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Abstract. Given a topological abelian group G, we study the class of strongly sequen-
tially continuous functions on G. Strong sequential continuity is intermediate between
sequential continuity and uniform sequential continuity, and apart from trivial cases, the
class of strongly sequentially continuous functions is strictly smaller than the class of se-
quentially continuous functions. On the other hand, the “gap” between strong sequential
continuity and uniform sequential continuity heavily depends on the group G': if G has
some “completeness” property, then all strongly sequentially continuous functions on G
are uniformly sequentially continuous, but we exhibit several examples for which the two
notions differ; these examples include a large class of “small” dense subgroups of R, and all
groups of the form (X, w), where X is a separable Banach space failing the Schur property.

Introduction

This paper is in some sense a continuation of [DM], which was itself motivated by
recent results of P. Hajek. In [H], Hajek proves that if f : ¢g — R is a C'-smooth
function whose derivative is uniformly continuous on the unit ball B, then f is uniformly
continuous on B,, for the weak topology. One purpose of [DM] was to give a short proof of
this rather intriguing result, and in that context, the notion of strong sequential continuity
arose in a surprisingly natural way. In view of its usefulness in seemingly unrelated matters,
we believe that this notion deserves a more detailed study.
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Definition 1. Let G be a Hausdorff topological abelian group, let (Y, ) be a metric space,
and let A be a subset of G. We say that a function f : G — Y is strongly sequentially
continuous on A if, for every sequence (h;) C G converging to 0,

igf 5(f(z+ hi), f(z)) = 0 as n — oo, uniformly for z € A.

If A= G, we just say that f is strongly sequentially continuous.
Remarks.

(1) If f: G — Y is strongly sequentially continuous on A C G, then f is sequentially
continuous at each point z € A, hence it is continuous at each point of A if G is metrizable.

(2) We say that a function f : G — Y is uniformly sequentially continuous on a set A C G
if for all sequences (x,,), (y,,) C A such that 2, —y, — 0, one has lim §(f(zn), f(yn)) = 0.
n—o0

Clearly, uniform sequential continuity on G' implies strong sequential continuity on G.

(3) Strong sequential continuity can be viewed as an “iterated limit” property: a function
f : G — Y is strongly sequentially continuous on A C G if and only if, for each sequence
(x,) € A and each null sequence (that is, converging to 0) (h;) C G,

lim liminf 6(f(zn + ki), f(zs)) = 0.

1—>00 N—>00

This is the definition originally given in [DM]. Notice that one gets sequential continuity
at points of A by considering only constant sequences (z,); and for A = G, uniform
sequential continuity amounts to replacing the liminf by a limsup (as one checks easily).

(4) Uniformly continuous functions “operate” on strongly sequentially continuous functions
(if f: G — (Y1,01) is strongly sequentially continuous on A C G and if g : (Y1,d1) —
(Y2, d2) is uniformly continuous, then g o f is strongly sequentially continuous on A). In
particular, any uniformly equivalent metric on Y gives rise to the same strongly sequentially
continuous functions from G into Y. Since any metric space is uniformly homeomorphic
to a subspace of some normed linear space, we may therefore assume, if needed, that the
range space is a normed space.

Throughout this paper, the letter G will always designate a Hausdorff topological
abelian group. If Y is a metric space, we denote by SSC(G,Y) the set of all strongly
sequentially continuous functions f : G — Y, and by BSSC(G,Y) the set of all bounded
functions in SSC(G,Y); when Y = R, we simply write SSC(G) and BSSC(G).

The following obvious lemma will be used repeatedly.
Lemma 0. Let (Y,6) be a metric space, and let A C G. For a function f : G =Y, the
following assertions are equivalent:
(1) f is not strongly sequentially continuous on A;

(2) there exist a positive number e, a sequence (x,) C A and a null sequence (h;) C G
such that §(f(z, + hs), f(zn)) > € whenever n > i.
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It is proved in [DM] that SSC functions turn Cauchy sequences into Cauchy the
main reason for introducing SSC functions. We recall this in the first section of the
paper, together with some simple consequences. We also show that BSSC(G) is a closed
subalgebra of [+ (G), and we clarify the link between strong sequential continuity and what
we have called Cesaro-continuity, a notion which is implicit in [DM].

Section II is devoted to functions defined on dense subgroups of the real line. The
main results are the following: SSC functions on R are uniformly continuous, but if G is
a countable dense subgroup of R, the two notions differ. These results are proved later
(Sections IIT and IV), in a more general form. We also show that SSC functions have a
sublinear behaviour at infinity, and that if G is a dense subgroup of R, then any function
f + G — R which is SSC but is not uniformly continuous has to be highly oscillating.

In Sections III and IV, we investigate “nasty” groups (the ones that distinguish be-
tween SSC functions and uniformly sequentially continuous functions) and “nice” groups
(the ones that do not).

It turns out that “completeness” assumptions metrizable group is nice. We prove two
results in that direction. They both depend on a lemma that allows us incidentally to give
a short proof of the Orlicz-Pettis theorem on the equivalence of weak subseries summability
and norm subseries summability in Banach spaces.

On the other hand, if G is a dense subgroup of R which is generated by an increasing
sequence of Dirichlet sets, then G is a nasty group; this is to be compared with the fact
that nasty subgroups of R are necessarily both meager and Lebesgue-null. We also prove
that if (X,]|| ||) is a normed space with a countable algebraic basis, then G = (X, || ||)
is a nasty group, and that if X is a separable Banach space, then G = (X, w) is nasty
if and only if X fails the Schur property (recall that a Banach space X is said to have
the Schur property if every weakly convergent sequence in X is actually norm-convergent;
apart from finite-dimensional spaces, a typical example is the space [1). Finally, we give
an example of a function f : ¢y x [; — R which is SSC for the weak topology, but not
uniformly sequentially continuous (for the weak topology) on the unit ball of ¢y x I;. Such
a function can be produced neither in cg, nor in /.

I - General facts

Our first result provides some information on the structure of the space of strongly
sequentially continuous functions.

Proposition 1. For any metric space Y, SSC(G,Y) is closed under uniform convergence.
Moreover, if Y is a normed space, then SSC(G,Y) is a vector space and BSSC(G) is a
(closed) subalgebra of oo (G).

