SHIFT INVARIANT SUBSPACES WITH ARBITRARY
INDICES IN ¢ SPACES

EVGENY ABAKUMOV AND ALEXANDER BORICHEV

ABSTRACT. We construct right shift invariant subspaces of index
n, 1 <n < oo, in P spaces, 2 < p < 0o, and in weighted P spaces.

0. Introduction. We take as our starting point Beurling’s 1949 Acta
Mathematica paper [6], where a complete description of the (right) shift
invariant subspaces of £2 was found. The space ¢? consists of all square
summable sequences (ag, a1, as, ... ), and the shift is the operator S,

S(Gg, ai, ag, . . ) = (0, ag, A1,y - .. ),

which acts isometrically on the Hilbert space 2. A linear subspace M
of 2 is said to be shift invariant provided that it is closed, and Sa € M
whenever a € M. To a sequence a = (ay, a1, G, ... ) We may associate
a convergent power series

f(z) = Zanz”, 2| <1,
n=0

and a may be recovered from the holomorphic function f as the se-
quence of its Taylor coefficients. In this fashion, we may identify ¢?
with the Hardy space H? of functions holomorphic in the open unit
disc D having square summable Taylor coefficients. The action of the
shift operator S carries over to H?: Sf(z) = zf(z), the operation of
multiplication by the independent variable. Beurling’s theorem states
that each shift invariant subspace M of ¢? is either the zero subspace
{0}, or corresponds to a subspace of H? of the form @H?, where ¢
is an inner function. An inner function is by definition a function in
H? whose radial boundary values have modulus 1 almost everywhere
on the unit circle T. At the end of his paper, Beurling mentions that
it would be desirable to have a similar understanding of the lattice of
shift invariant subspaces of the spaces P, which consist of p-th power
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summable sequences, for p other than 2. To this day no complete char-
acterization of the shift invariant subspaces in 7, p # 2, is known;
the classical case p = 1, in which case /P is a convolution algebra, is
particularly difficult.

In this paper, we demonstrate that for 2 < p < oo, the lattice of
invariant subspaces in /P has a very different flavor than for p = 2. We
first need some terminology. Let M be a shift invariant subspace in
7 where p is fixed in the interval 0 < p < oo (for 0 < p < 1, ¢ is
only a quasi-Banach space, and not a Banach space). The operator S
being an isometry on /7, the image of M under S is a closed subspace
of M. The dimension of the quotient space M/SM is called the index
of M. It is clear from Beurling’s classification that each shift invariant
subspace of 2 has either index 0 (if the invariant subspace is the zero
subspace) or 1 (in all other cases). The same is true for /7 if 0 < p < 1,
as follows from standard arguments based on the fact that these spaces
are convolution algebras (quasi-Banach algebras for 0 < p < 1, and
Banach algebra for p = 1). Probably, it is so for 1 < p < 2 as well;
however, that appears to be unknown up to this point.

Our main result is the following one: for 2 < p < oo, and for a given
number n = 2,3,...,00, there is a shift invariant subspace M of (P
having index n. This means that the shift on 7, with 2 < p < oo, shares
some characteristics of the Bergman shift, that is the right shift on a
weighted ¢2? space, the Bergman space, which consists of all sequences
(ag, a1, as,...) with 3 >° Jla,[*/(n+1) < co. An important difference,
however, is that the shift is isometric on /7, whereas it is contractive on
the Bergman space. The existence of invariant subspaces of arbitrary
index in a family of weighted ¢? spaces including the Bergman space was
first proved by Apostol-Bercovici-Foiag—Pearcy [4] in 1985. For other
results in this direction see [10], [7] and the references listed there.

For a subset N of the Bergman space (or any of the other spaces
encountered so far), we consider the smallest shift invariant subspace
M containing N, and we say that N generates M. A general argument
(see, for instance, [12]) shows that the cyclic multiplicity of a shift in-
variant subspace — defined as the smallest cardinality of a generating
subset — cannot be less than the index. Furthermore, every invariant
subspace of index n contains invariant subspaces of index k£ with cyclic
multiplicity £ for 1 < k£ < n. The Aleman-Richter-Sundberg general-
ization [3] of Beurling’s theorem states that every proper shift invariant
subspace M of the Bergman space is generated by M & SM, which in
this case can have any dimension n = 1,2,... ,00. It follows that the
cyclic multiplicity equals the index for shift invariant subspaces of the
Bergman space. A recent result of Atzmon [5] shows that in ¢! the
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story is very much different from what is happening in the Bergman or
Hardy space: although all proper shift invariant subspaces have index
1, they can have arbitrarily large cyclic multiplicity n = 1,2,... ,00.
Our results imply that /7 spaces, 2 < p < o0, contain invariant sub-
spaces of arbitrary cyclic multiplicity.

The shift invariant subspaces constructed in this paper are the so-
lution sets for convolution equations determined by lacunary series in
the dual spaces. The method used is related to an investigation of the
approximation ability of lacunary series given in [1], and the results
improve upon those of [4] and [7].

In addition to the spaces mentioned so far, we shall consider weigh-
ted spaces /P of sequences, and weighted versions of the limit case c;
¢p is the space of the sequences converging to 0.

