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0. INTRODUCTION.

In this paper we deal with the following problem: when are the polynomials
complete in LP(u) spaces with discrete measures p on the real line? In the general
setting this problem was investigated by S. Bernstein and M. Riesz, and later
by N. Akhiezer, L. de Branges, L. Carleson, T. Hall, P. Malliavin, S. Mergelyan,
H. Pollard and many others (for an extensive discussion see survey papers [2, 17|
and the book [12, Chapter VI]). The particular problem we are interested in appears
when one deals with the indeterminate case of the Hamburger moment problem [3,
4, 5].

Consider a (positive Borel) measure p on the real line such that

/ [t]" du(t) < oo, n > 0.
R

We associate with this measure its moment sequence

sn:/t”d,u(t), n=0,1,2,....
R

The Hamburger moment problem consists in finding, given a sequence of numbers
{5n}n>0, a positive Borel measure p with moments s,,. If the solution is not unique
we say that the moment problem is indeterminate. Furthermore, measures p solving
such problems are called indeterminate (p € (indet)). In other words, for a measure
i to be indeterminate means that there exists another measure v, v # u, with the

same moments,

/t"d,u(t):/t"dy(t), n=20,1,2,....
R R
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Otherwise, the measure p is said to be determinate (p € (det)).

R. Nevanlinna described in [18] (see also [3, Sections 2.4, 3.2]) the set of all
solutions to an indeterminate moment problem. He parametrized this set using the

class (N) of functions ¢ holomorphic in the upper half-plane C; and such that
Imp(z) >0 for Imz > 0.

This class includes real constants, and we add formally the constant co function. As
a consequence of the Riesz—Herglotz formula, every function f in this class possesses

an integral representation (see, for instance, [3, Section 3.1])

f(z):az+b+/R<uiz - 1+uu2> dp(u), (0.1)

for z € C,., where a and b are real numbers, a > 0 and p is a positive Borel measure

such that
d
/ pw) _
R ]_ + uz

If f is extended to the lower half-plane C_ by f(z) = f(Z), z € C_, then formula
(0.1) holds for z € C\R. (Generally speaking, this is not an analytic continuation.)

For a fixed indeterminate moment problem there exists an entire matrix-function

(A(z) B(2)

) D(Z)>, AD — BC =1, (0.2)

whose elements A, B, C', and D are real entire functions (entire functions with real

coefficients) such that for every t € RU {o0},

C(z)t + D(z)
A+ Be) W)
The Nevanlinna formula
_ Ce(z) + D(z)
v(z,v) = A () T Bl2) p € N), (0.3)

gives a bijection between the class (N) and the set of the Stieltjes transforms

v(z,v) :/Rdy_(t)

t—z
of all the solutions to the indeterminate moment problem.

A solution p of an indeterminate moment problem is called canonical if it cor-

responds to ¢(z) =t, t € RU {oo}, in formula (0.3). Every canonical measure is a



WEIGHTED POLYNOMIAL APPROXIMATION 3

discrete measure with masses on the zero set of the corresponding entire function

A(z)t+ B(z),t € RU{o0}.

Canonical measures correspond to self-adjoint extensions (without extension of
space) of symmetric operators with indices (1,1) associated with Jacobi matrices,
see details in [3, Chapter 4]. These measures enjoy important extremal properties

(see, for example, [3, Theorem 3.4.1)).

Fix a canonical measure p. Since the matrix-functions

and
A(z) B(z) cosa  sina
C(z) D(z) —sina  cosa
correspond to the same indeterminate moment problem, without loss of generality

we can assume that the support of p coincides with the zero set of B. We denote

this zero set by Ag, Ap C R.

By a theorem of M. Riesz [3, Theorem 2.4.3], the elements of the matrix-function
(0.2) describing the solutions of an indeterminate moment problem are entire func-

tions of zero exponential type. Furthermore, we have
A" ne1 | D) 1
2 oy < 2 W \/ B'<A>\/ DVB N1+ )
ant2 DOV L 1]
<[ ()] {Z (o)) <m0

AEAB AEAB

Let us explain the last inequlaity. We consider the (positive) measure vy whose
Stieltjes transform is equal to —D/B € (N). Then the signs of B'(\) and D(A)
coincide for every A € Ap, and the sum of the series in the first square brackets
is just the moment of order 2n 4 2 of vy. Furthermore, we use that the function
f = —A/B belongs to the class (N), is meromorphic in the plane and has poles
only on the real line, hence A(A)/B’(\) > 0 and, as an immediate consequence of
formula (0.1),

AN
)\gA:B m <O, (04)

Since A(A)D(A\) =1, A € Ap, this gives us the convergence of the sum in the second

square brackets.
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Definition. The Hamburger class $ consists of all transcendental real entire func-
tions B of zero exponential type with only real (and simple) zeros Ap such that

A"

lim =0, n > 0.

