ON THE CLOSURE OF POLYNOMIALS
IN WEIGHTED SPACES OF FUNCTIONS
ON THE REAL LINE

ALEXANDER BORICHEV

ABSTRACT. We describe the closure of polynomials in weighted
LP spaces of functions on the real line for even log-convex non-
quasianalytic weights: a function in the space can be approxi-
mated by polynomials if and only if it extends to an entire func-
tion of zero exponential type. This completes the series of in-
vestigations by Akhiezer, Mergelyan, Khachatryan, Koosis, and
Levinson—-McKean.

1. INTRODUCTION

Let W : R — [1,+00) be an even continuous function such that

log W (z)

= +00. 1.1
|z|-++00  log |z > (1.1)

Consider the Banach spaces

L’I'jV:{f:/+oonz<+oo}, 1 <p<+oo,

o (W(z))”
Ly = {f : esiesﬂlgp gf(—g < +oo},
00, = {f cOMm): lim va((?) - o}.

Then CY is a closed subspace of L. Denote by P the set of all

polynomials. Our condition (1.1) guarantees that P C CY,, P C Lfy,

1 < p < 4o00. Denote by Py, the closure of P in Lj,, 1 < p < 4o0.

Clearly, the closure of P in C}, coincides with Pg. Let € be the set of

entire functions of zero exponential type, &, = EN LY, 1 < p < +o0,
w=ENCY.

Key words and phrases. Bernstein approximation problem, weighted polynomial
approximation, entire functions.
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2 A. BORICHEV

The classical Bernstein approximation problem is to find out whether
the polynomials are dense in C}},. Suppose that an even function W
satisfies (1.1) and is log-convex, that is the function x +— log W (exp x)
is convex on R. It is well-known (see [5], [9, Section VID]) that if

/+°° log W ()
o 241
then P = C}y, P, = LY., 1 < p < 4o0. Otherwise, if

/+°° log W (z)

2 4+1

dxr = +00,

dx < +o0, (1.2)
o0
then the polynomials are not dense in C}, L}, 1 < p < 400, and a
well-known theorem going back to M. Riesz ([14, Sections 16,17], see
also [1, Section 4], [13, Theorem 6], [9, Section VIB], [10, Theorem 1.5])
claims that P}, C &},, 1 < p < 4o00. An important problem is to
describe Pj;,. For related results and discussions see [6, 7, 4, 8, 11], [9,
Section VIH].
The aim of this paper is to prove the equality

Pho=¢€h,  1<p< 400, (1.3)

for even log-convex W satisfying conditions (1.1) and (1.2). As a conse-
quence, for each log-convex W satisfying just condition (1.1), we obtain
that every entire function of zero exponential type belonging to one of
the spaces LY, 1 < p < +o00, C}),, can be approximated in this space
by polynomials.

Earlier, equalities (1.3) were obtained for p = 2,400 under more
restrictive assumptions on the weight function W. [. O. Khachatryan
([6, 7], see also [9, Section VIH.2]) proved that P3 = EF for W satis-
fying (1.1) and (1.2), such that

W(z) =) an™,  ag>1, a>0k>1 (1.4)

n>0

P. Koosis [8, Theorem IV] proved that Py = &£ for log-convex W
satisfying (1.1) and (1.2), such that for every n > 1 there exists C,
with 2?W (z) < C,W (nz), > 0. N. Levinson and H. P. McKean [11,
Section 10a] proved that P2, = &2, (i) for W of the form (1.4), satis-
fying (1.1) and (1.2), and (ii) for C''-smooth log-convex W satisfying
(1.2), such that
zW'(z)
2> b0 logz - W(x) oo

We should also mention here (a special case of) the theorem of

L. de Branges (see [3, Theorem 1], [12, Theorem 8], [9, p.215]) on
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weighted approximation by the linear combinations of the exponen-
tials. Suppose that W satisfies conditions (1.1) and (1.2). For A > 0,
1 < p < +o0o, denote by L}, (A) the closure in L, of the linear combi-
nations of €, —A < X < A. Then &}, = ,., Ly (4).

Combining this result with equality (1.3), for log-convex W satisfy-
ing (1.1), we obtain that Py, = (,., L}, (A); in other words, every
function in L%, that can be approximated by finite linear combina-
tions of e —A < X\ < A, with arbitrary small A > 0, can also be
approximated by polynomials.