We may consider the elements of the sequence spaces mentioned
earlier as holomorphic functions on the unit disc via power series.
It is worth mentioning that the shift invariant subspaces of index
2,3,...,00 we construct in the paper have no common zeros in the
unit disc D. Nikolskii conjectured in [11] that every Banach space of
analytic functions in the unit disc satisfying certain natural conditions,
contains shift invariant subspaces that are not determined by the com-
mon zeros of their elements. Here we prove this conjecture in our scale
of weighted (P spaces. Note that the existence of proper zero-free in-
variant subspaces of index 1 is of special interest because of recent
results of Esterle-Volberg on shift biinvariant subspaces in weighted (2
spaces on Z [9]. However, the method we use does not permit us to
produce zero-free invariant subspaces of index 1.

The plan of the paper is as follows. The indices of the solution sets
of (systems of) convolution equations are calculated in Section 1. Our
construction of invariant subspaces of arbitrary index in weighted /7
spaces is described in Section 4, and the proof is given in Sections 5-
7. However, before that, in Sections 2 and 3, we provide a simplified
version of our argument for the case of invariant subspaces of index 2
in standard /P spaces.

Precise conditions on weights and exponents p are discussed in Sec-
tion 8. The absence of common zeros for the elements of the subspaces
of big index we construct is established in Section 9. Our main theorem
is given in Section 10. Finally, in Section 11, we discuss some related
results and formulate several open questions.

The authors are thankful to Hakan Hedenmalm for helpful sug-
gestions concerning the presentation of the introduction, to Kenneth
Davidson for a helpful remark, and to the referee for his detailed criti-
cism.
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1. Sets of solutions of convolution equations. Let B be a reflexive
Banach space of (one-sided) sequences, and let B* be its dual space.
We assume that the functionals 6} : (ag,ai,...) — a,, n > 0, belong to
the dual space B*, and that the right shift operator S acts continuously
on B. We do not suppose that S is bounded below on B. Therefore,
we modify somewhat the definition of index given in the introduction.
Given an invariant subspace E of B, ind E is the dimension of the
quotient space E/Clos SE.

For a sequence a = (ag,ay,...) denote by supp (a) the set of n €
Z, ={0,1,2,...} such that a, # 0. For subsets X in a linear topo-
logical space B and Y in its dual space B* denote by X+ and Y, their
annihilators in B* and in B respectively.

Given a family fi, k € IC, of elements in B*, denote

[fe, k € K] = Clos Lin {S*'f; : i > 0, k € K}
Every element x € B* generates a convolution equation in B,
(z,8"a) =0, n>0.
Its set of solutions is an S-invariant subspace of B,
], ={a € B: (z,S8"a) =0,n > 0}.

By the Hahn—Banach theorem, every S-invariant subspace of B is an
intersection of subspaces [z],. Note that for a wide class of spaces B
a result of Richter ([12], Theorem 3.16) claims that the intersection of
any family of S-invariant subspaces of B of index 1 has index less than
or equal to 1. Therefore, when trying to find S-invariant subspaces of
higher indices we can start with subspaces [z] .

Lemma 1.1. Let z € B*. If 6 ¢ [S*z]| # [S**x], then ind [S*z], > 2.

Proof. Denote E = [S*z],. Then E is a closed S-invariant subspace of
B, E+ = [S*z]. Furthermore, C3; + [x] C (Clos SE)*. Using general
relations (X/Y)* 2 Y+/X+ dim X/Y = dimY~+/X1, where Y C X
are closed subspaces of a locally convex topological linear space, we get

ind £ = dim E/ Clos SE = dim(Clos SE)*/E+ >
dim(Co; + [z])/[S*z] = dim(Cdy + Cx + [S*z])/[S™z].

The last dimension is less than 2 if and only if a non-trivial linear
combination of §; and z belongs to [S*z], and then either 6j € [S*z] or
S*z € S*[S*z| C [S*2z], and hence [S*z] = [S*z]. O

From now on we assume that (SB)* = Cd;, or, equivalently, that
ker S* = Cd;.
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Lemma 1.2. Consider an element x € B* \ {0} such that §; ¢ [S*x].
Suppose that S* is bounded below on [z]. If [S*z] = [S*%x], then
ind [S*z], =1, otherwise ind [S*z]|, = 2.

Proof. Our condition on S* implies that [S*z] = S*[z]. Therefore,
defining as above E = [S*z], we have (Clos SE)* = C§% + [z]. Indeed,
ify € B*, (y,SE) = 0, then (S*y, [S*z]| ) = 0, and S*y € [S*z] = S*[z],
y € Co5 + [z]. As in the proof of Lemma 1.1, we get

ind £ = dim(C§; + Cx + [S*z])/[S*z] < 2.

Finally, the equality [S*z] = [S*?z] holds if and only if a non-trivial
linear combination of 6§ and z belongs to [S*z]. O

Proposition 5.9 in [2] provides results similar to those of Lemmas 1.1
and 1.2; however, our assumptions on S and B are somewhat weaker.
In particular, we do not assume S to be bounded below on B.

Lemma 1.3. For some 2 < n < oo consider x, € B*, 1 < k < n. If
S* is bounded below on [z, 1 < k < n|, and no (non-trivial) finite linear
combination of 0§ and x, 1 < k < n, belongs to [S*zg, 1 < k < n],
then

ind [S*zg, 1 <k <n], =n.

Proof. We argue as in the proof of Lemma 1.2. O

Finally, suppose that S is bounded below on B. Then SB is closed,
S* is a bijection between the Banach spaces B*/Cé; and B*, and
S*B* = B*. Given an S*-invariant subspace F of B* we define its
index ind* F' as dim F//S*F. The following result describes a relation
between the index of an S-invariant subspace in B and that of its an-
nihilator.

