AN ACCESS THEOREM FOR CONTINUOUS
FUNCTIONS

ALEXANDER BORICHEV, IGOR KLESCHEVICH

ABSTRACT. Let f be a continuous function on an open subset {2
of R? such that for every z € (Q there exists a continuous map
v :[—1,1] = Q with v(0) = 2 and f o+ increasing on [—1,1]. Then
for every y € Q there exists a continuous map = : [0,1) — § such
that v(0) =y, f oy is increasing on [0, 1), and for every compact
subset K of Q, max{t: v(t) € K} < 1. This result gives an answer
to a question posed by M. Ortel. Furthermore, an example shows
that this result is not valid in higher dimensions.

1. INTRODUCTION

The following statement is part of a theorem, due to W. K. Hayman
and M. Ortel, on the topological properties of real analytic functions
[9].

Theorem A. Suppose that f is analytic on an open subset 2 of R",
and every x € Q is an f1 point, that is there exists a continuous map
v [0,1] = Q with v(0) = z and f o~y (strictly) increasing on [0, 1].
Then for every y € Q there exists a continuous map v : [0,1) — Q
such that v(0) =y, f oy is increasing on [0,1), and for every compact
subset K of Q, max{t: y(t) € K} < 1.

Ortel calls this statement an access theorem by analogy with a similar
result on subharmonic functions given in [4], Section 10.3 (see also
[6]). It seems natural to ask whether these results do actually depend
on analyticity (subharmonicity) of the functions under consideration,
or they are valid just for continuous functions satisfying certain local
properties. In other words, how different are the asymptotical behavior
of (real) analytic functions and that of continuous functions? For a
somewhat similar situation see [2].

An example constructed by Ortel [8] shows that Theorem A does
not extend to C*-smooth functions even for n = 2, QO = R%2. However,
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in his example the set of f| points is not connected. A point x €  is
an fJ point if there exists a continuous map v : [0,1] — Q such that
v(0) = z, and f oy decreases on [0,1]. The following question was
posed in [8]: whether the claim of Theorem A holds for f € C*®(R?),
with the additional condition that all the points in R? are f| points?

In our paper we answer this question in the positive for functions
which are just continuous on (open) subsets of R? (Theorem 1). Fur-
thermore, we show (Theorem 2) that the answer to Ortel’s question is
negative in higher dimensions.

NOTATION: Given a function f continuous on a subset €2 of R” and
an interval I on R we use the following terminology (cf. [9]).

(a) A continuous map 7 : I — Qis an (f) path if f o~ is increasing
on [.

(b) A continuous map 7 : I — Q is a weak (f) path if f o~ is non-
decreasing on 1.

(c) For a map v : I — €, denote by ~(I) the image of ~,

Clusterq () = m Clos v(I \ K),
K Q

where the intersection is taken by all the compact subintervals K
of I.

(d) For z € R" denote |z| = dist (0,x). For 6 > 0 denote

D(I,(S) :{yGRZ : |ZE—y| <6}7 B(ZE,(S) :{y€R3 : |ZE—y| <6}7

T={zeR:|z|=1}.

(e) Denote by 9, (f, Q) the set of x € Q such that there exists an
(f) path 7 : [—1,1] = Q with 7(F1) = 23 M, Q) = M, (£,2) N
M (f,9).

2. AN ACCESS THEOREM

Theorem 1. Let Q be an open subset of R%, and let f € C(Q), Q =
M(f,Q2). Then for every y € Q there exists an (f) path v :[0,1) —
such that v(0) =y, and Clusterg (v) = 0.