Examples of (non-monotonic) even weights W such that Pjp G £ G
Cyw, Py G &k G Liy are given in [7], [11, Section 11], [9, Sec-
tion VIH.3]. An open question remains: is it true that the equality
(1.3) holds for even weight functions W just increasing on [0, +00) and
satisfying (1.1) and (1.2)7

In the next section we give a proof of equality (1.3) for p = +o0
using a classical result of de Branges. Another proof of this fact (using
a result by Khachatryan) and the proof of (1.3) for 1 < p < +o0 are
given in Section 3. Section 4 contains the proofs of auxiliary statements.

The author thanks Mikhail Sodin for numerous helpful discussions,
and the referee for his constructive criticism.

2. POLYNOMIAL APPROXIMATION IN CY;

Theorem 2.1. Suppose that W is an even log-convez function on the
real line satisfying (1.1), (1.2). Then Py = Ey.

Proof. We can identify elements of (C}},)* with elements p of the space
M (R) of finite complex Borel measures R, with the duality being

ey = [ g duto)

Fix F' € &y. By the Hahn-Banach theorem, to prove that ' € Py,
we need to verify that (u, F')co = 0 for every finite (complex) measure
i vanishing on the polynomials. By polarization, it suffices to prove
that (u, F>CBV = 0 only for real measures yp of variation less than or
equal to 1, such that (u, P>CBV = 0. Denote the set of such measures
by X(W).

For every measure ;1 denote by i the measure defined by p(E) =
u({az ER:—x € E}), E C R, and put

_pEp

Mt 9



4 A. BORICHEV

Since the weight W is even,
peXW) = pe X(W) = ugp € X(W).
Denote
S(W)={pe:pn€EW)} ={pneZ(W):p=ps}.

For every measure ;1 we have = py +p_, hence Y(W) C Xy (W) +
Y_(W), and we need only to verify that (u, F)co = 0 for p € X\ (W)U
X_(W).

The sets X'y (W) are convex and weak* compact subsets of the space
M(R) dual to C},, and by the Krein-Milman theorem, it suffices to
verify the equality (u, F)co = 0 only for the extreme points u of
Y, (W). Also, we note that for some entire functions F, F, we have
F(z) = Fi(2%) + 2F,(2?%), with both summands in the right-hand side
belonging to &.

Consider the auxiliary weight

—1/2 1/2 >
U(r) = {x Wi(z'?), = >0,
400, x <0,

and define a map
I: [M(R)]_— M((0,400))
by the relation
Ip, oy = (x> xf($2)>cgva f ey,

where C}) is defined by analogy with CJ,.

Since the functions z — hy(z?) + zhy(x?), for continuous hy, hy with
finite support on R, form a dense subset of C}};, we see that I is an iso-
metrical isomorphism. Furthermore, ;1 € [M(R)]- belongs to X_ (W)
if and only if Iy belongs to X(U). Hence, the fact that p is an extreme
point of X' (W) implies that Iy is an extreme point of X'(U).

The extreme points of X'(U) are described by L. de Branges [2], [9,
Section VIF]. (One considers there continuous weight functions; in the
situation under consideration, the description is the same.) For every
such measure Iu there exists a transcendental entire function E of zero

exponential type having only simple real zeros 0 < 22 < 23 < ... such
that
Ul(x?
> B <t
| B ()]




ON THE CLOSURE OF POLYNOMIALS 5

Put B(z) = E(2%). Then

(2.1)

where zp, = —x1 4, k < 0.
Next, consider the auxiliary weight

1/2 >
V(x):{W(:p ), x>0,
400, x <0,

and define an isometrical isomorphism
J: [M(R)] — M((0,+00))
by the relation
(i, Fey = (x> f($2)>cgva fecy.

For every extreme measure p of X (W), Ju is an extreme point of
XY (V), and there exists a transcendental entire function E of zero ex-
ponential type having only simple real zeros 0 < 2% < z2 < ... such
that

> e

(@?)]
T fes =3 é((fg) fect.

k>1

We consider two cases: E(0) = 0 and E(0) # 0. In the first case,
put B(z) = E(2?)/z. Then

Z|B’ o0,

kEZ

(u, F>03V = (p,x — F1(1132)>03V = Z B

(2.2)

where xp = —x9 f, k < 0.
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In the second case, put B(z) = 2E(z?). Then

1 Feg, = (e s F@)eg =3 %

where zog =0, x, = —x_, k < 0.