Proposition 1.4. Let E be a closed S-invariant subspace of B. Then
) ind* B+ if ECSB
ind £ = ) .
1+ ind* B+ if E ¢ SB.

Proof. Put G = {xr € B* : S*x € E+} = (SE)* > §;. Then G and
S*G = E* are closed S*-invariant subspaces of B*, and

ind E = dim(SE)*/E+ = dimG/S*G.
Since S* is a bijection between the Banach spaces G C B*/C§; and
S*G, we obtain that dimG/S*G = dim S*G/S**G if §; € S*G or,
equivalently, if £ C SB, and that dim G/S*G = 1 + dim S*G/S**G if
de & S*G. O
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2. Model case: a lacunary series in 7, p > 2. To apply the crite-
ria obtained in the previous section to weighted (¥ spaces we produce
lacunary series with good control on the approximation ability of their
left shifts. To explain our approach in a simpler case we start with
producing invariant subspaces of index 2 in the standard spaces /7.

The operator S acts isometrically on /2. The space dual to 7 is (9,
1/p+1/q =1, with the Cauchy duality

({bn}nz0, {an}tnz0) = Zanbn- (2.1)

n>0

By Lemma 1.3, to produce an invariant subspace of index 2 in (7
it suffices to find an element f € ¢ such that no (non-trivial) finite
linear combination of 6 and f can be approximated by finite linear
combinations of S*'f, i > 1. This last condition is reformulated as
follows:

inf dist (f,ZciS*if> >0, (2.2)
i>1
and
inf dgt (53, Z czS*Zf> > 0, (23)
i>0

where the infima are taken over all finite sums.

Take an Hadamard lacunary sequence (of order 2) D = {d,},>1 of
Zy, that is dy = 0, d,y1 > 2d,, n > 1. Fix a sequence of positive
numbers {a, },>; in 7, such that

> Rh <27, (2.4)

n>1

R, = [a%/ Z a?n] l/q.

m>n

where

For a possibility to find such a sequence {a,} see Section 8 (this is the
place where we use the condition p > 2 > ¢).
Denote by e(j), 7 > 0, the standard basis in £9, and set

f= Z ane(dy).

For simplicity, we restrict ourselves to proving only relation (2.2).
This will be done in the next section. Relation (2.3) is proved in a
similar manner.
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To prove (2.2) and analogous inequalities in the general weighted ¢?
case we need to establish some properties (partially contained in [1],
Section 1) of the left shifts of D.

Lemma 2.1. (a) Ifa,b € Z,, a # b, then
card (D —a)N (D —-b)NZ,) < 1.
(b) Ifa,b € Zy, a<b, {z} =(D —a)N(D—>b)NZ,, then
(D—=0b)N[0,z—1]=0.

() Ifa,b,c € Ly, {a} = (D—a)N(D—b)NZy, {y} = (D—b)N (D~
)NZy, a<b,b#c, x#y, thenb<candx <y.

(d) If ag,...,an_1 are pairwise different elements of Zy, a, = ag, and
(D—=ap_1)N(D—ax)NZy#0, 1 <k <n, then

() (D—a)NZ, #0.

1<k<n
Put A = USZO([dS-i-l - ds, ds+1] N Z+)
(e) Suppose that ag, ... ,a, are pairwise different elements of Z, (D —

ak,l) N (D — ak) N Z+ = {J,‘k}, 1 S k S n, ro = min Unggn((D —
ag) NZ) € (D — ap) N Zy, and that the points x, 0 < k < n,
are parrwise different. Then ag < ... < Gy, o < ... < Tp, Tp =
min((D —ag) NZy). Furthermore, (D —ax)NZy C A, 1<k <n,
(D— (lo) ﬂZ+ C AU{IO}

Proof. (a) If z,y € (D—a)N (D —=10),0 <z <y, a<b, then b+
y,a+vy,b+x € D, and we obtain three inequalities b+ vy > a + ¥,
b+y>b+zx, b+y <a+y+ b+ x; together they contradict to
the lacunarity condition on D.

(b) fz+a,x+be D, b>a,b+s € D, forsome < s < x, then as in
(a) we obtain three inequalities z +b < x+a+b+s, x+b > z+a,
x +b> b+ s; together they contradict to the lacunarity condition
on D.

(c) If b > a, b > ¢, then by (b), both z and y are minimal elements of
(D —b)NZ,. Since x # y, we get a contradiction. The inequality
x < y follows from (b).

(d) Denote {zx} = (D —ag_1) N (D —a;) N Zy. If 2, = x44, for some
k, then we can just remove the corresponding a;. Thererefore,
without loss of generality we assume that every two consecutive xj
are different. Furthermore, we may suppose that ag < a;. Applying
part (¢) to ag,ar, and ag, we get ag < a1 < ay; iterating, we obtain
ag < a,. This contradiction shows that all x; coincide.
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(e) By (b) we have ay < a;. By (c¢) we have a; < ... < a, and zy <
... < Zp. Since g = min((D—ag)NZy), we get (D—ag)NZy C AU
{zo}. By (b), (D—ax)N[0, z,—1] = 0, z, = min((D—ax)NZ), and
an induction argument shows that (D —ay) NZy C A, 1 <k <n.

U

3. The proof of relation (2.2). We assume that for a finite subset
Q of Z,, 0 € Q, and for some coefficients ¢;, © € ), with ¢g = 1, we

have
IS easy
1€Q

and try to reach a contradiction. The norm in this section is the norm
in (9.

1
| <571 (3.)