Proof. Fix yo =y € €2, and consider

co = sup{ f(v(1)) = f(uo),
where 7 : [0,1] — Q are (f) paths with v(0) =y} > 0.
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Then, pick an (f) path v such that v(0) = yo, f(70(1)) — f(y0) >
min{1, ¢y/2}, and put y; = 70(1). We repeat this procedure:

cp = sup{f(v(1)) = f(we),
where 7 : [0, 1] — Q are (f) paths with v(0) =y} >0, (2.1)

vk is an (f) path such that
7(0) = yr, f((1)) = flye) > minfl, ¢ /2},

Y1 = Ye(1), k>1.
The concatenation of v is an (f) path v : [0,00) = Q, v(k + s) =
Y(s), k € Zy, 0 < s < 1. There are two possibilities: either (A)
I’ = Clusterq (y) =@ or (B) I' # () and

Jim F(3(1) = ¢ < . (2:2)

In case (A) the (f) path §, 6(x) = y(z/(1—x)), 0 < x < 1, gives the
conclusion of the theorem. Therefore, from now on we deal with case
(B). Then T is a non-empty closed set. Furthermore, condition (2.2)
implies that limg_,,, ¢z = 0.

Next we show that I" has more than one point. Indeed, if

Clusterq (v) = {z},

then lim, ,,, () = 2. Consider an (f) path v* : [0,1] — Q with
v*(0) = z. Now we take k such that ¢, < f(7*(1))— f(2), and construct
an (f) path 7,

YT e —1),  12<ae<l.

We have 7;(0) = vk, f(7i(1)) — f(yx) > cx, that contradicts to (2.1).

Since I' is connected, it intersects every suitably small circle centered
at one of its points. Hence, I' is uncountable. Furthermore, f is con-
stant on I', and without loss of generality we may assume f ‘F = 0.
For every z € T fix an (f) path 7, : [-1,1] — Q with ~,(0) = z.
Then there exist ¢ > 0 and an uncountable subset I'y C I'" such that
|f(72(£1))] > e, € T';. Therefore, by continuity of f, there exist
0 > 0 and an uncountable subset I'y C I'; such that for every x € I'y
and for every y € D(7y,(—1),0) U D(v.(1),0),

[F(W)l > e/2.

Finally, since I'y is uncountable, for some point u, with rational co-
ordinates the set I's = {x € T'y : uy € D(7,(1),6)} is uncountable,
and for some point u_ with rational coordinates the set I'y = {z €
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I3 :u_ € D(y,(—1),6)} is uncountable; we pick three different points
x1, Ty, 3 € ['y and get

ug € Ox =) D(ys,(£1),9).

i=1
Put K = K, UK_U{x, 29,23}, where
3 3
Ky = U(D(’ywi(l),&U’y:Bi(O, 1])7 K. = U(D(’Yﬂvi(_l)aé)u%ﬁi[_lv 0))
i=1 =1

The function f is positive on K, and negative on K . Now we show
that if ¢ < e, then v([k,00)) N7, ([—1,1]) = 0, i = 1,2,3. Indeed,
suppose that for some ¢ > k, —1 < s < 1 we have ~,,(s) = y(¢). Since
F (72, (s)) = f(7(t)) <0, we get s < 0. Consider the (f) path 7;:

‘() = {WH (t=k/(1-2), 0<z<1/2
T w2090 -, 12<a<t

Then 7(0) = e, FOF(1) > € > cx > cu + flge), and we get a
contradiction to (2.1).

Furthermore, if f(v(t)) > —¢/2, then v([t,00)) N D(74,(£1),d) = 0.
Thus, for some ty, v([to, 00)) N K = 0.

Since Oy are convex, there exist two points a,b € K and three
simple Jordan arcs §3; : [-1,1] — K, i = 1,2, 3, such that §;(—1) = a,
Bi(1) = b, ;(0) = z;, the sign of f(5;(t)) coincides with the sign of t,
tel-1,1,i=1,23

Denote by s; the minimal number s € (0,1] such that f(s) €
B2([0, 1])UB5([0, 1]). Without loss of generality we assume that 3;(s;) =
[a(s21) for some 0 < s9; < 1. Next, denote by s3 the minimal num-
ber s € (0,1] such that f5(s) € 32([0,1]). Clearly, the sets 3:([0, s1)),
B2([0,1]) and B3([0, s3)) are disjoint. There are three alternative pos-
sibilities: /63(83) = 62(823) for some 0 < S23 < So21, ﬁg(Sg) = 52(823) for
some sy1 < Sg3 < 1, B5(s3) = Ba(s21) = Bi(s1).