Corollary. The set of all bounded real-valued strongly sequentially continuous functions
that are not uniformly sequentially continuous is an open subset of (BSSC(G),|| ||so),
which is either empty or dense (we shall see that both cases do actually happen).
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The only nontrivial point in Proposition 1 is the stability under sum and product.
Now, addition is uniformly continuous on ¥ x Y (for any normed space Y), and multipli-
cation is uniformly continuous on bounded subsets of R x R. Since uniformly continuous
functions operate on SSC functions, it is therefore enough to prove

Lemma 1. If fy : G — (Yo,00) and f1 : G — (Y1,01) are strongly sequentially continuous,
then the pair (fo, f1) : G — Yo x Y1 is also strongly sequentially continuous.

Proof.
Of course, Yy x Y7 is endowed with any of the usual product metrics.

Fix f; : G = Y; (j = 0,1) and assume that (fy, f1) is not strongly sequentially continuous.
By lemma 0, this means that there exist a positive number € and two sequences (h;),
(.’En) g G such that h,z — 0 and Max {50 (f()(.’l?n + h,), fo(l‘n)),51 (fl(xn + hz), fl(xn))} Z 9
for n > 1.

For each infinite set I C N, let us denote by I(?) the set of all ordered pairs of elements of
I, that is, I® = {(i,n) € I?; i < n}. Now, put

Ao = {(i,n) € N®; 5o(folwn + hs), folzs)) > €},

Ar = {(i,n) € N®; 61 (fu(wn + ha), fi(wn)) 2 e}
By assumption, one has AgUA; = N(2), Hence, by Ramsey’s theorem for pairs of integers,
there is an infinite set I C N such that either I(®) C Ay or I? C A;. Thus, we may

assume for instance that dg (fo (xp + hy), fo(a:n)) > ¢ whenever n > ¢. This means that
fo is not SSC.

The following result is Lemma 3 of [DM]. The proof given in [DM] is a simple
application of Ramsey’s theorem for triples of integers. For completeness, we include an
“elementary” proof.

Proposition 2. Let (Y,6) be a metric space, let AC G, andlet f : G =Y.

(a) If f is strongly sequentially continuous on A, then f turns Cauchy sequences in A into
Cauchy sequences in'Y .

(b) If, in addition, every sequence in A has a Cauchy subsequence, then f is uniformly
sequentially continuous on A.

Proof.

To prove (a), assume that there exists a Cauchy sequence (z;) C A such that (f(z;)) is
not a Cauchy sequence in Y. Then one can find a positive number € and two subsequences
(yk), (z:) of (z;) such that §(f(yx), f(2:)) > 2¢ for all k,i > 0.

Now, f is sequentially continuous at all points z;, and (yi) is a Cauchy sequence; hence,
for each fixed 4, there exists an integer k(i) such that 6(f[(yx — yr@)) + 2], f(2i)) < €
whenever k > k(7). Moreover, we can assume that the sequence k(i) is increasing. Put
hi = —yk@) + 2. Since (z;) is a Cauchy sequence, the sequence (h;) converges to 0.
Therefore, by strong sequential continuity, inf {§(f(z), f(z + h;)) : @ < n} tends to 0
uniformly on A. In particular, one can find an integer 7o such that for every k, there exists

1€ {0, 1,.. .,’io} for which (5(f(yk), f(yk + hz)) < €.
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Now, let k& = k(ip), and choose an integer i < iy such that §(f(yx), f(yx + hi)) < €. Since
i < i, we also have &(f(yx + hs), f(2:)) < e, whence &(f(yx), f(z)) < 2, which is a
contradiction.

Part (b) follows easily from (a).

Corollary 1. Assume that G is metrizable.

If (Y,0) is a complete metric space and if f : G — Y is strongly sequentially continuous
on A C G, then f has a continuous extension F : A — Y, where A denotes the closure of
A n the completion of G. In particular, if G is a subgroup of R, SSC functions on G are
uniformly continuous on bounded sets; and if G is totally bounded, then any SSC function
f;G — R s uniformly continuous.

As we shall see later on, SSC functions on R are uniformly continuous, but there exist
SSC functions on Q which are not uniformly continuous. Hence, the continuous extension
of an SSC function f : G — Y needs not be strongly sequentially continuous on G.

Corollary 2. Let X be a Banach space not containing £;.

If f: X — R s strongly sequentially continuous on some bounded set A C X for the weak
topology, then f is uniformly sequentially continuous on A (for the weak topology); and if
X* is separable, then f is uniformly continuous on A (for the weak topology).

Proof.
This follows from Rosenthal’s ¢; theorem (see [Di]).

Corollary 3. If G is metrizable, noncompact and nondiscrete, then there exist continuous,
real-valued functions on G which are not SSC.

Proof.

If G is totally bounded, then SSC functions on G are uniformly continuous, by Corollary
1. Thus, in that case, it is enough to find a continuous function f : G — R which is not
uniformly continuous. This is an easy exercice, using the Tietze extension theorem.

Now, assume that G is not totally bounded. Then one can find a sequence (z,) C G and
a neighbourhood of 0, V' C G, such that (z,, + V) N (2, +V) = 0 if n # m. Choose a null
sequence (h;) C G such that h; € V and h; # 0 for alli. Put F,, = {zp;zn+ho;...;xn+hn}
(n>0), and F = J,, F,,. The set F'is a closed, discrete subset of G, hence there exists
a continuous function f : G — R such that f(z,) = 0 and f(z, + h;) = 1 whenever
0 <% < n. The function f is not SSC.

Remark.

The statement of Corollary 3 is far from optimal; in particular, the metrizability assump-
tion is too restrictive. For example, the same proof gives the existence of continuous
functions on G which are not SSC provided that G is a normal topological space, is not
totally bounded, and contains a null sequence which is not eventually constant.

The last result of this section is closely related in spirit to Hajek’s work and to [DM].
If Y is a normed space, let us say that a function f : G — Y is (uniformly) Cesaro-
continuous on A C G if every null sequence (h;) C G has a subsequence (h}) such that
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(f(z + h})) converges in the sense of Cesaro to f(z), uniformly for z € A. It is shown in
[DM] (though not stated explicitely) that if Y is a Banach space with finite cotype and if
f:co—Y is a C!-smooth function whose derivative is uniformly continuous on bounded
sets (for the norm topology of ¢y), then f is Cesaro continuous on bounded sets for the
weak topology. Yet, the link between Cesaro-continuity and strong sequential continuity
is not made very clear in that paper.

Proposition 3. If f : G — R is Cesaro-continuous on A C G, then f is strongly
sequentially continuous on A.

Proof.