Construction. We are going to introduce a structure on the set Q
describing the intersection relations for the sets

supp (8*'f) = (D — i) N Zy.
Given i € (), consider the minimal n such that for some
io=0,%1,...,0, =1 € Q,
we have
(D =) N (D —idpq) NZy #£ 0, 0<t<n,

and denote (i) = n; if there is no such n, put 6(i) = co. Denote by
Qo the set of i € @ with 0(i) < oco.

In an inductive process, at the step s, s > 1, consider all 7 € () with
0(i) = s. Clearly, for every such i there exists i' € Q with 0(i') = s —1
such that

(D—4)N(D—1i")NZ, #0.
By Lemma 2.1 (c), we prove by induction that ¢ > i'.

Furthermore, put (i) = i'. By Lemma 2.1 (d), ¢(¢) is uniquely
defined. Otherwise, if

(D—i)N(D—-=iYNZy#0, (D—i)N(D—i"YNZ, #0,
with 6(i') = 0(i") = s — 1, ¢’ #i", then by the definition of #, we have
two sequences {7}, {i/} of elements of @ with i) =if =0, 7,_, = 7,
i"_, =1", such that

(D —= i) N (D —igyr) N2y # 0,

0<t<s—1.
(D—i;’)ﬂ(D—igl)ﬂZ+7€®,} =ree
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If 7y =4, and 7;_, # iy, for some 0 < ¢ < s — 1, then the system

{i} Ui, bicu<s—1 U {iy hivi<u<s—t

would satisfy the conditions of Lemma 2.1 (d), and we would get a
contradiction.
If

(D—=9)N(D—1)NZy ={z},

then we put ¢(i) = x. By Lemma 2.1 (a), ¢(i) is well-defined.
As a result of the construction, we define ¢ and ¢ on Qo \ {0}. Again
by Lemma 2.1 (d), if for some 4,i" € Qq, i # ', i # 0, we have

(D—i)N(D—-i)YNZy #0,
then either 0(i) = (') + 1, p(i) =" or 8(i') = (i) + 1, ¢(i') =i, or
0(1) = 0("), p(i) = ¢(i') and (i) = ¥ (i").

We start with inequality (3.1). Since

(Uswps™n)n( U swpsn) =o.

1€Qo i€Q\Qo

IS s <Y asts
1€Qo 1€Q
Given a subset (); of (), define a sequence {w,gj )},«20 as follows:

L) lif card{i € Q; : 7€ D —i} > 1,
1/2 otherwise.

we have

r

Clearly,

HW(O) Z CZS*zf

1€Q0

<[> asyl.
1€Qo

where the sequences in the left-hand side are multiplied elementwise.

Now, in an inductive process, for every m > 0 such that @Q,, # {0},
we pick an element ¢ € @, with maximal value #(i). Then i € @, \
©(Qm \ {0}), we denote ig = (i), y = (i), consider all the elements
ij € Qm, 1 < j <r,such that ¢(i;) = y, and put Qpi1 = Qm \ {7; :
1 < j <r}. Let us verify that

Hw(m-i-l) S ciS*if‘ < me) Y astf

1€EQm+1 1€EQm

. m>0. (3.2
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Define ¢; by y +i; = dy;, and denote A; = a;;, Cj =¢;;, 0 < j <.
Inequality (3.2) is a consequence of the following one:
q
2 ICoAol? < [Codo+ Y Cids| +270 37 DIl (33)
1<5<r 1<5<r t>t;
Indeed, passing from the sequence Z = w(™ ZieQm c;S*f to 7' =
Wt Yo, ST f we drop the part Z" = w™ Y . (C;S* f —

CjAje(y)) such that supp (Z') Nsupp (£”) = 0, and change the y-th
element of Z equal to CyA, +Zl§j§r C;A; to CyAp. It remains to note

that w{™™ =1/2, w{™ =1, and by Lemma 2.1 (b),
S™ f — Ajely) = Zate(dt — i), l<j<r
t>t;

To prove inequality (3.3), we consider two cases. If |3, CjA;] <
|CoAp|/2, then (3.3) follows immediately. Otherwise,

1
S1Cool < ‘ 3 chj‘. (3.4)
1<j<r
Recall the definition of R, and denote R; = R;,. We get
A
=Rt
J t>t;
C;A; 4
> % = X Yol (35)
1<j<r T 1<j<r t>t;

[t remains to note that by (3.4), by the Holder inequality, and by
property (2.4),

|C()A0|q < Qq‘ Z CJAJ‘q <

1<j<r
(%N = e S|
1<j<r Y 1<j<r 1<j<r Y

Taking into account (3.5), we obtain (3.3), and, as a consequence,
(3.2). At the end of the inductive process, @,, = {0}, and we get
the inequality

q

Y

/20 = 0 < || s
i€Q
that contradicts to (3.1). Relation (2.2) is proved.
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4. Lacunary series in weighted /7 spaces. In this section we deal
with the Banach spaces of sequences

F@) = {Hantnzo 1 D v()lanl’ < o0}, 1< p< oo,

n>0

with weights v : Z; —]0, 00[ such that v(0) = 1. The space dual to
CP(y) is 04(1/7), 1/p + 1/q = 1, with the Cauchy duality (2.1). The
operator S acts continuously on ¢P() if and only if sup,, y(n+1)/v(n) <
0.