In the first case put o’ = f5(s3) and define

ﬁl( )_ ,61(28137), OS.Z‘Sl/Q,
2N 5o((2 = 20) 801 + (20 — D)sag),  1/2<a <1,
ﬁé(x) = ﬁ2(523$), ﬁil’)(x) = ﬁ3(831’), 0 S y S ]-7
In the second case put ¢’ = 31(s;) and define
B (x) = Bi(s1z), By(x) = Pa(sn), 0<xz<1,

Bl(z) = B5(2s3z), 0<z<1/2
3= 52((2—2]))823—{—(233—1)521)7 1/2§3§'§ 1,



AN ACCESS THEOREM FOR CONTINUOUS FUNCTIONS 5
In the third case put ' = 3;(s;) and define
Bi(z) = Bi(s1z), By(x) = Bolsm), Pi(x) = Ba(sx), 0<a <L

In all three cases, (3 : [0,1] — K are simple Jordan arcs, the point
a' is the only point of intersection of 5/([0, 1]), and f is strictly positive
on 3/((0,1]), ¢ = 1,2,3. In an analogous way we define b’ and £} on
[—1,0].

As a result, we get three simple Jordan arcs 3 : [-1,1] — K, such
that ((0) = x;, and the points d’,b" are the only points of intersection
of 5i([—1,1]). By the Jordan theorem (see [7, Chapter 10]),

R” \ (U B-1,1])) = Ui UL U U,

where U, U,, Us are disjoint connected open subsets of R?, and
aUz :ﬁ;([—l,l])Uﬁ;([—l,l]), {27]7 k}:{17273}

Since y([to, 00)) is connected and does not intersect K, it is a subset
of one of the sets Uy, Uy, Us, ¥([ty,0)) C U;. Then I' = Clusterq (7) C
Clos U;, ' Bi((—1,1)) = (), hence z; ¢ T, and we get a contradiction.
Thus, case (B) is impossible, and the theorem is proved. O

3. AN EXAMPLE

Our proof of Theorem 1 relies on the fact that the dimension of €2 is 2
(we use the Jordan theorem on the plane). That is why it is natural to
ask whether an analogous result holds for functions defined on domains
in R?. In the example by M. Ortel [8], where 2 = R?, no (f) path can
go through certain barriers consisting of points that are not f| points;
these barriers cut the plane into a union of bounded components. It
turns out that in the space R? a different kind of barriers may appear.
They are 2-dimensional surfaces in R®. For every such surface V the
complement R3 \ V is the union of two open disjoint domains V7,
0V, = 0V_ =V, such that no (f) path connects points in V_ and V,
and V. C M(f,VUV,).

Theorem 2. There exist a connected open proper subset Q of R®, and
a function f € C®(R®) such that Q = M(f,2), and for every x €
there exists a compact subset K(x) of 2 such that there are no weak
(f) paths v : [0,1] — Q with v(0) =z, v(1) € Q\ K(x).

To produce our example, we, like in [8], first define f on a thin subset
of €2, and then extend it piecewise harmonically. After that, we smooth
f up. We need several technical lemmas. The following statement is
contained in [9, pp. 2216-2217].
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Lemma 1. Let O be an open subset of R*, and let f be (real) analytic
on O. Suppose that x € O is not a point of local maximum of f. Then
there exists an (f) path 7 : [0,1] — O with v(0) = x.

We are going to use special domains in R? with smooth boundary. We
call a subset B of R® a pseudoball if for some £ > 0 there exists a C'*°-
smooth diffeomorphism ¢ from B(0,1+¢) to R® with ¢(B(0,1)) = B.

Let us consider the following situation. The boundary of an open
subset O of R® is a finite union of disjoint sets dB;, B; being pseu-
doballs. A function f is C*°-smooth on 0O (that is, it extends C*°-
smoothly to a neighborhood of 00).

Lemma 2. In this situation f extends harmonically to a function C*°-
smooth in Clos O.

This follows from standard results on boundary regularity of solu-
tions to elliptic equations. See, for example, [3, Theorem 8.14], [1,
Section 9, Theorem 9.9], [10, Chapter 27].

