On weighted polynomial approximation with monotone weights

ALEXANDER BORICHEV

Abstract. We construct an even weight W monotone on the right half line such that the
logarithmic integral of the largest log-convex minorant of W converges and the polynomials
are dense in C(W).

The problem of weighted polynomial approximation posed by S. Bernstein in 1924 [2] is
formulated as follows. Given a weight, that is a lower semi-continuous function W : R —
[1, +00] such that lim ;o " /W(x) = 0, n > 0, consider the space C'(W) consisting of
all functions f continuous on R such that lim|,_,o f(2)/W (z) = 0. Identifying elements
in C'(W) that coincide on the set {z € R : W(x) = +oo} and equipping C(W) with
the norm || f|| = sup,er |f(x)/W (x)|, we get a separable Banach space. The set P of all
polynomials is a subset of C'(W). The weighted polynomial approximation problem is to
find out whether the polynomials are dense in C(W).

Note that if W, Wy are weights, W < Wy, and Clos ¢(w)P = C(W), then Clos ¢(w,)P =
C(W1). Furthermore, if W : R — [1,400] is an arbitrary function, and Wy is its lower
semicontinuous regularization, Wy(z) = liminf;_,, W(t), then for every continuous f,
sup,er | f(2)/W ()| = sup,eg | f(2)/Wo(x)|. Thus, in fact, the lower semicontinuity con-
dition on W is not a genuine restriction.

Two (essentially different) solutions to the Bernstein problem were proposed by S. Merge-
lyan, N. Ahiezer—S. Bernstein and H. Pollard in 1953-1954 and by L. de Branges in 1959
[3]; for more information on the history of the Bernstein problem and related matters see
(1], [9], [8], Chapter VI.

THEOREM A (S. Mergelyan [9]). The polynomials are dense in C'(W) if and only if

/°° log W*(z)

21 dxr = 400,

where W*(x) = sup{|P(z)|: P € P, |P(t)| < ([t| + )W (t), t € R}.

THEOREM B (L. de Branges [3]). The polynomials are not dense in C'(W) if and only if
there exists an entire function F' of zero exponential type, F' ¢ P, with simple real zeros
A g, such that

W (\)
2 ) <t

The weight W is assumed to be continuous in the original formulation [3]; however, the
result holds for lower semicontinuous W as well, see [10].

The criteria on W in Theorems A and B are not completely explicit. That is why it
is rather natural to seek for simple necessary (sufficient) conditions for the density of the
polynomials. In this direction we mention two results. The first one is contained in a 1937
paper [7] by S. Izumi and T. Kawata. Later on, several authors obtained this result in
different forms.
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THEOREM C. If W is even, log W (expx) is a convex function, and

/°° log W (x)

1 dx = 400,

—00

then the polynomials are dense in C(W).

THEOREM D (T. Hall [5]). If
1

/ w dx < 400,
oo TH1

then the polynomials are not dense in C(W).

Given an even weight W consider its largest (even) log-convex minorant W,
log W(expx) =sup{azr +b:a,beR at+b<logWi(expt), t € R}.

Theorems C and D solve the Bernstein problem for even weights W unless

dx = +o0, dx < +oo. (1)

/Oo log W ()

2+ 1

/Oo log W(az)

oo P |

T. Hall conjectured in [5] that in the case (1), the polynomials are not dense in C'(W);
L. Carleson produced in [4] a counter-example to this conjecture.

Let us present a version of this example based on (the simple part of) Theorem B. We
start with an entire function B of zero exponential type, B(z) = [[,>(1 — 272"2%). A
simple calculation (see [8], p.166) shows that |B/(£2")| ~ C -27"(=2) n — oo, and,
hence,

lim 27%"| B’ (+£2")| = oo, k < oo, (2)
n—o0

lim 27" log |B'(£2")| = 0, e > 0. (3)
n— oo

Furthermore, for every divisor F' of B represented by the canonical product of genus zero
with zero set Ap,

[F' (N < e(F)B'(M], A€ Ap. (4)
Set W(z) = |B'(z)| if z = £2", n > 0, W(x) = 400 otherwise. By (2), W is a weight. By
(3), limyz| o0 |2| "¢ log W (x) = 0, € > 0, and as a consequence, we get the second relation

in (1). To verify that the polynomials are dense in C (W), note that for every divisor F' of
B such that F' ¢ P we have by (4),

W) 1 B
2 ] 2 qm 2 B
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By Theorem B we obtain that the polynomials are dense, and the first relation in (1)
follows from Theorem D.