IAl—=oo |B'(A)] -

AEAB

Without loss of generality, we always assume that the origin does not belong

to the zero set Ap. A Hamburger class function is uniquely determined (up to a

multiplicative constant) by its zero set.

Thus, entire functions involved in the Nevanlinna formula (0.3) belong to the

Hamburger class. Furthermore, if
p= Z [OYON
AEAB
is a canonical measure, where ) is the unit point mass measure at the point A,

_ by 1
=By T AnBy A

then the functions A and D can be reconstructed by formulas

Alz) _ AN 11 17 1 1 1
B(z) O‘ZJFﬁigBB'(,\) [A— P X}_ O‘z+5+A§BM[B'(,\)]2 [A— P X}’

%:fyz—i—é—l—z D,(’\)L—fyzﬂwz

_ X
B(z) AeABB(A))\_Z A ’

A—2z

where a,y >0, 3,0 € R. Estimate (0.4) ensures here that

1
2o B <

In 1944, Hamburger claimed the following statement to be true.

Statement (Hamburger [11], [3, Addenda and Problems to Chapter 4]). A positive
measure (1 1S a canonical solution to an indeterminate moment problem if and only

for some function B € $ we have

i) p= Z PAON; Z A"pn <00, n >0,
AEAB AEAB

.. 1
© 2 mmwpaee <>

1
(iii) Z PTG = +o0.
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In particular, for masses uy = [B'(\)]72, A € Ap, conditions (i)-(iii) are fulfilled,
and as a result, the zero set Ap of an arbitrary entire functions in $) should be the

support of a canonical measure.

In 1989, a gap in the proof of Hamburger’s Statement was found by Berg and
Pedersen. Soon Koosis [13] constructed a counterexample to Hamburger’s State-

ment.

What was the source of Hamburger’s mistake? We have already pointed out
that if p is a canonical measure, then conditions (i) and (ii) should hold. On the
other hand, if i is a measure satisfying conditions (i) and (ii), then p € (indet), see
[3, Addenda and Problems to Chapter 4, Lemma 2|. Furthermore, a well-known
theorem by M. Riesz [3, Sections 2.3, 2.4], claims that the following conditions are

equivalent:

(a) The space of polynomials P is dense in L?(u),
Clos r2()P = L*(w). (0.5)

(b) Either pu € (det) or u is a canonical measure.

Thus, a measure y is canonical if and only if conditions (i) and (ii) are fulfilled
together with (0.5). Hamburger believed that when conditions (i) and (ii) are
fulfilled, condition (iii) is necessary and sufficient for completeness of polynomials in
L?(1). Tt is indeed necessary. Consider a function ¢ defined by ¢()\) = [uxB’(\)] 71,
AeAg. If

1
2 W BOE <™

AEAB

then the function c is an element of L?(1), and it is orthogonal to P:

> eWp(W)pr = P()

!/
AEAB AEAB B ()\)

=0, Vp e P

(the last equality follows directly from the definition of the Hamburger class, see
e.g. [3, Addenda and Problems to Chapter IV, Lemma 1] or [19, p.298]).

However, condition (iii) is not sufficient for completeness of polynomials. In

[13], an entire function B € $) is constructed such that for the measure p =

ZAEAB [B'(A\)] 7205,
Clos L2(u)P 75 LZ(,u),

and hence, p is not canonical.

The above described situation was the reason for writing this paper. Here we

consider the following problem.
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Problem. Let B€ $H, 1 <p < oo, and let y = ZAEAB 10y be a positive measure
such that P C LP(u). When is

Clos LP(M)P = Lp(,u)?

In Section 1 we give a solution to this Problem and obtain a correct version of
Hamburger’s statement, and in Section 2 we discuss relations to de Branges spaces

of entire functions.

1. AN [P-COUNTERPART OF DE BRANGES’

SOLUTION TO THE BERNSTEIN PROBLEM.