Let us consider the Dirichlet problem in a cylinder C' = {(z,y, 2) :
-1 <z < 1,y* + 2 < R?} with boundary values f satisfying the
following properties: f(£1,0,0) = 0, maxse | f| < 1,

1

sup ‘V; Zf(ﬂ:l,y,z)‘ < —, s=1,2. (3.1)
Y2422 < R2 ’ R

Then the solution F' to the Dirichlet problem satisfies the estimate

sup
—1l<z<1

ox

To verify this estimate we consider first the (bounded) solution Fj to
the Dirichlet problem in the half-space x < 1 with boundary values

f(]-a Y, Z)X{y2+z2<1},
1 1—x2)f(1
Fi(z,y,7) = 2_/ (L—a)f(L,y1,2)
TJupeztat [(1=a)2 + (g1 — )2 + (21 = 2)?]
Condition (3.1) implies that

2F(a:, 0, 0)‘ =o(1), R — oc. (3.2)

3/2 dyl le .

sup |Fi(z,y,2)| = o(1), R — 0. (3.3)
—l<a<l,y?+22<1
OF
sup | ——(z, 0,0)‘ =o(1), R— . (3.4)
0<z<1 Ox

Furthermore, elementary estimates of the harmonic measure in C' show
that

sup |F(z,y,2)| = o(1), R — oc. (3.5)

—1<z<l,y2+22<1
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The function F' — F vanishes on {(1,y,z2) : y*> + 2% < 1} and, conse-
quently, extends harmonically to {(z,y,2): —1 <z < 3,y*> + 22 < 1}.
Therefore, estimates (3.3) and (3.5) imply that

OF OF,

—(2,0,0) — —(2,0,0)| = o(1 R — oc. 3.6

S 15 (2,0,0) = ——(2,0,0)| = o(1), 00 (3.6)
Finally, estimates (3.4) and (3.6) together with analogous estimates for
—1 <z <0 give us (3.2).
As a consequence, after scaling, we get the following statement:

Lemma 3. For every ¢ > 0 there exists M () satisfying the following
property: if 6 > 0,

C = {(z,y,2) : x| <3/M(e),y* + 2* < §°},

and a function f harmonic in C and C?-smooth up to the boundary of
C satisfies the relations

Slép |fI <1, f(6/M(£),0,0) — f(=0/M(£),0,0) =,

sup ‘V;,zf(jzé/M(g),y,z)‘ <1, s=1,2,
y2+22<42
then
of
——(z,0,0) > 0, |z| < §/M(e).
ox
Given a point x € R®, a point v € R\ {0}, and a number § > 0,
denote by D(x,d,v) the disc of radius 0 centered at = that is contained
in the plane L C R?® such that x € L, L is orthogonal to the line Ro.
To describe the situation where we are going to apply the previous
lemma, we introduce the following notion. We say that two (disjoint)
pseudoballs By, B, are a-joined (by a cylinder C) at the points zq, xs
(x; € 0By, 1 =1,2), if |x; — 22| < a and for some § > M (a)|x; — z2|,

D(:lfi,(s,lﬁl—[ﬁg) coCcnoB;, i=1,2, Cﬂ(BlLJBQ) = 0.

Lemma 4. Suppose that the boundary of a pseudoball B contains three
disjoint discs D; = D(xj,8;,v;), j = 1,2,3, and a function f is defined
on {x1,x9, x5}, say f(xy) = f(z2) = 1, f(x3) = 0. Then [ extends
C*-smoothly to OB in such a way that 0 < f <1,

OB\ {z1,z2} C M, (f,0B), OB\ {z3} C M _(f,08),

IV*f| <1 on DY=D(z;,6;/2,v;), j=1,2,3, 5=1,2,
and there exist (f) paths vs1,7vs2 : [0,1] — OB such that v3;(0) = z3,
’)/3](1) = .I'j, j = 1,2



8 ALEXANDER BORICHEV, IGOR KLESCHEVICH

Proof. Consider a C*°-smooth diffeomorphism ® mapping 0B onto T'
such that

®(x1) = (V3/2,-1/2,0), ®(x5) = (—V/3/2,-1/2,0), ®(z3) = (0,1,0).