As a result of (2.1)—(2.3), to prove the theorem it remains to verify
the following statement. For every even log-convex function W satisfy-
ing (1.1), (1.2), for every F' € £, and for every transcendental entire
function B of zero exponential type having only simple real zeros xy,
k € Z, such that for an entire function F,

either B(z) = E(2%) or B(z) = zE(%), (2.4)
and such that
W ()
2 By <
keZ k

we have

3 gwk) = 0. (2.5)

An essential part of the proof consists in the use of

Lemma 2.2. For W and B as above, for some real number C' =
C(W, B) and for every y > 1,

“+00 “+00
/ ylogW(z) < C+/ ylog|B(x)/2] , -
o VP ? —oo y? +

Using this lemma, to be proved below, and the facts that /' € £ is
of zero exponential type, and that the function z — B(z)/z is outer in
the upper half-plane, we get

T 0yl log |F Tyl
i < o [ ISP oy oy [ llosW ),

—0 y2 + :L‘2 0 y2 + 1/'2
o ly|log | B B(i
y|log |B(x)/x| ‘ (iy)
=o(1 drx = o(1)|—== — )
oft)exp [ HEEZ D g —o(n 22|yl 4
Therefore, we can write the interpolation formula
R(z) = — =0
(=) B(z) Z B'(z¢)(z — xg)

keZ
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(R is an entire function of zero exponential type tending to 0 along the
imaginary axis, hence R = 0). Setting z = 0, we deduce

F(xy,)
2 i ="

keZ

Relation (2.5) is proved, and the proof of the theorem is completed. [

Proof of Lemma 2.2. A. By (2.4), |B(z)| = |B(-=2)|, z € C, and to
prove the lemma, it suffices to verify that for some C' and for every
y =1,

oyl > ylog |B
0 y? + 0 y? + a?

To verify (2.6), we write down all the zeros of B on (0, +00) as
O0<zi=expti <zog=exply<...<xp=exptp <...,1<k<4o0,
and denote

W(l’k)
K= —_—,
,; | B' ()]

Furthermore, put

p/ _ W(mk)
C B ()]
Pr = max(p, Ply1)-
Then
> e <2K. (2.7)
k>1
For every k > 1 denote
zB(x)
Bi(z) = o pra (2.8)
(1-2)0-77)
L Lht1
Then
2B (x x2 1 1
B'(x) = — ’“(2 ) (1 -t ) = QBk(a:k)<2— - —2),
Ty, Th1 Lht1 T,
2Bk (Tk41) T2, 1 1
o) = 280 () _op (L L),
Th i Ty Ti o Ty,
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and we get
W (exp tx) W (exp tx)
0g T4 = log ————
| B (exp 1) | B'(exp tr))|
= log(2p},) + log(e™ 2" — e=2t+1),
1 W(exptps1) W (exp tg41)
0g ——F———— = log ——————
| Bi(exp t41))| | B! (exp tp+1))]
= log(2pj,4,) + log(e " — e72+1),

B. Recall the relation (2.4). By the Hadamard factorization theorem
we have

1 +log2 + log(e’%’“ — e’Ztk“)

+ log 2 + log (e~ — e~ 2tk+1)

2

E(z?) = (1 — m—)
(%) kl:[l o
Since the function ¢ — log |1 —e* 2] is concave on each of the intervals
(—o00, ), (s,400), using (2.4) and (2.8) we obtain that the function
t — log |By(expt)| is concave on [ty,tr1]. Furthermore, the function

t — log|W (expt)] is convex on (—oo, 4+00). Therefore,
W (expt)

| B (exp 1)

Put

log < log(2py) +log(e ™" —e k1), <t <ty
W (expt)exp(t — A)
| B(expt)| ’
for some parameter A > 0 to be defined later on. Then
R(t) <log(e "% — e™?"+1) 4+ log(2py) + 2t — A
—log(e=t) — 1) — log(1 — 2= te+1)), te <t < tpi.