Fix B € . Let us consider a function w on the zero set of B such that w(A) > 0,

lim |[A|"w(X) =0, n > 0.
[A]| =00
AEAB

We introduce the Banach spaces ¢P(w), 1 < p < oo, of functions a on Ap, with

norm

lallfy iy = 3 laWPlw(NIP.

AEAB

Theorem A. The polynomials are dense in ¢P(w) if and only if for every function

F € $ such that Ap C Ap, we have forp > 1

Z 1 p/(p—1)
= +o00, (1.1)
2 [wuE M)
and forp=1,
lim inf F'(A)w(\) = 0. (1.2)
[A] =00
AEAFR

As the limit case for p = 400 one can consider the space ¢o(w) of functions a on
Ap such that
lim |a(A)jw(A) =0,
[A] =00
AEAB
with norm

lallcow) = sup [a(A)w(A).

€EAB

In this case (1.1) is to be replaced by

1
2 LoEm -

AEAFR
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This is a special case of a remarkable theorem by de Branges [6, 12] which gives one
of the solutions of the Bernstein problem on weighted polynomial approximation
(see, for instance, [12]). The original proof of (the general case of) de Branges’ theo-
rem uses extensively geometric properties of the dual space to co(w). Another proof
found recently [21] uses the ideas which go back to P. Chebyshev and A. Markov.
None of these proofs seems work for the spaces ¢P(w). However, in the special case
under consideration, when the weight is defined on the zero set of a function in the
class 9, the polynomial approximation problem in the spaces /P (w) can be reduced

to that in the space co(w). The details of the proof will appear elsewhere.

Corollary 1.1. To make Hamburger’s Statement correct, condition (iii) should be

replaced by the following condition:
(iii") for every F € $ such that Ap C Ap, we have

1
2 = T

ANEAFR

Corollary 1.2. Ifv is a canonical solution to an indeterminate moment problem,
B € $, suppv = Ap, then the measure =55 [B'(A)] 7205 is also a canonical

solution to an indeterminate moment problem.

Proof. If p is not a canonical solution to an indeterminate moment problem, then

by Corollary 1.1 for some divisor F' € $) of B we have
3 ‘B’(A) ‘2
AEAR PV(A)

Clearly, B/F is not a constant function. Pick a zero w of B/F and consider

Fo(2) = F(2)(z —w). If v = )75 cp, Va0x is a canonical solution, then by condition

(ii) of Hamburger’s Statement, for some C' we have

1
— < C[B"W)A(1+X?).
Ux
Now,
(A)|2 1+ A2
ZVA[F' CZ‘F’)\ A—wp =%
AEAFR AEAR

and again by Corollary 1.1 we obtain that v cannot be a canonical solution to an

indeterminate moment problem.

Thus, Koosis” example [13] shows that there are B € § for which no canonical

measure j exists with supp g = Ap. This implies, in particular, that not every
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function in $ can be an element of a matrix-function in (0.2) parametrizing the set
of solutions for an indeterminate moment problem. Our discussion from Introduc-
tion shows that the description of canonical solutions to the Hamburger moment
problem and the description of the first row of Nevanlinna matrices parametrizing
all solutions are basically equivalent problems. It is worth to mention that Krein
[14] and de Branges [7, Chapter 2| described (in different terms) the first row of an

arbitrary Nevanlinna matrix, see also [20].

To apply Theorem A one needs to verify condition (1.1) (or (1.2)) for a rather
large family of “Hamburger divisors” F'. Nevertheless, we show below that it can be
efficiently applied (compare with recent applications [19] of the original de Branges

theorem).

In a recent paper [8], Fryntov considered the situation when Ap C Ry is an
(R)-set in the sense of Levin [15, Section 2.1]: for the counting function n of the

set Ap the following limit exists
0 <A< oo, 0<p<l1/2,
and the following separation condition is fulfilled,

A= XN|>CM\ P, AN €A, M£EN.

Then the function B is of completely regular growth in the sense of Levin—Pfluger,

and the following limit exists

log |B'(A
lim M =7A cotmp > 0.
A—00 AP
AEAB

Therefore, in this case B € §).

Theorem (Fryntov [8]). For the entire function B described above,

1
2 .
ClOSp(‘BlI‘)Pzg (| /|),

i.e. the measure pu =Y \cp [B'(N\)]720x is a canonical solution to the corresponding

indeterminate moment problem.

