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ON CONVOLUTION EQUATIONS
WITH RESTRICTIONS ON SUPPORTS

ALEXANDER BORICHEV

Let X be a Banach space of sequences {a, }nez, and let X* be its dual space. Denote
Xy = {{an}nen € X 1a, =0 for n < 0}.

Suppose that the shift operator S, S{an}nez = {an_1}nez, and its inverse S™1 act
continuously on X. We are interested in the structure of (closed) biinvariant (that is, S,
S~Linvariant) subspaces of X. By the Hahn-Banach theorem, X has proper biinvariant
subspaces if and only if the convolution equation

(1) uxv={{(S"u,v) tner =0

has solutions u € X \ {0}, v € X*\ {0}. Finding solutions of this equation becomes much

more difficult if some restrictions are imposed on the supports of u and ». For example,

an interesting question is whether (1) has solutions v € X4 \ {0}, v € (X*)_ \ {0}. In

this case, for every Banach space of sequences X with )~(+ = X4, u generates a proper

biinvariant subspace E of )?, and EN X4 is a proper S-invariant subspace of X .
Consider a weight o, that is, a function o: 74 — (0, +00) such that

0 < inf U(n(+ } < sup on +1) < 00,

n>0 oln n>0 0'(77,

and ¢(0) = 1. We set o(—n) = 1/a(n), n > 0, and define
22 = {adnen: Y lanlPo?(n) < 0}, 2(Zs) = (2(2)),.
newn

In [12], Jean Esterle produced solutions of the convolution equation
(2) uxv =0, u€l(Zy)\{0}, ve(Z)\{0},
for some weights o of arbitrarily slow growth. These weights ¢ are monotonic, but not

much more regular than that.

A. In the first part of the present paper we show that some mild regularity conditions
on o guarantee the absence of solutions to equation (2).
Clearly, (2) has no solutions in the usual £ case where o = 1.
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A1l. Suppose that (2(Z,) is a convolution Banach algebra, that is, for some ¢ > 0 we
have ||uxv|| < e||ul|||v]|, w,v € €2(Z4). (This is so, for instance, if the weight o satisfies

the condition ,
w2 (aetzn) <)

Then equation (2) has no solutions.

Proof. Clearly, the weight function ¢ satisfies the inequality

on) <eolk)o(n—Fk), 0<k<n, n>0.

Hence, o(n) < |[S"||¢z(z,) < co(n), and the following limit exists:

0<d= lim 0'_1/"(n)<oo.

n— 400

Without loss of generality, we assume that § = 1. For every u € £2(Zy), the function
u(z) =, 5o Un2" is analytic in the unit disk 1D, and is continuous up to the boundary
of I. The space of maximal ideals of ¢2(Z) coincides with I (see, e.g., [20, Corollary 1,
p. 94]).

The space ¢2(Z4) has the (restricted) division property: for some p with 0 < p =
p(e) < 1,if u € €2(Z4) and u(A) = 0 for some A € pl), then there exists uy € €2(Z4)
such that (z — A)ux(z) = u(z). Furthermore, if u and v satisfy (2), and u(A) = 0 for
some A € pl), then uy x v = 0. Indeed, the relation (S — A)uy * v = 0 implies that
ux * v = {eA7" }hez. Suppose that ¢ # 0. Since

[(un x 0] = [(S™un, o) <SI*Juall]lo]],

we get [eA™"| <||S||* < eo(n), which is impossible for large n because |A| < 1.

Now we fix u and v satisfying (2) and consider the S-invariant subspace (ideal) T of
(2(Z4) consisting of all w such that w * v = 0. Denote by Z(I) the set of common zeros
of I'in . Our previous remark shows that Z(I) N pD = @. Furthermore, Z(I) N T is a
proper closed subset of zero Lebesgue measure of T, where T = 9.

We denote by It the set of all w € ¢2(7Z_) vanishing on I. For every element w € I+
we define its analytic transform

BN ={((z=A+ D" w), reC\z(I),

where C = CU {00}, W(oo) = 0. By [10, Theorem 2.4], w is well defined and analytic in
the (connected) domain C\ Z (7). If w # 0, then @ Z 0. Furthermore,

SRy et k>0,

S~kp(A) = 5(AM)ATF, k>0, AeC\D.