Define fy on T by fo(x,y,2) = 22 — (y + 1)%. Tt is immediately verified
that

T \ {(\/5/27 _1/27 0)? (_\/5/27 _1/270)} - m-l—(anT)a
T\{(O,l,())} C m,(fg,T),

and vy : [0,1] — T defined by v4(¢) = (£4/3t — (9t2/4),1-3t/2,0) are
(f()) paths. Put f1 = (2f0 od + 8)/9 Then f1 € C'OO(@B), 0 S f1 S ]_,
fi(zy) = fi(xe) =1, fi(z3) =0, =L o~ are (f,) paths.

To make the gradient small on D;-’, we use the maps

x; +v;(|z])z, x;+x€Dj,
ot o) {Tele, a e D,
T+, x; +x € 0B\ Dy,

where 1); are non-decreasing C*°-smooth functions on [0, co) with

o 0<1t<6./2
Py(t) = {i . 25,/3‘7/ (3.7)
) = 7/ 9

for sufficiently small e. Put f = f; o 1 0 g 0 3. By (3.7) we have
Vef|<lon DY j=1,23s=12 O

Fix an increasing function p : (1/2,3/2) — (1/2,3/2) such that
p € C=(1/2,3/2), p~' € C(1/2,3/2) N C>((1/2,3/2)\ {1}), p(z) = x
outside (3/4,5/4), p(1) =1, and p™(1) =0, n > 1.

Lemma 5. Let ¢ be a C*°-smooth diffeomorphism of the domain A =
{z eR®:1/2 < |z| < 3/2} onto a domain Q C R®. Denote I' = o(T).
Suppose that f is a function C*®-smooth on ¢(Clos B(0,1) N A) and
on p(A\ B(0,1)). Let F be defined on Q by the formula

F(o(ry)) = f(elp(r)y),  yeT, 1/2<r<3/2,
Then F € C*(Q), F|I' = f|T.

Proof. 1t is sufficient to prove that G = F o ¢ € C®(A). Denote
g=fop,ge C>®Clos B(0,1)NnA)NC>®(A\ B(0,1)). Since the map
U ry — p(r)y is a C*-smooth diffeomorphism from A\ 7" to A\ T,
we need only to verify that all the derivatives of g o ¥ are continuous
at T'. Fix a point z on T and consider a C'*°-smooth diffeomorphism A
of a neighborhood U of the point (1,0,0) € R?* onto a neighborhood of
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x such that A(1,0,0) =z, A(r,y, 2) = 1Ay, 2), Ay, 2) € T. We verify
that all the derivatives of g = go W o A are continuous in U as follows:

) o5 0 o 0

}}E%H;gx 8y5%91(rayaz) - aysﬁgl(l’y’z)‘ =0, s>0,1>0,
) ok o8 o
llj)qugx %a—ysﬁgl(rayaz)‘zoa k>0, s>0,t>0.

0

Lemma 6. Let f be a function continuous on Clos B(0,1) and C*°-
smooth on B(0,1), f|T = 0, f(B(0,1)) C [-1,1]. Then there ea-
ists a C'*°-smooth increasing function ¢ : [—1,1] — [=1,1] such that
Pp®(0) =0, k>0, and

1 o [ vanishes with all the derivatives at T, }

Yo feC™(Clos B(0,1)). (3.8)

Proof. Applying elementary rules for differentiating the composite func-
tion we obtain that the properties (3.8) hold if ¢ satisfies the system
of differential inequalities

W0 ()| <erlz),  0< [zl <27F k>0, (3.9)

where €5 are continuous functions determined by f, ex(z) > 0, z >
0, £ > 0. Furthermore, one can easily produce a solution to this
system of inequalities which is C*°-smooth and increasing on [—1,1].
For example, if h € C*°((0,00)), h(z) > 0 for z € (1/2,1), h(xz) =0
for x ¢ (1/2,1), positive numbers ¢, tend to 0 sufficiently rapidly,
$(0) =0,
Y(x) =) eah(2]]),
n>0

then 1 satisfies (3.9). O

Proof of Theorem 2. STEP A. Let us describe the plan of our construc-
tion. The difficult part (Steps B-D) is to define f on the set Clos O,

O = B(0,10) \ (Clos B(0,1) U Clos B(5e, 1)),

where e = (1,0,0), and to verify its properties there. The values of f
on 0O are as follows: f‘lOT =1, f‘T =0, f‘aB(E’)e,l) = —1. After
that, the simple part (Step E) is to extend f into R?.