Under some conditions on v and p to be specified in Section 8, we
produce S-invariant subspaces of indices 2, 3, . .. , 0o in the spaces (P (7).
By Lemma 1.3, it suffices to find such elements f, € ¢7(1/7), 1 <n <
00, that S* is bounded below on [f,,1 < n < oo], and no (non-trivial)
finite linear combination of 4§ and f,, 1 < n < oo, can be approximated
by finite linear combinations of S* f;, & > 1, 7 > 1. This last condition
is reformulated as follows: for every n > 1,

inf dlSt (fn, Z ck,iS*ifk) > 0, (41)

“ (k,1)#(n,0)

and

inf dist ( O,chZS*ka) 0, (4.2)

ea(1/7)

where the infima are taken over all finite sums.
As in Section 2, take an Hadamard lacunary sequence D = {d,},>1
of Z.,. We suppose that for some n > 1 we have

(4.1) v(dny1)/n < () < ny(dni) for dp —dpy =1 <1 < dpyr, n > 1,
then we divide D into the union of disjoint infinite sequences D, =
{dm,n}mZh n Z ]_, such that dl,l = 0, dm+1,n Z dm,na m Z 1, n Z
1, and additionally suppose that for a sequence of positive numbers
{am,n}mzl,nzl, we have

(4.11) D24 sp V(dmp)P R, < (27)7Py(z)P for every z € A,

Z ad, Y(d 1 < oo, n>1,
m>1
where
1/q
By = [t /(P al (i) 0] p+1/g=1,
I>m

and A is defined in Lemma 2.1.
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Denote by e(j), j > 0, the standard basis in ¢7(1/7), and set
fn — Z am,ne(dm,n), n Z 1
m>1

Now our plan is as follows. We verify inequality (4.1) with these f,
in Section 5. Furthermore, inequality (4.2) is proved in Section 6, and
the fact that S* is bounded below on [f,,1 < n < oo] is proved in
Section 7.

5. The proof of relation (4.1). Let us assume that for some n, for
a finite set @ of pairs (i,k) with (0,n) € @, and for some coefficients
Cik, (4, k) € Q, with ¢p,, = 1, we have

| > sl < 50, (5.1
(

i,k)EeQ

and try to reach a contradiction. The norm here and later on is the
norm in £7(1/7).

We are going to introduce a structure on (a part of) @ describing
the intersection relations for the sets

supp (S* fi) = (Dy — i) N Z 4, (i, k) € Q.

Construction. We start with z € Z, and a subset Uy of () such that

UOZ{(’i,k)EQiZGDk—i}, (52)
z =min{Ug e, [(De — i) NZ] }. .
Given (i, k) € @, consider the minimal n such that for some

(io, ko) € Uo, (11, k1), .-, (in, kn) = (1, k) € Q,
we have
(D = it) N (Diyyy — 1) N Zy # 0, 0<t<mn,

and denote 0(i, k) = n; if there is no such n, put 6(i, k) = oco. Denote
by Qo the set of (7,k) € Q with 0(i, k) < oo.

In an inductive process, at the step s, s > 1, consider all pairs
(i,k) € Q with (i, k) = s. Clearly, for every such pair there exists a
pair (i', k") € Q with 0(¢', k") = s — 1 such that

(D — i) N (D — )N Zy £ 0.

By condition (5.2) and by Lemma 2.1 (c), we prove by induction that
i >
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Furthermore, put ¢(i, k) = (', k). If
(D —i)N (D —i')NZy = {x},

we put 1(i, k) = x. Using the same argument as in Section 3, we prove
that (i, k) and (i, k) are uniquely defined.

As a result of the construction, we define ¢ and ¢ on Qg \ Up. As in
Section 3 we get that the relation

(Dy —i) N (Dy — i) N Ty #0,

with (i,k) € Q, (', )€ Qo \ Ug, (i,k) # (¢, k"), implies that either
0(i, k) = 0", k') +1, o(i, k) = (', k') or 0(¢', k') = 0(i, k) +1, (i, k') =
(i, k), or 0(i, k) 0( k"), (i, ) o(i', k") and (i, k) = (7', k).

In what follows, the construction needs to be applied several times,
for slightly differemt z, Uy C Qo C @; condition (5.2) is to be verifed
for every concrete application.

Here we put z = min{supp (f,)} = di,, apply the construction
and get the subsets Uy C Qp of @ and the maps ¢, (condition (5.2)
holds because of Lemma 2.1 (b); indeed, if (D — i) N D,, = {z}, then
(D—4)N[0,z—1]=0).

For every pair (7, k) € Qo \ Up, there is a sequence of pairs (i;, k;) €
Qo, (ig, ko) € Uy, with (i, k;) = (i, k), and a sequence z; € Z, vy = 2,
such that

ij < Z‘j+17 (Dk ) N (Dk]+1 Z‘j+1) N Z+ = {xj+1}7 0< ] <t.