Assume that f: G — R is not SSC on A C G. Choose € > 0, (h;) — 0 and (z,,) C A such
that |f(z,, + h;) — f(x,)| > € whenever n > i.

Putting AT = {(i,n) € N® . f(z, + h;) — f(zn) > €}, A~ = {(i,n) € N® : f(z, +
h;) — f(zn) < —e} and applying Ramsey’s theorem, we may assume for instance that
f(zn + hi) — f(x,) > € whenever n > i.

This implies that f is not Cesaro-continuous on A: indeed, if (h}) = (hyp,) is any subse-
quence of (h;), then for every n > 1,

|
=

n

(£(@p, + 1) = F(ap,)) = =

SRS

-
I
=

II - Functions on dense subgroups of the real line.
In this section, G is a dense subgroup of R, and we study real-valued strongly sequen-
tially continuous functions on G.

To begin with, we introduce another class of functions.

Definition 2. A function f : G — R is said to be eventually regular if for every € > 0 and
every null sequence (h;) C G, there exist an integer i and a bounded set B C G such that

sup | f(z + hiy) — f(z)] < e.
¢ B

In other words, f is eventually regular if and only if

im |limsup |f(z+h) — f(z)|| =0.

|
h—0 || —o00
The following result is a useful criterion for recognizing a strongly sequentially con-
tinuous function.

Lemma 2. If f: G — R s uniformly continuous on bounded sets and eventually reqular,
then f s strongly sequentially continuous.



Proof.

Let f : G — R be uniformly continuous on bounded sets and eventually regular. In order
to prove that f is strongly sequentially continuous, let us fix a null sequence (h;) C G and
e > 0.

Since f is eventually regular, there exist 7o and a bounded set B C G such that

sup [f(z + hiy) — f(z)] <e.
¢ B

Since f is uniformly continuous in a neighborhood of B, there exists ¢; such that

sup [f(z + hi,) — fz)] <e.
TEDB

Therefore, for all x € G we have

inf {|f(z + hi,) — f(@)],|f (@ + hiy) = f(2)]} <e.

Proposition 4.
(a) If f : R — R is strongly sequentially continuous, then f is uniformly continuous.

(b) If G is countable, then there exists a function f : G — R which is eventually reqular
and uniformly continuous on bounded sets (hence strongly sequentially continuous on G),
but which is not uniformly continuous on G'.

(¢) If G is countable, then there exists a function f : G — R which is strongly sequentially
continuous, but not eventually regular.

Proposition 4 follows from more general results to be established in Sections III and
IV. The results stated here are actually not easier to prove than the more general ones.

To motivate the next definition, let us give, however, some indications about the
proofs of (b) and (c¢). Let (u,) be a sequence of positive numbers. Define f : G — R
by f(z) = sin (wz) sin (g, (z — 3n)) if z € [3n — 1,3n + 1] for some n > 0, and f(z) =0
otherwise. If each p, is a term of some fixed sequence ();) such that A; — +oo and
dist (A\jz,Z) — 0 pointwise on G, then f turns out to be strongly sequentially continuous.
Moreover, if p, = A, for all n, then f is eventually regular; but if each A; is repeated
infinitely many times in the sequence (u,), then f is not eventually regular. This will
be proved in Section IV. In any case, if the sequence () is unbounded, then f is not
uniformly continuous; in fact, it is “oscillating at infinity”, in the following sense.

Definition 3. We say that a function f : G — R is oscillating at infinity if there
exists a > 0 such that, for all positive numbers K, e and for every integer N, there exist
T1,...,Lon € G such that K < x; <x9 <...<xon and

(i) for every i € {1,...,2N — 1}, zjy; — x; < g
(ii) for every k,l € {1,...,N}, f(z2r) — f(z2-1) > a.
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Clearly, such a function cannot be uniformly continuous. The following result is a
kind of converse, and shows that the oscillating behaviour of the function f above is by no
means accidental.

Proposition 5. Let f : G — R be a strongly sequentially continuous function. Then
either f is uniformly continuous, or f is oscillating at infinity.

Corollary. A monotonic function f : G — R s strongly sequentially continuous if and
only if it is uniformly continuous.

Proof of Proposition 5.
Assume that f is not uniformly continuous, and fix K, > 0 and a positive integer V.

By assumption, there exist a > 0 and two sequences (u,), (v,) € G such that u, < vy,
vp —u, — 0 and | f(vp) — f(up)| > 3a. Since f is uniformly continuous on bounded sets, we
may assume that u, > K for all p; and by extracting subsequences, we may also assume
for instance that f(v,) — f(up) > 3a, p > 0.

Let (h;) C G be a null sequence such that 0 < h; < ¢ for all s.

Since f is strongly sequentially continuous, we can find an integer m such that, for all p,
_iélf | f(up + hi) — f(up)| < a/N. Therefore, |f(up + hiy) — f(up)| < a/N. In particular,

there exists po such that up, < vp, < up, + hi, and |f(up, + hiy) — f(up,)| < a/N.
Repeating this argument, we can produce two increasing sequences of integers (p,,) and
(i) such that w,, < vy, < up, +h;, and | f(up, +hi,)— f(up, )| < a/N for all n. Thus, we
may assume that there exists a null sequence (k,) C G such that w, < v, < u, + k, and
‘f(un +kn) — f(un)‘ < a/N, n > 0. Similarly, we may assume that there exists another
null sequence (£,) C G such that v, < u,+k, < v,+¥, and ‘f(vn+€n)—f(vn)‘ < a/N for
all n. At this point, each quadruple (uy,, vy, ty, + kn, v, + 1,) satisfies conditions (i),(ii) of
Definition 3, with a(3—2/N) instead of a. Proposition 5 follows by iterating this procedure
N times.

The last result of this section asserts that SSC functions have a “sublinear” behaviour
at infinity.

Proposition 6. If f : G — R is strongly sequentially continuous, then there exists a
constant C' such that for all x € G,

[f(@)| < C(1+|z]).

Proof.

Since f is continuous, there exists § > 0 and M < +oo such that |f(y)| < M if |y| < 6.
Choose hy, ha, ..., h, € G in such a way that 0 < h; < and for all z € R,

inf{|f(x— hi) — f(z)], 1 <i Sp} <1.

?