We start (on Step B) with a locally finite family of pseudoballs B; in
O with disjoint closures, fix some points xfk and discs D(x]ik, 6jik, Uﬁ)
on their boundaries and prescribe the values of a function f; at these
points, fg(a:jk) > fo(7;,,). Furthermore, these points are grouped
into pairs (v}, 2,), fo(2;;,) < fo(2;,,) in such a way that Bj, B,, are
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(fo(zms) — fg(x;’k))—joined (by some cylinders Cjy,) at points z;, z
Every 0B; contains two or three of these points xjik

Using Lemma 4 (or its natural analog for two distinguished points)
we extend fj to a function f; € N;C*(0B;) such that

0B, \ {x},} C M, (£1,0B,), 9B, \ {aj} C M_(f1,9B,). (3.10)

ms*

Since the domains B;, O\ U, Clos B; satisfy the cone condition (see,
for example, [5, Theorem 2.11]), we can solve the Dirichlet problem
with boundary values f; on 0B;, 1 on 107, 0 on T', —1 on 0B(5e, 1),
separately in B; and in O \ U, Clos B;. Denote the solution by fa.
Since the boundary values are continuous, we have f, € C'(Clos O),
fg‘ Uj 8[3] = fl.

Furthermore, f5 is harmonic, and, as a consequence, is real analytic,
and has no points of local maximum (minimum) in O \ U;08;. By
Lemma 1, O\ U,;0B; = M(f2, O\ U;0B;). By Lemma 2, f, is C*-
smooth in Clos B; and in O\ U;B;. By Lemma 4 and by the properties
of B; to be given on Step B, the values of f; (= f2) on 0C},, satisfy the
conditions of Lemma 3. Therefore, ar]j-[k € My (f2, 0). Together with
(3.10) this gives us that O C M(f, O).

On Step C we verify that

OUT =M(f,OUT), (3.11)
and on Step D we verify that
no weak (fy) path v:[—1,1] — Clos O with v(0) € O} (3.12)
can reach 00 \ T.

Using Lemma 5, we produce an invertible map ® € C*°(0O — O) N

C(Clos O — Clos 0), ®~! € C(Clos O — Clos 0), with ®(r) = =,
x € U;0B; U 00, such that

fs=fao® e C*(O)NC(Clos O).
Since (weak) (fo) paths v correspond to (weak) (f3) paths @ !o~, and
fg‘ U,;0B; U 00 = fg‘ U,;0B; U 00, the function f; satisfies properties
(3.11) and (3.12).

Next, using Lemma 6, we find an increasing function ¢,
p € C([-1,1] = [-1,1]) with ¢(0) =0, ¢(£1) = £1 such that

f=po fyeC™Clos O), (3.13)
fIT =0, fl10T = 1, f|oB(5¢,1) = —1, and all the derivatives of f
vanish at 00O. Since every (f3) path is an (f) path and vice versa, we

obtain that O UT = M(f, O UT), and property (3.12) is valid for f.
Finally, on Step E we extend f into R?.
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STEP B. On this step we define disjoint pseudoballs B; C O men-
tioned on Step A, fix some points on their boundaries and values of fy
at these points.

We consider two subsets E£ of T, E* = {x € T : |z £e| > 1},
and two sequences of (different) points afc,j e R i=1,2 k>0,
1 < j < 2F, such that

il = 1427 |
R 1<j<2, (314)
@), ; — @1 05-s] <10-27%, s =0,1,
majg(min|x—aij| <10-27F i=1,2,k>0. (3.15)
xTE 7 2

(B1). We construct pseudoballs B!, B2, n > 1, such that
(10—2"")E- C By,  (10-27"")E" C By,_y, (3.16)
(10 — 2 " HE* c B2 (10— 27*"E* c B} '

2n>» 2n»

272n=10i=1igined at points bi!

and the pseudoballs B, and B, are
and b0, n>1,i=1,2.