In this example the weight W behaves rather irregularly; it is a natural question whether
the polynomials are dense in C'(W) if an even weight W is non-decreasing for > 0, and
relations (1) hold.

A weight W satisfying these conditions and such that the polynomials are not dense in
C(W) is given in [8], Section VII.A.4. (Essentially, this W is equal to exp zj on (zx, Tgt1]
for sufficiently rapidly growing xy).

The aim of our note is to prove the following result.

THEOREM 1. There exists an even weight W increasing on the positive half-line and
satisfying relations (1) such that the polynomials are dense in C(W).

An elementary argument reduces our problem to that of finding a weight Wy increasing
on [0, 4+00) and equal to 400 on (—o0,0) such that

dx < +o0, (5)

/00 log W1 (z)

23/2

and the polynomials are dense in C'(W1). Indeed, (5) implies the second relation in (1) for
W (z) = (Jz| + 1)W1(2?). Suppose that the polynomials are not dense in C(W), that is
(L,P) =0 for some L € C(W)*\ {0}. Define Ly € C(W1)* by (L, f) = (L, x — f(z?)),
(L_, fY=(L,z — xf(x?)), and get (Ly,P) = 0. As the set C§° of infinitely differentiable
functions with finite support is dense is C(W), and every g € C§° is a sum of h(z?)
and xhy(2?) for some h,h; € C§°, so at least one of Ly is different from 0. Thus, the
polynomials would not be dense in C'(W7). This contradiction shows that the polynomials
are dense in C(W), and by Theorem D, we get the first relation in (1).

Given a function ¢ vanishing on (—o0,0] and increasing on [0,+00), denote by @ its
largest convex minorant, and by ¢ the Mergelyan majorant, o™ (t) = sup{log |P(expt)] :
P e P, log|P(expz)| < ¢(z), z € R}.

THEOREM 2. There exists a function ¢ vanishing on (—oo, 0] and increasing on the positive
half-line such that lim;_, o, @(t)/t = oo,

/0 @(t)e ' 2dt < 400, /0 oM (t)e t2dt = +oo. (6)

In other words, the functions log | P(expt)| approximate ¢ below much better than linear
functions do.

Starting with this ¢, we define Wi (z) = (x+1) exp p(logz), z > 0, Wi(z) = 400, x < 0.
Then Wi (z) > exp o™ (logz), Wi(z) < 2z exp @(logz), > 1. Therefore, the first of the
relations (6) implies inequality (5), and the second one, via Theorem A, implies that the
polynomials are dense in C'(W7). Thus, Theorem 1 follows from Theorem 2.

3



LEMMA. For every A > 0, ¢ > 0 there exist B < oo and a non-decreasing function 1
vanishing on (—oo, A] and linear on [B, +00) such that limy_, o 1 (t)/t > 1,

B
/ (Row)™ (t)e™t/2dt > 1,

A

B
/ Pp)(t)e t?dt < e,
A

/ Y(t)e t2dt < e,
B

where (Ppy)(t) = ¢(t) for t < B, (Ppy)(t) = +oo fort > B, (Rpy)(t) = ¢(t) +
L max(t, 1), for some constant L to be fixed below.

PROOF OF THEOREM 2: Applying Lemma with Ay = 0, ¢g = 1 we construct By, .
Then in an induction process we set Ay = Bjy_1, €, = 27" and using Lemma construct
Bk, ’Q/}k, k Z 1. Put

p(t) => () + Lmax(t,0), teR

k>0
Then

M () > Reyp)™(t) — L, Ap <t < gy,

B(t) < > y(t) + Pp ve(t) + Lt, Ap <t < Ay,
0<j<k
lim inf 20 > im P8 Sk ks
t— o0 t t— o0 t
0<j<k

Therefore,

t sy >
lim o) _ 0, / G(t)e™t2dt < +o0, / oM(t)e ™t 2dt = +o00. 11
0 0

t—oo t

PROOF OF LEMMA: We are going to find numbers D,G, B, 4A < 2D < B/2< G < B, a
non-decreasing function ¢ that vanishes on (—oo, A], is a constant on (A, G|, and is linear
on [B,+c0), and a function

() = / log [e*~* — 1]du(1),

where v is a finite positive measure with support on [A, B], dv/dt < Set/? for some constant
S that does not depend on A and ¢, such that

(i) hy(z) <¢(x), z>0.
i )>e®/?t D<x<D+1.