R(t) = log

Since
t+log(e™" +e7") —log(e"™" +1) —log(1+¢'™*+)
= log(1 + ¢ "41) — log(1 + ¢ ) — log(1 +¢'~*)
<0, b <t < Tk,
we get

R(t) < log(e™ — e+1) + log(2py) + 1 — A
—log(e'™ % — 1) — log(1 — e'~t+1), te <t < tpsr. (2.9)
To prove (2.6), we need to verify that
exp tr41 Y
/ R(logx)dx < O(1), Y — +00. (2.10)

2 2
E>1 xXp g Y +x

C. Put By = tgy1 — tx. Suppose that G < log?2.
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Then
exp tg41 tk+1
/ log(ze ™™ —1)dx = / log(e" ™ — 1)e’ dt

Xp Lk 123
t g s s t 1
= ¢* log(e® —1)e*ds > —e kﬁk(logﬁ—+0)
0 k

for some absolute constant C. Analogously,

exp lg41 1
/ log(1 — ze™"*+) dz > —e" B (log — + C).

xp Uy ﬁk
Hence,
exp lg41 Y . ;
log(ze™ — 1) +log(1 — we™ k+1)} dx
/exp tr y2 + 372 [
123
ye 1
Since

log(e™" —e™%+1) 41 = t—t) 1 +log(e™ —1) <log(26), tr <t < g,

we obtain

exp tg41 y
/ [log(e’t’“ — e ") +logz + log(2py) — Al dz

Xpt;c y2 + .IQ
exp tg41 y
< ————log Bk + log(4py) — A] dzx. 2.12
[ (1p) — 4] (2.12)
Furthermore,
exp tp41 elk (eBr — 1 etk
/ 2 0 2 dr > y2(—2t+2ﬂ) = 72ﬂkﬂ 22 L o2t (2.13)
exp t, y+aj y+ek k y+ek

Finally, by (2.7),
log Bk + log(4pk) < log(log2) + log(8K).
Therefore, by (2.9), (2.11)—(2.13), for A > log(log2) + log(8K), we get
explg+1 y
/ ————R(logx) dz

2 2
Xp g Y +x

ye's

< [ﬁke 26y, (log Br + log(4pk) — A) + 204 (log ﬁk )}

[ﬁk log 2 ﬁ_ + Be(CL — A)],
k

for some ('} independent of k, A.
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D. If f, > log2, then by (2.7), (2.9), we get
R(t)+ A
< log(l — e™P) + log(4K) 4t — t), — log(e! ™% — 1) — log(1 — e!~t+1)
< log(4K) —log(1 — " ") —log(1 — e' "+1)
log 2 log 2

< log(4K) — 2log(1 — 27'/%) = Cy, te |ty +—— 5 tht1 — Ik

with C5 independent of k£, A. Arguing as in part C, we obtain

V2expty, 123
/ Y R(logz)dr < (C5 — CyA)—25

i, Y+ T
exptp41 bogn

———R(logz)dx < (C5 — C4A)———,

/(1/\/5) exp it 41 y:+a? y? + e2tr+1

for some C35, Cy > 0 independent of k, A.
Hence, for sufficiently big A independent of k, we have

exp tr41
Y Br Dk
———R(logx)dr < —1lo 2.14
[ i htioga) e < S ios (2.14)
if 0, <log2, and
exp tg41 Y
/ Y R(logz) dz <0, (2.15)
exp tg y +x
if B, > log2. As a result of (2.14) and (2.15),

exp lg41
Z/ Y R(logz) dx < Z % log™® P

2 2
x
E>1 Xp tg Y + k>1 ﬁk

1 K
D O

1 2 pi Br — 2e

1 1
because xlogt — < =, 0 < x < +o00. This proves (2.10) and the whole
e

lemma. ]

3. POLYNOMIAL APPROXIMATION IN L’;V, 1<p<+0

Theorem 3.1. Suppose that W is an even log-conver function on the
real line satisfying (1.1), (1.2). Then Ph, =&}, 1 < p < +0o0.

Notice that as a consequence of condition (1.2), £7, is a closed sub-
space of LY, and the point evaluations F' +— F'(z), z € C, are bounded
linear functionals on &7;.
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For the proof of Theorem 3.1, we need the following three results,
whose proofs are deferred to Section 4.

Lemma 3.2. Under conditions of Theorem 3.1 we have

1
lim M

el s+o0 W (x) =1 (3:1)

Lemma 3.3. Let FF € £ and either 1 <p<r<4ooorl<p<r<
+oo. Suppose that P, = &y, and W satisfies (3.1). If the function
2+ zF(2) belongs to EY,, then F € PL,.

Lemma 3.4. Let W be monotone increasing on Ry and monotone
decreasing on R_, and satisfy (1.1). Suppose that F € Py,, 1 < p <
+00. If the function z v« zF(z) belongs to &, then it belongs to Py,
as well.

The last lemma together with a result of Khachatryan [7, Corollary
2] formulated below gives another proof of Theorem 2.1.