Hence, /\kS/—k\v(/\) =v(A), k>0, A € D\ Z(I), and ¥ vanishes at zero with all its
derivatives. Thus, v = 0. Our assertion is proved. a
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A2. Suppose that o is logarithmically concave, i.e., o(n — 1)o(n + 1) < o?(n), and that
limy, 100 0(n) = 00. Then equation (2) has no solutions.

Proof. Fix u and v satisfying (2), u(0) # 0, and consider the S~!-invariant subspace E of
(2(7Z_) consisting of all w such that u*w = 0. Next, consider the compression T' of S on
2(Z_). fw € E, then (u, T"w) = 0. Hence, E generates a proper T-invariant subspace
Ey of £2(7Z_). Finally, u(0) # 0 implies that eq = {don }nez & F1, where dg,, = 0 if n # 0,
Without loss of generality, we assume that lim,_ e 0'1/”(71) = 1. Using a discrete
version of [5, Proposition B.1] (see also [11, Lemma 5.2]) and replacing o by an equivalent
weight 7,0 < ¢1 < 7(n)/o(n) < ea < oo, we find a continuous positive integrable function

¢ on [0,1) such that

1
2/ rto(r) dr = 3% (=n), n > 0.
0

Then ¢%(7_) is isometrically isomorphic to the weighted Bergman space B,

B= {f € Hol(D) : /D|f(z)|2go(|z|) dms(z) < oo}.

Furthermore, E' becomes a subspace of B invariant under multiplication by z, and F;
becomes a subspace of B invariant under the backward shift operator f — (f — f(0))/z,
1¢ Fy.

Applying [1, Theorem 4.8], we conclude that F; is a subset of the Nevanlinna class.
Take f € E\{0}, f = fi/fa, f1,fa € H®. Then f; € E\ {0}. Since ||2"||p — 0 as
n — oo, there exists a function ¢ € B with nontangential boundary values nowhere on
T. Then fig € E C E; has nontangential boundary values almost nowhere on T, and,
hence, does not belong to the Nevanlinna class. This completes the proof. a

A3. In the situations described in subsections A and B, the space X = (2(7Z) satisfies
the following index 1 property: for every proper S-invariant subspace E of X, the index
of E (that is, the dimension of E/SFE) is equal to 1. On the other hand, in the situation
considered by Esterle in [12, Theorem 4.10] (see also Theorem 4.2 there), both ¢2(Z,)
and ¢2(7Z_) do not satisfy this property.

Question: Suppose that X satisfies the index 1 property. Does equation (1) have
solutions u € X4 \ {0}, v € (X™)_\ {0}7

B. In the second part of this paper we consider the equation
(3) uxv =0, we Xy \{0}, ve X"\ {0}

If v and v satisfy (3), then u generates a biinvariant subspace F C X such that F; =
E N X, is a proper S-invariant subspace of X, and F is generated by F,. In the
terminology of [13], such subspaces are called analytic subspaces.

For some weighted (2 spaces of sequences with asymmetric weights, every biinvariant
subspace is analytic [13, 14]. For a short historical survey of related results on translation
invariant subspaces, see [19].

Suppose that X = (2(Z) for a weight function ¢ (and, consequently, X = X*). If
o = 1, then equation (3) has no solutions. If o decays sufficiently fast,

Tog™ < log () =o(n), n— +oo,
for some 0 < o < oo, then equation (3) has solutions (see [6, Theorem 1.3]). For weights
o decreasing polynomially, o(n) = (n + 1)=4, n > 0, for some A > 0, the existence of
solutions of (3) is an open problem (see, e.g., [15, Section 8.8.11]).

Finally, we consider growing weights o. As in part Al, we deal with the case where
(2(Zy4) is a Banach algebra.
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B1. Theorem. Let (2(7Z4) be a convolution Banach algebra, and let lim g-(n)l/n - 1.
Suppose that either n—+o0

1 1
(1) | < Timinf 1287 i loge®)
notoo  logn ~T o400 logn
or
1
(1) lim log 7(n) = oo

n—+eco  logn

In the second case we assume that o extends to a smooth function on Ry such that the
functions @i, @r(t) = log[a(t)/t*], k > 0, are concave, and the function 1, ¥(t) =
log o(expt), is convex for large t.