A standard argument permits us to produce a measure p equal to a finite sum of positive
integer point masses, supp p C [A, B], such that the function h,(z) = [log|e® ™" —1|du(t)
approximates h,:

hy(xz) — hy(z) < Lmax(z, 1), z >0, (7)
hy(z) — hy(z) < Lmax(z,1), z €[0,+00) \ E, (8)

where L depends only on S, |E| < 1/2. The function P(z) = exp h,(logz) is a polynomial,
|P(z)] < 1,0 <z < 1, and the assertions of the lemma follow from estimates (i)—(v) if
D > Dy(L), exp(Dy(L)/2) = 10L(Dy(L) + 1).

One way to get u is to define p(—oo,z] to be equal to the integral part of v(—oo,z],
x € R, and to use the estimates for the Kjellberg-Kennedy-Katifi approximation method
given in [6], Section 10.5.3. Alternatively, we may use the Yulmuhametov approximation
technique ([11], Theorem 2). As a result, the function ¥ = (h, — h,) o log extended
harmonically to C\ [A, B], satisfies the estimate |Y(2)| < K log(|z| + 1), z € C\ &, where
£ is an exceptional set consisting of disjoint discs with finite sum of radii. This gives us
(8). Since dv/dt < Set/?, the function Y (z) + S|Im z| is subharmonic in the plane, and,
applying the maximum principle to this function, we get (7).

In our construction we use some properties of a function r € C(R) N C1(R\ {0}),

r(z) = / log |ef — 1|e~t/2dt, z eR

The function r increases on (—oc,log?2] and decreases on [log2,+00), r' € L}(R). An
elementary calculation using integration by parts shows that

1 (e.0)
- / log ¢! — 1]e™/2dt = 0,
2 )
and, as a consequence, we have lim,_, 1, () = 0. Therefore,
X
r(z) = —/ log |ef — 1|e~*/2dt, r eR,

—00

r is strictly positive on R, and for some @ > 1,

1
aew/z <r(z) < Qe™/?, x <0,

z+1

e~ % <r(z) < Q(z + 1)e” /2, x> 0.
For some D, B to be fixed below, 84 < 4D < B, put

dv(t) = e"/*[10Qx(a,py(¢) 2,5 (t)] dt.

L&
20Q X



Then

r—2D
hy,(z) = m/Z 10Q/ log |e! — 1]et2dt + — 20Q log e’ — 1|e_t/2dt] =
/2 c T— 2D .
P 1 < —
OQ/ Dt + 505 r(t) dt]
e?/? [—10Qr(x — A)+10Qr(z — D) — mr(m —2D) + mr(m - B)]

Using the properties of r formulated above we get

h,(z) <0, 0<z<A,
hl,(a:)Zew/ZJrl, D<z<D+1,
h,(z) <0, (5/3)D <z < B/2,

£ ev=B/2 B/2 < x < B,

r— B+1)eB/?, x> B,

hy,(z) < Lr(:): — B)e®/? < { 20(

it D—2A>¢(Q), B—4D > ¢(Q). Put

H =10Qe"/? — D) —r(z— A) > hy ().
O ey TP T T AN 2 )
From now on we fix B and D such that D — 24 > ¢(Q), B — 4D > ¢(Q), B > 10H /¢,

eeB/2 > 20B, D > Dy(L). Define G by the equality (¢/20)e¥~B/2 = H. Then B/2 < G <
B. Put

0, r< A,
H, A<z <d(,
V= ewbr Gou<n,

£ (z— B+1)eP/? r > B.

We have already verified inequalities (i) and (ii). Inequality (v) follows from our assumption
eeB/2 > 20B. Inequality (iii) is proved as follows:

P(G)=H< —=B<

It remains to note that

© [/ el B)/zdx—l—/ (x — B+1)eB=9/24g| <
20 5

The lemma is proved.

REMARK: A simple modification of our argument permits us to produce continuous W
satisfying the conditions of Theorem 1.

The author thanks Mikhail Sodin for numerous helpful discussions.
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