Next, we construct pseudoballs B3, Bl and points b3/, b7 j =
0,1, n > 1, by the formulas B = ®(B.), bir%1 = &(b%7), i = 1,2,
7 = 0,1, n > 1, where ®(z) = 10z/|z|*> + 5. Two pseudoballs B},
B2 are constructed in such a way that Bj and B! are 27'%~!_joined at
points 0" and b?° and B} and Bi*? are 1-joined at points b and b7
i=1,2.

We put

R =127 R0 =12 U =19 a0,
fO(bi;,+2’j) :_fO(biZ])a i:1527 jZO,l, n > 1.

h(B2). We construct pseudoballs B} ;, By ;, k >0, 1 < j < 2%, such
that

ay; € By, (3.17)
diam B < 100-27, i=1,2, k>0, 1<j<2% (3.18)
-joined at points bzz and
2k—3

the pseudoballs By, ; and B}, ,;_, are 2723

bi’il,%_l, and the pseudoballs B; ; and By, ,; are 27**7;joined at
points b;ci and bgilﬂj, i=5,6,k>0,1<j<2* We also require that
B3, and B, be 1-joined at points by} and bg?!.
For k> 0,1<j < 2% put
flp) =271 fobyt)y =272 i=12, (3.19)

foWF5) = —fo(B2%),  i=0,1,2,
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(B3). It remains to show how to construct the pseudoballs B satis-
fying properties (3.16), (3.17), (3.18), and joined in the indicated way.
First, star-shaped domains

Bop={z+ry:r<oely),yecT}

withz € R®, o € C®(T), p(y) # 0,y € T, are pseudoballs, and we seek
for B,ic,j, 1 = 3,4,5,6, among such domains. Second, if B is a pseudoball,
and ® is a C"*°-smooth diffeomorphism acting on a neighborhood of B,
for example ®,(z) = (2 —y)/|z — y|, where y € R*\ Clos B, then ®,(B)
is also a pseudoball. We seek for B};’j, i = 1,2 among domains ®,(5;.,).

We restrict ourselves to describing the construction for Bj ;, & > 0.
We are given a family A of points a,lc,j, k > 0. Each pseudoball B €
{B} ,;} should contain the point ag; = a; ; and should be joined with
three other pseudoballs, containing each by a point in A; we denote
these points by aj;, aok;, @3k;. By induction, for every (k,j) we
choose a point xy ; such that the set

Sk;] = U I:'rk,jaal,k,])

0<i<3

consists of 4 intervals intersecting only by the point z ;, all the sets
Si,; are disjoint, and
—k

2
1+ 70 < inf{|y|:y € S;} <sup{ly|:y € Sk,;} <1+30-27".

This is just the place where we use the fact that the dimension of the
space is at least 3.
Finally, we put B} ; = B(xy,;, ¢r,;) with suitable ¢y, ;.

STEP C. On this step we are going to verify that T C 9(fo, OUT).

Fix an arbitrary point € T, and define A7 = {(k,j) : k > m, |z —
ag ;| < 100-27%}. As a consequence of (3.15), for every k > 0 there
exists j such that (k,j) € A%, Furthermore, by (3.14), for every pair
(k,j) € A¥ k> 0, the “preceding” pair p(k,j) = (k—1,[(j + 1)/2])
is in A*"! where [y] is the entire part of y € R. Therefore, (0,1) €
Al = Nypcoop™(A™) € A% Put jo = 1. In an inductive process, on
the step k > 0 put jrp1 = 2j — 1 if (kK + 1,25, — 1) € A’ otherwise
(k+1,25;) € A, and we put ji11 = 2jx. As a result, we get a sequence
of points a}ﬂ,jk such that jpi1 = 2k — 1 or jryr1 = 27k, £ > 0, and
|z — ay;, | <100-27F,