Proposition 3.5 (Khachatryan). In the conditions of Theorem 3.1,
suppose that F € E. If the function z — 2*F(z) belongs to £33, then
F e Py.

Since [7] is rather inaccessible, in Section 4 we show how to derive
this propostion from some results given in [9].

The second proof of Theorem 2.1. We start with G € &}, and define

Gl(Z) _ G(Z) — G(O), GQ(Z) _ Gl(z) — GI(O)

z z

(3.2)

By Proposition 3.5, G2 € Pypp. Furthermore, applying Lemma 3.4
twice, we obtain G; € Py, G € Py. Thus, &5 = Pyp. O

Furthermore, Lemma 3.4 together with Theorem 2.1 gives a proof of
Theorem 3.1.

Proof of Theorem 3.1. We start with the case 1 < p < 4o00. Take
G € &, and define Gy as in (3.2). Applying Lemma 3.3 with r = 400
and Theorem 2.1, we obtain that G; € Pj,. By Lemma 3.4, G € Py,.
Thus, &, =P, 1 < p < +oc.

Ifp =1, G € &y, then we apply Lemma 3.3 with »r = 2 and
the (already proved) equality Pg, = &7, to get G € Pj,. Again by
Lemma 3.4, G € Py,. Thus, &, = Py O
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4. THE PROOFS OF AUXILIARY STATEMENTS

Proof of Lemma 3.2. Without loss of generality, assume that W is C*-
smooth. Put ¢ = logW. Since W is log-convex, the function x —
x¢' () increases, and elementary inequalities

/() te'(t) o ¢'t)

¥ > > , t <z < 3t,
x 3
? —)'(t) _ t(t
w(w)Z/ w’(y)dyz(m 3)(P()_ @3(), 2 < x < 3t,
t
3t / !
o T 9t2 - 3 27
together with (1.2) show that
. oy
Therefore,
. W(z+1)
] — =1.
|$|er+100 W (x)

Proof of Lemma 3.3. Since

PP @y, o P L
/-oo @) SL@ (@) +/ W@y ST

we obtain F' € &,. For ¢ > 0 put

F(z) = 1/ Flz +t)dt.
€Jo

By (3.1) it follows easily that the shift operator is continuous in L3,

for 1 < s < 400, and in Cf),, and therefore F. — F in L}, as ¢ — 0.

Furthermore, the functions z — (z+1i)F.(z), € > 0, belong to both C}),

and LY, because again by (3.1),

ol R S [ T Dl g
CW(z) ([ lz+t+iP-[Flz+o)P 7
gt/ < 0 (W (z + t))p dt)
_ CW(x) L il |F ()P 1/p B
el </ W) dt) =o(W(x)),  |z| = +oo,
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and

[.F +<iv|;£l;8£$)|p tr= 2 [ ([ree ) G ae
/ ( / Pz + 1) |pdt> (|WJ(;Z)|;p di
L

0o P . p
g(]/ 2+ i IF@P 5 o
S W(I))

Since r > p, the functions z — (2 +i)F.(2), € > 0, belong also to
Ly,. Fix € > 0. By conditions of the lemma, Py, = &}, and we can
find a sequence of polynomials (), approximating the function z —
(2 4+1)F:(z) in &];,. Since the point evaluation F' — F(—i) is bounded
on &}y, we get Qn(—i) — 0, n — oo. Now, without loss of generality
we may assume that Q,(— ) 0, and hence, Q,(z) = (2 + i) P,(z) for
some polynomials P,. Thus,

TN (x +i)F.(2) — (z 4+ 1) Py ()|
/OO (W(ZL’))T dz — 0, n — 400,
if r < +o00, and
sup |(z + i) F.(z) — (z + i) P,(2)| Lo, s 4o,

zeR W(‘/E)
if r = +o00. By Holder’s inequality,

[CE@- o,
o (W (z))"

- ( /+°° (@ + i) Fe(x) (x)ﬂ')P w(@)|" dz)”/’"

+oo rp/r
x(/ |$+Z|pr/rp) 0, n — +00,

if r < +00, and

o0

[l =rer,

x  (W@)
(z + ) F.(x) — (x + 1) Py (2)|\* [T dx
< <21€1£ W) > / EEST — 0, n = 400,

if 7 = co. Here we use that either r < +o00 and pr > r —p, or r = +o00
and p > 1.
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Thus, F. € P, ¢ > 0, and as a consequence, F' € P},. O