Let a = min{hq,..., hy,} > 0. Given any positive z € G, there exists a sequence (i), ir,
<

iy €
{1,...,p}, such that, if we put @, = & — (hi, + hi, +...+h;, ), then | f(zpy1) — f(zn)] < 1
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for all n > 1. The sequence (z,,) decreases to —oo, and x,, — 41 < ¢ for all n. Therefore,
one can find an integer ng such that xz,, € [0,d]. Then |f(z,,)] < M and z > nga, so

|f(@)] < |f(zny)| + 10 < M+ 2. The proof for z < 0 is similar.

III - Nice groups.

The purpose of this section is to show that if the group G satisfies some reason-
able “completeness” assumptions, then strong sequential continuity on G is equivalent to
uniform sequential continuity.

Let us say that G is a nice group if for any metric space Y, all strongly sequentially
continuous functions f : G — Y are uniformly sequentially continuous. For example,
metrizable totally bounded groups are nice, by Corollary 1 of Proposition 2. Of course,
sequentially compact groups are nice as well.

All the results proved in this section will depend on the following lemma. Recall that
a subset A of some topogical space X is said to have the Baire property in X if one can
write A = U A M, where U is open and M is meager in X; and that a series > k, in G
is said to be unconditionally convergent if >  a,k, converges in G for any choice of the
sequence « = (ay,) € {0, 1},

Lemma 3. Let (A,), (By) be two sequences of subsets of G, and let (k,) C G be a null

sequence. Assume that A, U(k,+ By,) = G for eachn > 0, and put Z = ﬂ (U (ApUBp).
n>0 p>n

(a) If G is a Buaire space and if all the sets A,,, B, have the Baire property in G, then Z

1s comeager in G.

(b) If G is locally compact and all the sets A,,, B, are Haar-measurable, then G \ Z has
Haar measure 0.

(c) If the series > ky, is unconditionally convergent and if all the sets A,, B, are “sequen-
tially open” (which means that their complements are sequentially closed), then Z contains

a point of the form Zankn, where o, € {0;1}.
0

Proof.
(a) If all the sets A,,, B, are open (which will precisely happen in the proof of Theorem

17), the proof is immediate: the sets Z,, = U (Ap U Bp) are open in GG, and they are also

pzn
dense because k, — 0; hence Z = N, Z,, is comeager

In the general case, we only need to prove that all the Z,,’s are comeager in GG, and since
the Z,’s have the Baire property, it is enough to check that if W is a nonempty open
subset of G, then each Z,, N W is nonmeager in G. Let us fix n and W.

Pick a € W together with a neighbourhood of 0, U C G, such that U +a + U C W, and
choose p > n such that k, € U. If A,NW and B, W were both meager, then so would be
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ApN(kp,+a+U) (because k, +a+U C W) and (kp, + Bp) N (kp +a+U) (by translation);
this is impossible because k, +a+U CV C A, U (k, + B,) and, since G is a Baire space,
ky, + a + U is nonmeager. It follows that (A4, U B,) N W is nonmeager, and the proof is
complete.

(b) Let V be any open subset of G. If L is a compact subset of V', then m(L) < m(A,NL)+
m((kp+Bp)NL) = m(A,NL)+m(B,N(—kp+L)) for all p, where m is the Haar measure on
G. If pis large enough, then —k,+L C V', and we get m(L) < m(A,NV)+m(B,NV). Since
L is an arbitrary compact subset of I, it follows that m(V N (Up>n(Ap U Bp)) >m(l)/2
for all n. Consequently, m(Z NV) > m(V)/2 for each open set V C G.

Now, assume that m(G\ Z) > 0. Let K be a compact subset of G'\ Z such that m(K) > 0,
and choose an open set V' such that K CV and m(V \ K) < m(K)/3. Then m(V N Z) <
m(V \ K) <m(V)/3, which contradicts the preceding remark.

(c) By the unconditional convergence of ) k,, the series ¥(a) = > apk, is uniformly
convergent for o € {0, 1}

Let A be the compact abelian group (Z/2Z)"Y, and let m be the normalized Haar measure

on A. Identifying A with {0,1}", let ¢ : A — G be the map defined by ¢(a) = Z k.
n>0

The map ¢ is continuous, and since the sets A,,, B, are sequentially open, all the sets

Al = p7Y(A,), B, = ¢~ 1(B,) are open in A.

We have to show that ﬂ( U A;) # (), and this will be done if we can find an infinite
n. p>n

set A C N such that either Vn € A, m(A!,) > cor Vn € A, m(B],) > ¢, for some positive

constant c.

For each n € N, put Wén) ={a € A; a, =0} and Wl(n) ={acA; a, =1}.
Since A = 71 (A,) Up~Y(B, + k,) and m(Wl(n)) = 1/2 for all n, there exists an infinite
set A C N such that either m( A/, ﬂWl(")) >1/4,n € A or m(p~ (B, +kn) ﬂWl(n)) > 1/4,

n € A. In the first case we are done, so assume m(p~1(B, + k,) N Wl(n)) > 1/4 for all
n € A.

Observe that for any n € N,

o By + k) = {oz : Zaiki + (o — 5("))nkn € Bn}
1#En

where (") € A is defined by 6 =1 and 6™ = 0 if i # n. It follows that

0 (B + kn) N Wl(n) = Wl(n) N{a: ola—06")eB,} = (Wén) N B;L) + 00

Consequently, m(Bj, N Wo(n)) = m(p Y (Bn + ky) N Wl(")) > 1/4 for all n € A. This
concludes the proof.

Theorem 1. If G is completely metrizable, then G is a nice group.
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Corollary. Every Banach space is a nice group. In particular, R is a nice group.

We shall in fact prove two extensions of Theorem 1. The first one relies on a Baire
category argument, the second one is based on a measure-theoretic argument.

Theorem 1'. If G is metrizable and is a Baire space, then G is a nice group.
Proof.
Assume that G is metrizable and is a Baire space.

Since SSC functions on G are continuous (by metrizability of G), we have to show that if
f:G — (Y,6) is a continuous function which is not uniformly continuous, then f is not
SSC; let us fix such an f.

By assumption there exist £ > 0 and two sequences (uy, ), (v,) C G such that (u, —v,) — 0
and

6(f(un), fvn)) > 2, n > 0.

We want to construct two sequences (x,,) and (h;) such that h; — 0 as i — co and
0(f(zn + hi), f(x,)) >€ whenever <mn.
For n > 0, consider the open sets:
Apn={heG: §(f(un+h), f(un)) >e},

B,={heG: §(f(v,+h), f(v,) >e}.

For any h € G and each n > 0, it follows from the triangle inequality that either
5(f(un), f(un + h)) > € or 6(flvn + (= + uy + h)], f(v,)) > e. Thus, if we put
k, = —u, + v,, then

AnU(kn—i—Bn) = G for all n>0.