A similar situation was considered by H. Hamburger in [11], where he produced a
false statement. A correct formulation (without proof) is contained in [3, Addenda

and Problems to Chapter 4, Subsection 5] where the credit is given to B. Ya.Levin.
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However, the late Professor Levin told the second-named author that in his proof
he had used the Hamburger statement (see above). Fryntov’s proof of this theorem
was rather ingenious and involved. We show that Fryntov’s result follows easily

from Theorem A.

Sketch of the proof. Let B be the same function as in the Fryntov theorem and
let F' be a “Hamburger divisor” of B: i.e. F belongs to the Hamburger class and
Ar C Ap. Assume that

< +00. (1.3)

Then, for some positive constants cg, cq
|[F'(A\)| > co|B'(A\)| > crexp[(c—¢)N], A€ Ap, c=7A cotmp=hg(0), ¢ >0,

where hp is the Phragmén-Lindelof indicator of B. This inequality yields a lower
bound for F' on a sequence of circles. Making use of an elementary property of
canonical products of genus zero with positive zeros and then the Harnack inequal-

ity, we obtain that there is a sequence r,, — +o0o such that
|F(rpe®)| > |F(rn)| > coexp[(c —e)rP], ¢ >0. (1.4)

Now, we show that this last estimate yields a lower bound for F' everywhere in the
complex plane outside small exceptional discs around Ap. Let H be an arbitrary
entire function of completely regular growth in the Levin-Pfluger sense (with re-
spect to the same order p) with the constant Phragmén-Lindel6f indicator function

hg(0) = ¢ — 2e. Then we consider the sequence of integrals

1 H(¢) _d¢

2mi Ji¢jzr, F(C) 2—¢

(the integrals converge to zero because of (1.4) and the choice of H(z)), and the

— 0, n — 00

residue theorem yields the Lagrange interpolation formula

H(z) _ H()
o)~ 2 POV N

Hence,

<03

H(z)
F(z)
outside exceptional discs {z : |z — A\| < 1}, A € Ap. The entire function G = B/F

is of finite type with respect to order p, and has an upper bound

@‘ < Ceexpl(hp(0) + 3¢ — hp(0))r?], 2z =re?
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(by the maximum principle, the last estimate holds also inside the exceptional

discs). Thus, hg(0) < 0. Since p < 1/2, G has zero type with respect to order p.

Let us recall that G is bounded on Ap. Therefore, we can use an argument due
to Ganapathy Iyer. The Lagrange interpolation formula applies to G and B for

every integer n > 1:

G"(z) _ G"() .
B~ 2 BG-n SO\

This formula implies that GG is bounded on the whole complex plane, and, as a

consequence, G is a constant function. This contradicts to the assumption (1.3).

2. COMPLETENESS OF POLYNOMIALS IN THE

DE BRANGES SPACES OF ENTIRE FUNCTIONS.

Consider an entire function F in the Hermite-Biehler class (see [15, Chapter 7]),
that is |E(z + iy)| > |E(x —iy)|, y > 0, and E(z) # 0, z € R Equivalently, if
E = A —iB, where A and B are real entire functions, then B/A € (N), and the

functions A and B have no common zeros on R.

Then the corresponding de Branges space H(E) [7] consists of all entire functions
F such that F/E,F*/E € H}. Here F*(z) = F(z), and H3 are the Hardy spaces
correspondingly in the upper and the lower half-planes C.. Equipped with the

inner product
—— dt
F = | F(t)G(t)——

H(E) becomes a Hilbert space. Note that the point evaluation functionals F' —
F(z), z € C, are continuous on H(E). An equivalent definition of this space is

given by the orthogonal expansion
L*(|E|™®) = E*H? @ H(E) ® EH?,
obtained earlier in a special case by Akhiezer [1].

If E, = e'®E, 0 < a < 27, then the spaces H(E,) coincide, and it is easily seen
that the function Acosa + Bsina can belong to L2(|E|~2) for at most one value
of a. From now on let us assume that the function B does not belong to the space

We consider the system of functions
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Theorem (de Branges [7, Theorem 22]). The system of functions {®x(z)}rxers 1S

an orthonormal basis in the space H(E).