Then by Lemma 2.1 (e), z; < zj41, 0 < j < t, and (Dy —i)NZy C
AU{z} = A. Thus,

U [(Dc-i)nzi cA. (5.3)
(i,k)€Qo
Since
U swps i)n( U suwp(s7h)) =0,
(1,k)€Qo (1,k)€Q\Qo
we have

H > Ci,ks*ika < H > Ci,kS*ika~
(i,k)€Qo (i,k)€Q

Given a subset (); of (), define a sequence {w,gj )},«20 as follows:

W) =

1if card{(i,k) € Qj : 7 € D, —i} > 1,
1/2 otherwise.
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Clearly,

Hw(o) > Ci,kS*ika < H > xS il
(iak)EQO (i,k)er

where the sequences in the left-hand side are multiplied elementwise.
Now, in an inductive process, for every m > 0 such that Q,, # Uy,
we pick a pair (i, k) € @Q,, with maximal value 6(i, k). Then (i, k) €
Qm \ ¢(Qm \ Up), we denote (ig, ko) = (i, k), y = (i, k), consider all
the pairs (i;,k;) € Qm, 1 < j < r, such that ¢(i;, k) = y, and put
Qmi+1 = Qm \ {(ij,k;),1 <j <r}. By (5.3), y € A. Let us verify that

Hw(Tn-I-l) Z Cz,kS*kaH < Hw(m) Z Ci,kS*ifk :

(iak)eQm+1 (iak)eQm

m>0. (5.4)

Define t; by y +i; = dy x;, and denote A; = ay x,, C5 = ¢,
0 < j < r. Asin Section 3, inequality (5.4) is a consequence of the
following one:

‘ CoAp |2

‘beh)+'§:1<j<r
v(y)

Cia q
ZZ‘ dtk““_% . (5.5)

1<5<r t>t;

To prove inequality (5.5), we consider two cases. If | 219'9 CjAj] <
|CoAp|/2, then (5.5) follows immediately. Otherwise,

%|00A0| <| 3 aal (5.6)

1<j<r

Since i; < dy, x;, by property (4.i) we have y(dir; — 7;) < ny(dex;),

t > t;. Recall the definition of R, , and denote R; = Ry, x,. We get
1 AJ q Qi k- q
() < %ﬂ. 7
1 Cjay, k; a
5.7
ZRq‘mdtk ZZ‘ (dy g, — ij) (5.7)

1<j<r 1< <r t>t;
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[t remains to note that by (5.6), by the Holder inequality, and by
property (4.ii),
q

1<j<r

(2n7(y))q( > éq Ci; q) ( > R?iy(dtj’kj)py/p <

2 Ry (dy ) 1<j<, v(y)P

N Y il

1<5<r J

q

mdtk)

Taking into account (5.7), we obtain (5.5), and as a consequence, (5.4).
At the end of the inductive process, we have ),, = Uy. Next, making
one more step just as it was done above, we remove all the elements of
Up \ {(0,n)}, and arrive at the inequality

/2] < H S st
(i,k)eQ
that contradicts to (5.1). Relation (4.1) is proved.

6. The proof of relation (4.2). Together with (4.2) we prove its
generalization. This will be needed in Section 9. Suppose that ¥ =
(1,y,y2 ...) € %(1/7) for some y € C, |y| < 1. We claim that

inf dlst (Y, chkS 'fr) = c(y) >0, (6.1)

where the infimum is taken by all finite sums.
Consider first the case y # 0. If (6.1) does not hold, then we can
first find K such that
1
1 — 6.2
D @)y < (6.2)

i>K
and then find a set of pairs Q" and a finite family {c} ; }ir)cq' such that
*1 1 * —
[+ D duS | < s
(i,k)eQ’

Applying the operator (S*)X*! to the sum in the left-hand side, and
using the fact that S*Y = yY, we get

. 1
HY+ Z ci,kS’”ka < Z (63)
(i,k)eQ

for a set of pairs () and some finite family {c; v }, (i, k) € @Q; furthermore,
i > K for every pair (i,k) € Q.
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Now we put z = 0, and use Construction from Section 5 to define
Up C Qo and the maps ¢ and ¢ on Qo \ Uy (if Uy is empty, then Q) is
also empty). For (i,k) € Uy we have i > K, 0 € Dy — i, and by the
lacunarity condition on D,

(Dy —i) N[, K] =0.
Using Lemma 2.1 (e) we get that
Put F = Z(i,k)er ci,kS*ifk,

1, resupp (F),
Wy =
0, r ¢ supp (F).
Then
Y+ Z i kS fr =
(i,k)€Q
G4 Fro =)+ | X s+ -0 -8)
(iak)EQ\QO
Since the spectra of the expressions in the two square brackets are
disjoint, we obtain
[+ > s i = 16+ P 4oy -5
(i,k)€Q
Using (6.2) and (6.4), we get

Jw(Y = 67)

<

A~ =

By (6.3), we obtain that
Z > HY+ Z ci,kS ka > H60 +FH — Z,
(i,k)eQ
and hence,
‘50 + Z Ci kS ka <3 (6.5)
(3,k)EQo

If (6.1) does not hold for y = 0, then we immediately get (6.5) for
some Qo, {c;x}. Starting with (6.5) we put z = 0, define Uy C @y, and
arguing as in Section 5, we arrive at

55+ '§ " xS ka <3
(lak)EQO

103/21 < |
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which is impossible. Relations (6.1) and (4.2) are proved.

7. An estimate on S*. It remains to verify that S* is bounded below
on [fn,1 < n < oo]. We consider a finite set @) of pairs (i, k), and real
coefficients ¢; x, (7, k) € @), and prove that

(i,k)eQ

i,k)EQ

In an inductive process we start with Q° = @, and at the step j > 1

put
2 = min U supp (S* f1,).
(i,k)€Qi~1

Then, using Construction of Section 5, and starting with 2171, we define
the subsets U5 C @ of ijll and the maps oVl and ¥l acting on
Q) \ Ul. Denote QU1 = @), @7 = @71\ Q). Our process stops when
Q=10

Thus, we divide @ into the union of disjoint subsets QU!. By con-
struction, the sets

Al =] supp (S*'fx)
(i,k)€QUI

are disjoint. Therefore, to verify (7.1) it is sufficient to prove for each

j the inequality
H Y ci,kS*ikaSBUZ‘S*< Y ckak)H (7.2)

(i,k)€QU] (i,k)€QU]

By Lemma 2.1 (e),

AN {201} € AL (7.3)

Furthermore, by property (4.i),

v(n —1) < n*y(n), n e A. (7.4)
Arguing as in Section 5 we obtain that for every ¢ > 0,

C * *1
J5t2a] < leiza+ 32 eusal,
(i,k)€QU!

