba] satisfies property (6.1). Otherwise, we approximate
vectors f, by finite linear combinations of B,,

1y — ZaiBiHE/zE <e. (6.3)
iel

Denote by A(7,e) the intersection of all finite subsets I C [0, 1] such that inequality (6.3)
holds for some a;. Then for every v € ', the set A(y) = Ues0A(7,€) is at most countable.
Take a € [0,1] \ UyerA(7).

Suppose that there exists a finite linear combination of f,,, v; € I', 1 <7 < n, approxi-
mating B, in E/zE:

B — Z Cif'yiHE/zE <1/4.
1<i<n

Every f,, is approximated in E/zFE by finite linear combinations ) ¢; jBq, ;, s 7# a,
and as a result we get elements «; # a and coefficients a;, 1 < 4 < m, such that

|| Z Cif'n_ Z aiBOti

1<i<n 1<i<m

E/zE < 1/4.
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Finally, for a finite set of elements 3; # «, 1 <1 < s, and polynomials py, ... , ps we obtain

I(1+2po)Ba — D piBg,llu= < 1/2.
1<i<s

However, this inequality, relation (6.2) and the fact that 05 are dense on T imply that
II1 + zpo ||~ < 1 which is impossible.

A similar example of a subspace in H* of index 2 is given in [16, Example 3.11].

To deal with general A°°(¢) we need a function F' = > Z,, € A®(p) of the type used
in Remark 6.4: for a sequence r,, — 1, n — 00,

1/2 < |F(rne®)|/o(ry) <2, —m<0<m.

Then we repeat the previous construction with {z;} C Up>17,T, and consider E =
Vaepo,1j[Bat- 11

QUESTION 6.7: Using the construction of Remark 6.4, for every space A% (y) satisfying
the conditions of Theorem 2.2 (a) equipped with the weak* topology we can produce an
invariant subspace E = [f] V [g] of index 2 such that

Ipf + a9l a=(p) < lIPllg=~ + llgllg=~,  p,q€ H™.

Then F is a linear topological space of analytic functions in the unit disc having invariant
subspaces of indices 0, 1,2 only. It would be interesting to find a BSAF (rotation-invariant,
if possible) possessing invariant subspaces only up to index n, 2 < n < +oc.
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