The expansion of a function F' € H(E) by this system is given by the Lagrange

interpolation series,

BB B B g

AEAB AEAB AEAB

and

A€EAB AEAB
= > [F)Pur= ||F||L2(u) (2.1)
AEAB
T
where p1 = Z BAOX, fix = m

AEAB
Since —A/B € N, we have

Z AN 1 -
2 SO0
el B'(A) 1+ X

that is

1
g/\:B px[B'(N)]2(1 4 A2%) < 0 (2.2)

This is just condition (ii) in Hamburger’s Statement.
Assuming additionally that E is of zero exponential type and P C H(FE), we

obtain that both functions A and B belong to the Hamburger class $. Indeed, as
a consequence of (2.1), P C L?*(u), and thus

)\n
> Wrm=r ¥ o ' D <. m0. 2.3)
AEAB AEAB

Therefore, like in Introduction, the Cauchy—Schwarz—Bunyakovskii inequality ap-
plied to (2.2) and (2.3) gives us that

Z |B’ 00, n > 0.

AEAB
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Now let us move in the opposite direction. We begin with a function B € $
and a measure p satisfying condition (ii) in Hamburger’s Statement. Define a real

entire function A by the equality

Az) _ 1 11
B =" 2 mBOP [A—z A]’ 24

AEAB

and put E(z) = A(z)—iB(z). The argument in the proof of de Branges’ Theorem 22
permits us to verify that B ¢ H(E) with this choice of A.

If c € L?(u), then the Lagrange series

er B'(A\) z—A
S A(N) B(z)
= Z C)\ = Z Cx ,UA(I)A(Z)7
2 NANBW N\ 7B 2 x T e A
is norm convergent in the space H(E), and ||F||3_L(E) = ||C||%2(N)-

As a result, we obtain that the restriction operator F — F‘ Ap gives an isomet-
ric isomorphism between the spaces H(F) and L?(u) which preserves polynomials.
Therefore, the properties Clos p2(,)P = L?(p) and Clos nE)P = H(E) hold si-
multaneously, and the main problem discussed in our paper can be reformulated as

follows:

Problem. Let E be an entire function of zero exponential type with no zeros in

the closed upper half-plane such that

t"
r [E()[?

dt < oo, n=0,1,2,....

(Then E belongs to the Hermite-Biehler class.) What additional conditions on E
tmply that
ClOSH(E)'P - H(E) ?

This problem was investigated by Akhiezer [1] and V. P. Gurarii [9]. Akhiezer
proved that the polynomials are complete when the zeros of E belong to a half-strip
{# : |[Rez| < h, Imz < 0}. His result was improved by Gurarii who proved the
completeness of the polynomials when E is an even entire function of convergence

class,
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with zeros in the angle {z : —37/4 < argz < —m/4}.

It is worth to note that for =7, [B'(A)]7?0x, B € ), we have E = B'—iB.

In this situation, if the zeros of B have zero uniform density,

sup card {Ag N[z — r,z + 1]} = o(r), T — 00,

zER
then a simple estimate of the imaginary part of the logarithmic derivative of B
(which (the imaginary part) equals to just 7 times the Poisson integral of the

measure ) |, cp, 0x) demonstrates that

B/(Hiy)H:O_

lim su Im -
: ‘ {B<x+ i)

ly| =00 —co<z <00

Therefore, in this case the zeros of E lie in a strip {z : —h < Imz < 0}.

The Koosis counterexample shows that in the general situation the polynomials
are no longer automatically complete in H(F) (it is clear from [9, p.449] that Levin
and Gurarii were aware of this already in 1962, however, they did not observe a
relation of this fact to Hamburger’s Statement). Theorem A gives a criterion for
polynomials to be complete in #(E). It looks plausible that a more natural criterion
(and hence another form of Hamburger’s Statement) could be obtained in terms of

E instead of B and pu.

It is worth to mention that Hamburger’s condition (iii) means that the sequence
{A(XN)}ren, does not belong to the space L2(u), and therefore H(E) does not
contain any linear combination (with complex coefficients) A + BB. A result of
de Branges ([7, Theorem 29]) implies now that the operator of multiplication by z
is densely defined in H(E). The corresponding reformulation of our condition (iii’)
permits us to produce the following result: the polynomials are dense in H(E),
E = A —iB, if and only if for each Hamburger divisor By of B the operator of
multiplication by z is densely defined in the space H(Aog — iBy) where Ay is defined
by By and p|Ap, like in (2.4).

Unfortunately, we were unable to find a reasonable interpretation of Hamburger
divisors of B in the framework of de Branges’ theory of Hilbert spaces of entire

functions.
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