This implies that
S Y Ci,kS*ika < QH(I — ) Y. xS f

(i,k)eQU] (i,k) QU]

‘ )
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where the sequences are multiplied elementwise, I = (1,1,...). The

properties (7.3), (7.4) imply that
H(I —0,17) Z Ci,kS*ika <7’ S*((I— 9,171) Z ci’ks*ifk> H

(4,k)eQU] (i,k)eQU]

Now, we have

| S wsia ofu-sl T cus'a)]<

(i,k)eQU! (i,k)eQU]

S'((1=o1) > ci,ks*ifk)H g?m?‘s*( 3 ckak)H

(ik)€QU (i,k)€QUI

37]2 ‘

This proves (7.2), and, as a consequence, (7.1).

8. Sufficient conditions. Here we formulate two sets of conditions
on p and +; each of them guarantees a possibility to find D, {a,}
satisfying properties (4.1), (4.ii).

(a) 2 <p < o0,

for some n > 1, and for a sequence s, — 00,

1 8.1
— <) <n, sk —k <1 < s 8.1)
n
(b) 1<p< o0,
for some i > 1, and for a sequence s — o0,
1 [ 8.2
lim 7(sg) = 0, —§7() <n, sp—k<I< sy (82)
ko0 n = v(sk)

In both cases (a), (b) property (4.i) holds for sufficiently rapidly
growing d,, € {s;}. To find D,,, {a,} satisfying property (4.ii), we use
the following simple fact (see [1], Section 1). For any divergent series
of positive numbers {H,}, > H, = oo, there exists a (unique up to a
multiplicative constant) convergent sequence of positive numbers {a,, },
Y a, < oo, with Hy, = an/ ) ., .

In the case (a) take sequences R,,, with

» Ri,=o00, n>1, > R < (297" (8.3)
m>1 m>1,n>1

In the case (b) put RE, = (21°)7"/2, and take a subsequence D C
{sk}, so lacunary as

> ydr) < y(dn)P,  n>0.

k>n
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Furthermore, in an analogous way, we can consider the spaces B =
() (with v satisfying condition (8.2)) and B = ¢y(7y) (corresponding
to p = oo, with v satisfying one of the conditions (8.1), (8.2)),

co(7) = Hantnzo : lim y(n)a, = 0}.

In these two cases the space B is not reflexive, and we should modify
somewhat the statements in Section 1. Lemma 1.3 is replaced by

Lemma 8.1. For some 2 < n < oo consider x, € B*, 1 < k < n. If
S* is bounded below on [z, 1 < k < n], the subspace [S*zg, 1 < k < n]
is weak-star closed, and no (non-trivial) finite linear combination of &}
and zy, 1 < k < n, belongs to [S*xy, 1 < k < n], then

ind [S*zg, 1 <k <n]L =n.

Correspondingly, our constructions in Section 4 extend to this set-up;
we need only to verify that [S*fi, 1 < k < n] is really weak-star closed.
We make use of the fact that linear subspaces in B* are weak-star
closed if and only if they are weak-star sequentially closed under the
condition that B is separable. This fact is a consequence of standard
functional analysis arguments.

Let us sketch our argument just for the space ¢y = ¢o(1) in the case
of index 2. Fix R, = ¢/(n + 1), with small positive ¢, such that the
natural analog of (8.3) with ¢ = 1 and p = oo holds with this choice of
R, choose a lacunary sequence D and define f as in Section 2.

Suppose that for some F' € ¢!, for a sequence of finite sets Q™ C Z,
n > 1, and for coefficients ¢}, i € Q", we have

F, = Z C?S*if weak-sfar F, n — oo.
ieQn
Then
|IFL| < A< o0, n>1.
For a < b € Z, define
0, r<a,
X =231 a<r<b,
0, r>0b.
Fix € > 0, and find a such that
[ X“2F| <k,

where once again the sequences are multiplied elementwise. Furter-
more, for every b we find n(b) such that

| XO4(F — Fy)l| < e.
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Next, fix I(e,a) such that for ¢ > I(e,a) the first non-zero element
of the sequence S* f does not exceed £/A times the sum of the other
elements, and such that

card (supp (S*f) N [0,d]) < 1.
Acting as in Section 7, we divide Q™ into the union of disjoint

subsets Q™®-Ul, Then, as in Section 5, we delete from each Q™! one
by one all ¢ > I(e,a). In this way we replace Fj,4) by

ﬁn(b): Z C?(b)s*zf

i<I(e,a)
with
IXO (Fay = Fa) || < 2e,
IX 0 Fo || < [ X Foy || + 2,
1X % Fyyll < X% Fuy |l + 2¢.
Therefore,

| X (F — Fo)ll < 8,
| Famll < A+ 4e.