According to Lemma 3 (part (a)), for every neighbourhood V of 0 in G and for any infinite
set A C N, there exists an infinite set A’ C A such that either V.0 [, cx An # 0 or
VNN,en Bn # (). Since G is metrizable, we can construct by induction a null sequence
(h;) € G and a decreasing sequence (A;) of infinite subsets of N such that, for each i > 0,
either h; € ﬂneAi A, or h; € ﬂnEAi B,,. Extracting if necessary a subsequence of (A;), we
may assume that either for all 7 and for all n € A;,

5(f(un + h’z)af(u’n)) > €,
or for all ¢ and for all n € A;,
§(f(vn + h’z)a f(vn)) > €.

Put z,, = Umina, in the first case, and z,, = vpina, in the second case. The sequences
(), (h;) have the required property.

11



Remark.

The proof of Theorem 1’ gives in fact a more general result (under the assumptions that
G is metrizable and is a Baire space): if f : G = Y is a continuous function which is SSC
on some set A C G, then f is uniformly continuous on A.

Before giving a second extension of Theorem 1, we need another definition.

Definition 4. We shall say that G has the unconditional property (K) if each null sequence
(kn) € G has a subsequence (k/,) such that > &/ is unconditionally convergent.

As may be guessed, this terminology refers to another one: by dropping the un-
conditionality condition, one gets the so-called property (K), which seems to have been
introduced by C. Kli§ ([Kli]). Actually, as observed in [BKL], property (K) had already
been isolated by S. Mazur and W. Orlicz ([MzO] p. 169), who pointed out that it could
be used as a substitute for completeness (see [S] for precise results in that direction).
Property (K) has also been studied (among others) by J. Burzyk, I. Labuda and Z. Lipecki
(see e.g. [BKL], [Kli] or [LaLi]).

Clearly, any completely metrizable group has the unconditional property (K): if d is
a translation-invariant metric compatible with the topology of GG, then each null sequence
(kn) C G has a subsequence (k!,) such that d(0,%])) < 27", n > 0, and this entails the
unconditional convergence of > k], because (G, d) is necessarily complete (see [Kle]).

We should also add that a metrizable group with property (K) is necessarily a Baire
space; and if, in addition, the group has the Baire property in its completion, then it is
actually complete ([BKL]). For example, a Borel (or even analytic) subgroup of a Banach
space has property (K) if and only if it is closed, a result obtained independently of [BKL]
by A.R.D. Mathias (see [T] p. 31). On the other hand (if the Axiom of Choice is allowed),
there exist normed spaces with property (K) which are not complete (see [Kli] and [LaLi]).
Banach space with the Schur property, then G = (X, w) has the unconditional property
(K), but it is not a Baire space.

We can now state our second extension of Theorem 1. In view of the preceding
remarks, it is of interest in the nonmetrizable case only.

Theorem 1”. If G has the unconditional property (K), then G is a nice group.
Proof.

Assume that G has the unconditional property (K). Keeping the same notation as in the
proof of Theorem 1’, let f: G — (Y,6) be a function which is not uniformly sequentially
continuous, with “witnesses” (uy,), (v,) and 2e. We have to show that f is not SSC, and
we may assume that it is sequentially continuous (otherwise, there is nothing to prove).

As above, put A, = {z € G : §(f(un + 2), f(un)) > €}, Bo = {z € G : §(f(vn +
z),f(vn)) > 6}, and k, = —u, + v,. Then k,, — 0 and G = A, U (B,, — ky,) for all n.

By the unconditional property (K), we may assume that the series Y k,, is unconditionally
convergent. Put A = {0; 1}, and, for i > 0, define ¢; : A — G by p;(a) =, <, ankn.
By the unconditional convergence of Y kj,, the sequence (p;) converges to 0 uniformly on

12



A. Keeping in mind the proof of Theorem 1’, it is therefore enough to show that for each
i € N and each infinite set A C N, there exists an infinite subset A’ C A such that either

Mpear o7 H(A,) # 0 or Mpear o; (By) # 0. from Lemma 3 (part (c)).

At this point, some additional remarks about (K)-properties seem to be necessary.

(1) For any infinite set I C N, let us denote by [I]“ the family of all infinite subsets of I.
A subset A of [N] is said to be a Ramsey subset if there exists an infinite set I C N such
that either [I]“ C A or [I]|*N.A = (. Using the axiom of choice, it is not difficult to exhibit
non-Ramsey subsets of [N]“ (see [Bo] p. 159). On the other hand, it is known (see [CS])
that if the theory (ZFC + there exist inaccessible cardinals) is consistent, then the theory
(ZF 4 Dependent Choice + every subset of [N]* is a Ramsey subset) is also consistent.

Now, let (h;) be a null sequence in the topological abelian group G. Put A= {I € [N]¥ :
the series ), h; converges in G}. 1If I is an infinite subset of N such that [I]¥ C A,
then the series ) . ; h; is unconditionally convergent; and if [I]* N A = (), then the
sequence (h;);ecr shows that G does not have property (K). Therefore, in view of the above
metamathematical result, property (K) and unconditional property (K) may be equivalent.
Furthermore, the proof of the aforementioned result of Mathias given in [T] shows that if
all subsets of [N]“ were Ramsey subsets, then all metrizable abelian groups with property
(K) would be complete.

(2) It has already been observed that if X is a Banach space with the Schur property, then
G = (X, w) has the unconditional property (K). It turns out that the converse implication
is true. This follows easily from the classical

Orlicz-Pettis Theorem. If X is a Banach space, then a series Y x, in X is uncondi-
tionally convergent for the weak topology if and only if it is unconditionally convergent for
the norm topology.

Using Lemma 3, we can give a very short proof of the Orlicz-Pettis theorem.

By standard arguments, it is enough to prove that if X is separable and if ) x,, is uncon-
ditionally convergent in X for the weak topology, then ||z,|| — 0. So, assume that > x,,
is unconditionally convergent for the weak topology, and that ||z,|| > 3 for all n.

First, we observe that one can find a subsequence (k) of (z,) and a w*-null sequence
(kr) € X* such that (k, k,) > 1 for all n. To see this, fix a norm-dense sequence (d;) C X.
Since (zy,) is weakly null, one can construct by induction a subsequence (k) of (z,) such
that dist (kn,span {d; :j < n}) > 1 for all n. By the Hahn-Banach theorem, one can
find a normalized sequence (k}) C X* such that (k},k,) > 1, n > 0, and (k},d;) = 0
whenever j < n. Since (d;) is norm-dense in X, the sequence (k) is w*-null.