The properties of the pseudoballs BZJ formulated on Step B and
Lemma 4 imply that there exist (f;) paths 4 : [0,1] — 0B} ; with
v6(0) = bzz’;, ve(1) = bz’gk, where i are defined by the relations jx41 =
2jk + i, — 2. Condition (3.18) implies that diam ([0, 1]) < 100 - 27
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Since the pseudoballs B} ; and B} 2k=3

P -joined (by cylinders
C) at the points bzzj’; and bz’_ﬁl,ij, and the values of fy (= fo) at these

points are given by (3.19), Lemmas 4 and 3 imply that the linear maps
Ve with v,.(0) = bZ;?l,ij, (1) = bzlj’; are (fo) paths. The lengths
of the intervals v} ([0, 1]) do not exceed 27% because these intervals are
contained in the cylinders Cj.

Now we can define an (fy) path 7, : [0,1] - O UT as follows:

%(0) =7z,

(2ks) = vi(4s —2),  1/2<s<3/4,
o | we(4s = 3), 3/4<s<1, k>0.

are 2~

6

Analogously, using the pseudoballs By ;, we construct an (f2) path

Ye 0 [0,1] = OUT with v,(1) = =.

STEP D. Now we prove that there are no continuous maps v : [0, 1] —
Clos O connecting points in O with points in 0O \ T such that f; oy
1s monotonic.

Indeed, suppose that v([0,1)) C O, v(1) € 10T (the case (1) €
0B (5e, 1) is analogous). Since dist (T'\ E*,T \ E~) > 0, we obtain
that for all ¢ close to 1, y(t)/|v(t)| belongs to one of the sets E*, say
E*. Then ~(t) € |y(t)|ET. For sufficiently big n, v([0,1)) intersects
(10 — 27™)T'. Define t,, = min{t € [0,1) : |y(¢)] = 10 — 27"}. Then ¢,
increase for big n, and lim,,_, . t, = 1. Therefore, for big n,

V(tan) € [Y(tsn)|[ET = (10 = 27" E* C By,
L=27"7 < fo(y(tam) <1—27771,
V(tain-1) € y(tan-1)| ET = (10 = 27" HET C B3,
1— 2—471,—19 S f2(’y(t4n—1)) S 1— 2—471,—20'

These inequalities contradict to the assumption that fyo~y is monotonic.

STEP E. Now we are going to extend to R?® the function f given in
Clos O by formula (3.13).

First we define a function f; on the union of the sets 10"(O U T),
n € Z, by the formula

folr) = f(10"2) +n, 2€10"(OUT), ncZ.

Then f, is C*°-smooth on O = Unez10"(O U T), O = M(f1, O), and
no (f4) path v : [0,1] — O connects points in 10"(O U T) for different
n. If a function ¢ is C*°-smooth and increasing on R, ¢(x) = = for
x € [0, 1], and all the derivatives of ¢ vanish sufficiently rapidly at —oo,
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then f = po fy possesses the same properties as fy, and [ extends C*°-
smoothly to O U {0}.

Our function f is now defined outside a countable union of disjoint
closed balls Clos B,, with centers on the line Re. The function f
extends by continuity to 0B,, say f ‘aBa = c¢o. For every ball B,
we apply the following procedure. Consider a linear map ®, on R3,
D, () = UaZ+Va, Uuq € (0,00), v, € Re, with &,(B,) = B(0, 1), define
U, (r) = Pu(x)/|Po(z)]?, and for x € O, = {x € By : U, (x) € OUT}
put

f(@) = daf(¥a(z)) + Ca,
where d, > 0. Now, f is defined in Clos B, \ (Clos By U Clos Byr)
where Clos By, Clos B, are two new (smaller) disjoint closed balls
contained in B,, with centers on the line Re. We repeat this procedure
for every ball B,, and as a result, define f on an open connected set
Q with R® \ Q = FEe, where F is a Cantor type set on R. Then
Q = M(f,Q), and no (f) path v : [-1,1] —  connects points in
10"(0OUT), O, for different n, a. Finally, if the numbers d,, tend to 0
sufficiently rapidly, then f extends C'*°-smoothly to R?. O
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