Proof of Lemma 3.4. Denote G(z) = zF(z). For every A € C, the
G(z) — G(A

function z — % belongs to PL.. Suppose that G € £\ Py,

Define

20 = clos Lin [{G(nz),() <n<1}uU P]
&

Then,

for every A € C, H € 2,

H(z) — H(\) (4.1)

the function z belongs to Py.

z JE—
We can identify bounded linear functionals on L},, 1 < p < 400,

with elements of L‘{/W, I/p+1/g=1,

+oo
Lg/W:{f:/_ @I (V@) dr < 400}, 1<q<+oe,

o0

W= {f cesssup |f(z)|[W(x) < +oo},

zeR

the duality being

+0o0
(f.9) = f(x)g(x)de,  f €Ly, g€ L.

From now on we restrict ourselves to the case 1 < p < +oo. In
the case p = oo we identify bounded linear functionals on C}), with
complex Borel measures p such that

+o00
W(z) du(x) < 400,
—00
and the rest of the proof is similar to that for the case 1 < p < +oc.
Using the Hahn—Banach theorem, choose g € L‘f/W such that

(9.G) #0, (g9, Py) =0.
By (4.1), for every A € C we get

[ o= =,

o T — A

G(A)/m%dx:/m%dx, MeC\R.  (42)

o0 — 00
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By the Lebesgue dominated convergence theorem,

Jim )G = — / )G dr £0,  (43)

. x — it .
and hence,
+o0
g()
—d 0 4.4
| s (14)

for t real and |t| large enough.
Next, take H € 2 such that (g, H) = 0. By (4.1), for every A € C
we obtain as before:

H()\)/jm%da::/er%dz, AeC\R, (4.5)

oo —00

im [ g(w)H () —2 da::—/_ ) H(x) de = 0. (4.6)

[t|—-+oo J_ T — it o

Then we divide (4.2) by (4.5), taking account of observation (4.4),
and use (4.3), (4.6), to get

|H (it)] = o(1)|G(it)], |t] = +o0. (4.7)

oo

One immediate consequence of this relation is that for every n > 0
we have

[t]" = o(1)|G(it)|, |t] = +oo. (4.8)
Furthermore, if dim(2(/P};;) > 2, then we may take
G, € A\ (CG +Py)
and f, fi € L(f/W such that
([,G)#0, (f,CGi+Py) =0,
(f1,G1) #0, (f1,CG + Py,) = 0.
Applying the above argument we deduce
|G1(it)] = o()|G(it)], [t} = 400,
G(it)| = o(1)|G1(2t)],  [t] = Foo,

which is impossible.

Thus, dim(A/Pj;;) = 1, and we have A = CG+Pj;,. Given0 < 7 < 1,
put G,(2) = G(nz). Since W(z) increases with |z|, by dominated
convergence we obtain G, — G in &), as n — 1. Since G ¢ Py, for
some 1 < 1 we should have G, ¢ Pk, and

G, =H(n)+ A(n)G
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for some H(n) € P,, A(n) € C\ {0}. By (4.7) we obtain
|G (int)| = |Gy(it)| = [A(n) + o(D)] - [GGL)],  [t] = +oo.
Hence, for every M > log A(n)/log(1/n) there exists C); such that
G(it)| < Cu(lt|+1)Y,  teR,
which contradicts (4.8). Thus, G € P}, and the proof is completed.
U

Proof of Proposition 3.5. We make extensive use of the material in [9,
Section VIH.2]. First, by an argument in the proof of the theorem on
page 226 of [9], for some positive C, for some function S of the form
(1.4), and for any n, 0 < n < 1, we have

2

CW(z) < S(z) <1+

x
1—nJV&ﬂ’ z€R (4.9)

Denote G(z) = 2*F(z), W,(x) = W(xz/n), F,(z) = F(nz). Since
G € &L, by the first inequality in (4.9), we get G € £3°. By the result
of Khachatryan mentioned in Section 1 (for the proof see pages 223-226
of [9]), we obtain G € PZ°. Hence, as in the proof of Lemma 3.3, we can
find a sequence of polynomials P,, such that z — 22P,(z) approximate
G in £F. Applying the second inequality in (4.9), we conclude that P,
tend to F'in S{,’Von, and hence, F' € Pw.,, £y € Py Finally, since n < 1
is arbitrary, and F; — F' as n — 1, we obtain that F' € Pyp. O
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