Now, put A,, = {x € X; (k},z) > 1/2}, and A = {x € X; (k}, k, —x) > 1/2}. The sets
A,, are weakly open in X, and X = A, UA! = A, U(—A, +k,) for all n. Since the series
> ky, is unconditionally convergent for the weak topology, it follows from Lemma 3 (part
(c)) that one can find a point @ € X such that a or —a belongs to infinitely many A/ s. In
other words, (k) ,a) > 1/2 or (k},a) < —1/2 for infinitely many n’s, which is impossible
since (k) is w*-null.
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To conclude this section, we show that nice groups can be quite ugly: nonmeasurable
subgroups of R and subgroups of R without the Baire property are nice!

Proposition 7 Let G be a dense subgroup of R. If G is nonmeager or not Lebesgue-null,
then G is nice.

Proof.

If G is nonmeager, then it is nonmeager in any nonempty open subset of R (by translation).
It follows easily that G is a Baire space, hence we may apply Theorem 1’.

Now, assume that G is not Lebesgue-null. Since SSC functions on G extend continuously
to R, we have to show that if f: R — R is continuous but not uniformly continuous, then
fie is not SSC on G. By the proof of Theorem 1', it is enough to check that if (k,) is a
null sequence of real numbers and if (A,), (B,) are two sequences of open subsets of R
such that R = A,, U (k,, + By,) for all n, then, for each nonempty open set V' C R, there

exists an infinite set A C N such that either VNG N ﬂ A, #Dor VNGN ﬂ By, # 0.

neA neA
This follows from Lemma 3 (part (b)).

Remark. We are unable to decide whether every compact group is nice.

IV - Nasty groups

In this last section, we exhibit several examples of groups where strong sequential
continuity does not imply uniform sequential continuity.

Below, we shall say that G is nasty for some metric space Y if there exists a function
[ € SSC(G,Y) which is not uniformly sequentially continuous, and that G is a nasty
group if it is nasty for Y = R.

To produce examples of nasty groups, we need some simple way of constructing non-
trivial SSC functions. To this end, we introduce again some terminology.

Definition 5. Let (Y,J) be a metric space, and let (fx) be a sequence of functions from
G into Y. We say that the sequence (fx) is equi-SSC if, for any null sequence (h;) C G,

sup[igf 5 (fr(z + hy), fk(a;))} — 0 as n — oo, uniformly on G.
Ek Li<n

Basic example. If (gi) is a sequence of SSC functions from G into R such that, for each
h € G we have gi(x+ h) — gi(x) — 0 as k — oo, uniformly on G, then the sequence (gy) is
equi-SSC. This happens, for example, if (gi) is a sequence of continuous homomorphisms
from G into R which converges pointwise to 0.

Proof.

Let (gx) be as above, and fix a null sequence (h;) C G and a positive number €.
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Choose a positive integer K¢ such that sup,cq |gx(x + ho) — gx(z)| < € if & > K. Since
go, .- ., gk, are SSC, there exists an integer N such that for each &k < Ky and all z € G,
we have inf,<n |gx(z + hi) — gx(2)| < e. Then inf;<n |gx(z + hi) — gx(z)| < € for each
x € G and for all k.

Lemma 4. Let (Y,| |) be a normed space, let (gr) C Y be a uniformly bounded,
equi-SSC sequence of functions, and let b : G — R be bounded and uniformly sequentially
continuous. Let also (ug), (vx) C G, and define f, : G =Y by fr(z) = b(ug +x) gk (vk + ).
Then (fx) is equi-SSC.

Proof.

One can write | f (z+h)— fr(z)] < C(|b(ur+z+h)—b(up+z)|+|gk (v +z+h) —gi(ve+2)| ),
for some constant C.

Definition 6. Let (Fj) be a sequence of subsets of G. We say that (F}) is separated if
there exists a neighbourhood of 0, V' C G, such that (Fy, + V)N FE, = 0 if k # 1. More
generally, we say that (Fy) is quasi-separated if there exists a set V' C G satisfying the
following properties:

(i) V' “absorbs” every null sequence (which means that for every null sequence (h;), there
exists an integer i such that h; € V for all i > ig); in particular, 0 € V.

(11) (Fk—l-V)ﬂFl:@lfk#l

Clearly, the two notions coincide if G is metrizable. On the other hand, if G = (1, w)
(the space l; with the weak topology) and if (eg) is the canonical basis of 1, then the
sequence (B(ek, 1/ 3)) is quasi-separated because it is separated for the norm topology and
[1 has the Schur property, but it is not separated.

Of course, if (Fy) is quasi-separated, then the F}’s are pairwise disjoint.

Lemma 5. Let (Y, | |) be a normed space, and let (f) be an equi-SSC sequence of functions
from G into Y. Assume that the fi,’s have quasi-separated supports, and put f =3, <, fx.
Then f is strongly sequentially continuous. -

Proof.

Put Fj = supp fx, k > 0, and choose V according to Definition 6. Clearly, we may assume
that V is symmetric. For any x € G, there is at most one integer k such that x € Fy, + V.
Let us denote this integer by k(z) if it exists, and put k(z) = 0 if there is no such k.

For each null sequence (h;) C G, there is an integer ig such that h; € V if i > 4. Then,
for any z € G, fr(z) = 0 = fr(x + h;) if i > ip and k& # k(x). Thus, for i > iy, one
can write |f(z + h;) — f(2)| = | fu@) (x + ki) — fr@) (z)| for all z € G. The lemma follows
immediately.

Proposition 8. Assume that G is not totally bounded. For any normed space (Y,| |), the
following assertions are equivalent.

(1) G is nasty forY.
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(2) There exist an equi-SSC sequence (gi) C Y, a null sequence (hy) C G and a positive
number € such that g;(0) = 0 and |gr(hi)| > € for all k.

Proof.

Assume that (2) holds for some sequence (gi). Replacing gx by gi/1+ |gx|, we may assume
that the sequence (gi) is uniformly bounded.