When b tends to oo, and ¢, a are fixed, the elements ﬁn(b) are bounded
and belong to a finite dimensional space; hence, we can find a sequence
F,) converging to an element

ﬁa = Z Ci,aS*ifa
i<I(e,a)
for b, — oo. Then R
|F — F.|| < 8,
and since ¢ is arbitrary, we conclude that
F € Clos Lin {S*f :i > 0}.
9. Absence of common zeros. Let us suppose that
lim inf y(n)" = R > 0.

n—o0

We identify each element a = (ag, ay,...) in £7(7) (in ¢o(7y)) with the
corresponding formal power series a(z) = Y, axz", converging uni-
formly on compact subsets of the disc RD = {z € C : |z| < R}
to an analytic function. In this way, the spaces () are consid-
ered as spaces of analytic functions. The elements of the subspaces
[S*f1,S* fa,...]1L we construct in Section 4 have no common zeros in
the disc RID. To verify this property it suffices to use the fact that
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no element Y = (1,y,4%...), |y| < R, belongs to [fi, f2,...], which
follows from relation (6.1).

10. Main result. Summing up we get our main result. Instead of
conditions (8.1)—(8.2) we use here more explicit (and more restrictive)
conditions (A), (B), and (C).

Theorem 10.1. Let 1 < p < oo, B = P(7y) (co(7y) for p = o0).
Suppose that one of the following conditions holds:
(A) 2<p< oo,

1
liminf~y(n) < oo, lim yn+1) = 1.
n—00 n—00 ’y(n)
(B) 1<p< oo,
1
liminf~y(n) =0, lim yin+1) = 1.
(C) 1<p< oo,
k
v(n) 0, n— oo, supmzl, k> 1.
n v(n)
Then B contains S-invariant subspaces of index 2,3, ... ,00.

If liminf,_,,, v(n)'/* = R > 0, then we can find such subspaces

without common zeros in RD.

Remark 10.2. The spaces F = (P(1), 2 < p < oo, are covered by the
case (A). The statement of Theorem in the case (B) is contained in
Theorem 5.4 of [7]. The first statement of Theorem in the case (C), for
p = 2, gives the result on index obtained in [4], Section 3.

Note, that in the case (C), the operator S is not necessarily bounded
below on B.

Remark 10.3. A careful analysis of conditions (4.i), (4.ii) shows that
for every p, 2 < p < oo, there exists 6 > 0 such that the assertions of
our theorem are satisfied for the space (% ((log(n + €))°).

11. Related results and open questions. We use the following no-
tation. Given a Banach space of (one-sided) sequences B such that
the right shift operator S acts continuously on B, we write B € 7, if
ind £ < 1 for every S-invariant subspace E of B, and B € Z, if for
every n = 1,2,...,00 there exists an S-invariant subspace F, of B
with ind E, = n.

We have already mentioned that ¢ € Z;. If p = 1 and 7 is (weakly)
submultiplicative, that is v(n) < Cvy(k)y(n — k), 0 < k < n, or if
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1 <p<ooand

3 R

2 ST —kr A "2

then ¢P(v) is a Banach algebra with respect to convolution multiplica-
tion. If, additionally, the operator S is bounded below on ¢?(7), that
is inf,, y(n + 1)/7(n) > 0, then (see [12], Section 3)

gp(’}/) € Il.

For logarithmically concave 7, y(n—1)y(n+1) < v(n)? n > 1, such
that
lim y(n) = oo, lim y(n)/" =1,

n—o0 n—00
one can deduce from a result of Aleman—Richter—Ross ([2], Corol-
lary 5.10) using a discrete version of Proposition B.1 in [8] (see also
Lemma 5.2 in [7]) that
62 (’}/) € Il.
Our theorem as well as Theorem 5.4 in [7] provides many examples
of (P(vy) € Z. In particular, if 1 < p < co and

1
0 = liminf~y(n) < limsupy(n) = oo, lim yn+1) =1,

then for the pair of spaces of sequences (?(y), £7(1/~), dual with respect
to the Cauchy duality (2.1), we have

P(v) € I, (1)) € Two.

Furthermore, as a consequence of our theorem, we get that if 1 < p <
00, limy, oo y(n +1)/v(n) =1, and

ép(’Y) SAR Zq(l/f)/) €1,

then necessarily p = ¢ = 2 and 0 < inf,, y(n) < sup, v(n) < oo and
hence, the spaces ¢?(vy) and ¢9(1/v) are both isomorphic to the space
2

The main open question we are interested in is as follows.

Question 11.1. For 1 < p < oo, and for a weight ~ such that sup,, v(n+
1)/v(n) < oo denote B(p,7y) = () (co(7y) for p = oc). Characterize
the pairs of (p,~) such that (i) B(p,v) € 7, (ii) B(p,7) € Zwo-

Note that in the case p = 2 this question remains open only for
non-regular weights v. Two following questions are (rather concrete)
partial cases of Question 1.

Question 11.2. Suppose that 2 < p < oo, y(n) = (n+1)%, 6 > 0. Is it
true that B(p,v) € Z,?
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Question 11.3. Let 1 < p < 2. Is it true that # € 7,7

One more question concerns the cyclic multiplicity in /7 spaces. Our
theorem implies that the spaces /7, 2 < p < 0o, and the space ¢g, have
S-invariant subspaces of arbitrary cyclic multiplicity. We have already
mentioned that by Beurling’s result, every S-invariant subspace of ¢? is
singly generated. Although ¢! € Z;, ¢* contains S-invariant subspaces
of arbitrary cyclic multiplicity (see [5]).

Question 11.4. What are the cyclic multiplicities of S-invariant sub-
spaces in /P with 1 < p < 27
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