Since G is not totally bounded, there exist a sequence (xx) C G and a neighbourhood of
0, U C G, such that —z; + =, ¢ U if k # [. Choose a symmetric neighbourhood of 0,
V C G, such that V +V 4+ V C U, and let d be a uniformly continuous pseudometric on
G such that {z € G: d(0,z) <1} C V. Finally, let b, : R — R be a uniformly continuous
function such that b,(0) = 1 and suppb, C [0,1]. Define b : G — R by b(z) = b, (d(0,z)).
The function b is bounded, uniformly continuous, and b(0) = 1. Moreover, suppb C V, so
that (zg 4+ suppb+ V) N (z; +suppb) = D if k # 1.

For each k > 0, define f;, : G = Y by

fe(®) = b(—zk + ) gr(—21 + ) .

By Lemma 4, the sequence (fx) is equi-SSC, and since supp fr C xx + suppb for all
k, the fr’s have separated supports. Hence, by Lemma 5, the function f = >  fi is
SSC. On the other hand, this function is not uniformly sequentially continuous because
f(zg 4+ hg) — f(xk) = b(hg) gk (hy) if k is large enough, whence f(xg + hg) — f(2x) does not
tend to 0. Thus, G is nasty for Y.

Conversely, assume that G is nasty for Y, and let f : G — Y be an SSC function which
is not uniformly sequentially continuous. Choose (zx) C G, (hx) — 0 and € > 0 such
that |f(xy + ki) — f(xr)| > € for all k. The sequence (g;) C Y defined by gp(z) =
f(zr + ) — f(zg) is equi-SSC, and (gx), (hi) satisty (2).

Corollary. If G is metrizable, or if G is not totally bounded, then G is a nasty group if
and only if it is nasty for some metric space Y .

Proof.

We know that metrizable, totally bounded groups are nice (Corollary 2 of Proposition 2).
Hence we may assume that G is not totally bounded.

If G is nasty for some metric space, it is also nasty for some normed space, by Remark 4
following the definition of SSC functions. For this normed space (Y,| |), property (2) is
satisfied. Now, the sequence (|gx|) shows that property (2) is also true for R; hence G is a
nasty group.

Remark. We do not know if Proposition 8 is still true when G is totally bounded (and
of course, nonmetrizable).

Recall that if H is a locally compact abelian group, a compact set L. C H is said
to be a Dirichlet set if there exists a sequence of characters () tending to oo such that
Yk (z) — 1 uniformly on L. The classical Dirichlet theorem asserts that finite subsets of T
are Dirichlet sets, and the same is true in any second-countable nondiscrete LCA group.
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Moreover, it is well known that there exist uncountable Dirichlet sets; actually, in the
sense of Baire category, “most” compact subsets of any second-countable nondiscrete LCA
group are Dirichlet (see [KeLo]).

Definition 7. If G is a subgroup of R, we say that G is Dirichlet-like if there exists a
sequence of positive numbers ()\y) tending to infinity such that e?*** — 1 for all z € G.

For example, the group generated by an increasing sequence of Dirichlet sets is
Dirichlet-like, by a standard diagonal argument. In particular, any countable subgroup
of R is Dirichlet-like, and R has many uncoutable Dirichlet-like subgroups.

If G C R is Dirichlet-like with “witness” (M), then, for each fixed h € G, sin (Ag(z +
h)) — sin (Agx) — 0 uniformly on G: this follows from the inequality [sinu — sinv| <
|1 — e**=)|. Thus (according to the basic example), the sequence (gz) € R® defined
by gr(z) = sin (A\gx) is equi-SSC. Moreover, if G is dense in R, then one can find a null
sequence (hy) C G such that sin (Aghg) — 1 as k — oco. By Proposition 8, we obtain

Proposition 9. Fvery Dirichlet-like, dense subgroup of R is a nasty group.

Actually, as announced in Section IT (Proposition 4), a bit more can be said. To show
this, we first need another lemma.

Lemma 6. Let G be a subgroup of R and let (gx) € RE be a uniformly bounded sequence
of functions such that, for each fired h € G, gi(x + h) — gx(z) — 0 uniformly on G (as
k — 00). Let also b : R — R be a continuous function with support in [—1,1]. Put
Ji(x) =b(x—3k)gr(x), k >0,z € G, and let f =)+, fx- Then f is eventually regular.

Proof.
The proof is very similar to that of Lemma 5, but we give the details anyway.

If v € Upey Bk —4/3,3k +4/3], let us denote by k(z) the unique integer & > 0 such that
x € [3k—4/3,3k+4/3]; otherwise, let k(x) be the integral part of |z|. Clearly, k(z) — 400
as |r| — +oo. Consequently, one has lim|;| 500 [gk(x) (T + ) — gr(w)(x)| = 0 for each fixed
hed.

Now, if |h| < 1/3, then f(z +h) — f(z) = fe@)(x +h) = fr@) (z) for all z € G. Therefore,
one can write

@+ 1) = £@)] < C (|gr) @+ h) = gy ()] + [bz — 3k(z) + h) — bz = 3k(2))] )

for some absolute constant C.

Hence,

limsup |f(z + h) — f(z)| < C||b— byl forall h e GN] —1/3,1/3.

|z|— o0
This completes the proof.
Theorem 2. Assume that G is a Dirichlet-like dense subgroup of R.
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(a) There exists a function f: G — R which is uniformly continuous on bounded sets and
eventually regular, but not uniformly continuous

(b) There exists a function f : G — R which is SSC but not eventually regular.
Proof.

(a) Let (Ar) be a sequence of positive numbers “showing” that G is Dirichlet-like. Then,
for each h € G,

sin(Ag(x + h — 3k)) — sin(Ag(z — 3k)) — 0 as k — oo, uniformly on G.

Now, let b : R — R be any bounded, continuous function such that b(0) =1 and supp b C
[—1,1]. For each k € N, define f;, : G — R by

fr(z) = b(x — 3k) sin(Ax(z — 3k)).

By Lemma 6, the function f = }_ fi is eventually regular. Moreover, f is uniformly
continuous on bounded sets (the same formula defines a continuous function f : R — R),
and it is not uniformly continuous because A\ — .

(b) We keep the notation of (a).

Let (ur) be a sequence of positive numbers such that each py belongs to the set {\;, i >
0} and each \; is repeated infinitely many times in the sequence (ug). As before, put
fr(x) = b(x — 3k) sin (ux(z — 3k)), and f = > fx. Put also gx(x) = sin (Ax(z — 3k)) and
Jr(z) = sin (ug(x — 3k)), z € G.

According to the basic example, the sequence (gx) is equi-SSC, hence the sequence ( fk)
is equi-SSC as well (because (fx) is “contained” in (gg)). Therefore, by Lemmas 4 and 5,
the function f is strongly sequentially continuous.

On the other hand, if |h| < 1, then f(3k + h) — f(3k) = b(h) sin(urh) for all k € N, hence

limsup |f(z +h) = f(z)] > [b(h)] 1imksup [sin (ph)]

T——+00

> [b(h)] sup Jsin (Aih)|

because each )\; is repeated infinitely many times in the sequence (ug).

Since \; — 400 and G is dense in R, one can find a null sequence (h;) C G such that
Aih; — w/2, and we get limsup |f(z + h;) — f(x)| > 1/2 for sufficiently large i. Thus, f is

r——+00
not eventually regular.

Remark.

Denote by D, N, T respectively the families of Dirichlet-like, nasty, (meager+Lebesgue-
null) dense subgroups of R. By Theorem 2 and Proposition 7 (section II), D C N C T.
Moreover, it is clear that a dense subgroup of a nasty group is itself nasty. Thus, nastyness
is a “smallness” property which lies between D and Z. We don’t know if both inclusions
are proper.
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Now, we turn to topological vector spaces.

Theorem 3. Let (X, 1) be a topological vector space, and denote by X* the dual space of
X. Assume that there exist a null sequence (xx) C X and a w*-null sequence (z}) C X*
such that (x3,xr) does not tend to 0 as k — co. Then G = (X, T) is a nasty group.

Proof.

According to the basic example, the sequence (z}) C RX is equi-SSC. Hence, the result
follows from Proposition 8.

Corollary 1. Let (X, || ||) be a normed space, and assume that X has a countable algebraic
basis. Then G = (X, || ||) is a nasty group.
Proof.

Let (e) be a countable algebraic basis for X. By the Hahn-Banach theorem, we can choose
a sequence (zj) C X* such that ||z}|| — oo and (z},e;) = 0 whenever j < k. Since (ey) is
an algebraic basis for X, the sequence (z}) is w*-null; and since ||z}|| — oo, one can find a
null sequence (z3) C X such that (z},zy) =1 for all k. Hence we may apply Theorem 3.

Corollary 2. If X is a separable Banach space, then (with the notation (X, w) for the
space X equipped with the weak topology) the group G = (X,w) is a nasty group if and
only if X fails the Schur property.

Proof.

The “only if” part is a consequence of Theorem 1 in Section III: if X has the Schur property,
then strong (resp. uniform) sequential continuity for the weak and the norm topology of X
are equivalent, hence (X, w) is a nice group, by Theorem 1. Alternatively, one can apply
Theorem 1”.

To prove the converse, assume that X fails the Schur property. Then one can find a weakly
null sequence (z5) C X and a w*-null sequence (z}) C X* such that (z},zx) > 1 for all &
(see the proof of the Orlicz-Pettis theorem given in section IIT). Thus, Theorem 3 applies
again.

Notice that the same proof gives that if X is a separable Banach space failing the
Schur property, then (X*, w*) is also a nasty group.

Remarks.

(1) In view of the Josefson-Nissenzweig theorem (see [Di]), Corollary 2 may be true even
if X is nonseparable. In any case, the implication (Schur property)=-((X,w) is nice) is
always true.

(2) One can construct very “explicit” functions which are SSC but not uniformly sequen-
tially continuous. Here is an example on G = (cp,w). Let b : R — R be any “bump”
function supported on [—1,1]. Define f : ¢c¢ — R by f(x) = b(xg — 3k) min(1, |xg|) if
|zg — 3k| <1, and f(x) = 0 otherwise.

(3) The definition of “eventual regularity” makes sense on groups of the form (X, w), where
X is a Banach space. In that context, the analogue of Theorem 2 (b) is true: if X (is
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separable and) fails the Schur property, then there exist SSC functions on G = (X, w)
which are not eventually regular.

Our very last result calls for some preliminary comments.

We have just seen that if X is a Banach space with the Schur property (for example,
if X = 1), then SSC functions on G = (X, w) are uniformly sequentially continuous.
Besides, by Corollary 3 of Proposition 2, we also know that if X does not contain [y (for
example, if X = ¢y), then SSC functions on (X, w) are uniformly sequentially continuous
on bounded sets. It is therefore natural to wonder if there exist a Banach space X and
an SSC function on (X, w) which is not uniformly sequentially continuous on bounded
sets. Surprisingly, an example can indeed be constructed on X = ¢y X I; (with norm

[|(2, )|l = Max ([|z]leo |yl]2.))-

Proposition 10. There exists a function f : cog X 1 — R which is strongly sequentially
continuous on cy X ly for the weak topology, but not uniformly sequentially continuous on
the unit ball of co x I (for the weak topology).

Proof.

Let b : I — R be defined by b(y) = 1 — 3min(1/3,||y||1). By Schur’s theorem, b is
uniformly sequentially continuous on (I;,w). Moreover, supp b is the ball B(0,1/3). Hence,
again by Schur’s theorem, if we denote by (ex) the canonical basis of I;, the sequence
(ex + suppb) = (B(ek, 1/3)) is quasi-separated. Now, define f : ¢g x [ — R by

fla,y) =D @by —ex),

k>0

where T, = min (1, |zx|). The function f has the required properties: it is SSC on ¢y X [3
by Lemmas 4, 5, and it is not uniformly sequentially continuous on the unit ball because
f(hg,ex) — f(0,er) =1 (where (hy) is the canonical basis of ¢g).

To conclude this paper, let us say a few words about noncommutative groups.

On a nonabelian group G, one can obviously define two kinds of strongly sequentially
continuous functions: “left-SSC” functions, and “right-SSC” functions. These two notions
should correspond respectively to left and right uniform (sequential) continuity. Since the
left-uniformity of G is usually defined by the sets {(z,y) : x~'y € V} (where V ranges
over all neighbourhoods of the identity), left-SSC functions on a set A C G will be those
for which Zlgg (f(zh;), f(z)) — 0 uniformly on A (for each null sequence (h;)).

With this convention, the “left” (or “right”) analogues of Proposition 1, Proposi-
tion 3 (Section I), Theorem 1’ (Section III) and Proposition 8 (Section IV) are true, with
exactly the same proofs. Moreover, Proposition 2 (Section I) holds provided one consid-
ers “two-sided” Cauchy sequences. Finally, if G is metrizable and totally bounded, then
each sequence in G contains a two-sided Cauchy subsequence. Therefore, totally bounded
metrizable groups are nice, whence Corollary 3 of Proposition 2 is still valid in the non-
commutative case.
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