Then equation (3) has no solutions.

Proof. Arguing as before, we fix u and v satisfying (3), and consider the S-invariant
subspace (ideal) I of ¢2(Z,) consisting of all w such that w * v = 0. As in Subsection
A1, Z(I) N'T is a proper closed subset of T. Denote by v* the element of ¢2(Z_) given
by

(vk)n = Ugyn, n<0.

Then v* € It k € 7Z. We define the analytic transform as in A1, obtaining
() = FTAAL £ Al keZ, AeC\D.
Let N
W) =D an\', A€ pD.
n>0
Then by induction we obtain
FO) =Y dn A, A pD,
n>0
p = —Vp41,
and, as a result,
vO(A) = — Z Unp1 A", A€ pD.
n>0
Since the power series on the right converges in D, we see that W0 s analytic in ). Note
that by definition,
W) == v, AT AeC\D.
n>0

If the class (2(74) is quasianalytic (i.e., the conditions u € £2(Z4) and u*)(X) = 0
(k =0,1,...) for some A € D imply u = 0), then Z(I) is a finite subset of I, and the
results of Domar [9] show that the ideal T is determined by its zero set if the multiplicities
are taken into account. Accordingly, I+ is finite-dimensional. Hence, v° |C \ DD is a finite
linear combination of elementary fractions 1/(z — A)¥, A € T, and v° cannot be smooth
on .

Consider

W= {Z €D {an) eﬂi(zg},

n>0
G = {Za_nz_”_l, :eC\D:{a,} € gf,(z_)}.
n>0

To complete the proof of our claim, it remains to establish the following result.
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Proposition. Suppose that the class H is nonquasianalytic. Then no function hy €
H\ {0} extends analytically to a function g € G across a subset T\ F of the unit circle
such that h2|F =0 for some hy € H\ {0}.

Proof. We start with a rather standard argument relating the growth of functions in G
with the rate of decay of functions in H near their zeros of infinite order in case (IT).
Since log o is concave, for every small ¢ > 0 the function ¢ — o(t)e™¢" attains its
maximal value M (¢) at a unique point ¢g such that e = ¢/(¢g)/c(to). Then M () 7 +o0,
ety /oo as e — 0.
First, we prove that

(4) Z o?(n)e” " < ctoM?*(e), >0,
n>0

(5) th < e(k)M(e), k>1.

Indeed, since the @ are concave, 1t follows that for every k, for sufficiently large ¢y, and
for n > 1o we have

o (n) = e (to) < (n —to)py(to) = (n —to) (6 - %)’

and for & = 1 we obtain
O_(n)e—an — neapl(n)—an < newl(tu)—atue—(n—tu)/tu’
2
3 P < Y (E) M2 (e)e=2(n=t0)/t0 < ot MP(e).
= T =

n>tog n>to

In a similar way, for n < tq we have
er(to) — ¢r(n) > (to — n)gy (to),

and we conclude that

Z o?(n)e™ " < ctoM?(e)

n<to
and that
logeo(ty) > c(k) + klogty + to(log o) (to) = c(k) + klogty + toe,
M(g) = a(to)e =t > c(k)tk.

This proves relations (4) and (5).
Since 9 is convex, for large a the function ¢t — %/ (¢) attains its maximal value at a
unique point ¢; such that a = t10'(¢1)/o(t1). Therefore,

nZa—Z t%a

<ec .
2 7(n) = (0

Put @ = ety. Then 1 =13. Choosing s € Z 4 such that s <a —1 < s+ 1 and using the
Stirling formula, we obtain

k 2k N\ 1/2 s 2a—2\ 1/2
. e n € n
min | — —_— < = —_
wln(SHm) 15 (S 5
S 8 a s—a etg a s—a s a—s
(6) <t 3 _ (ee)* %t (etp) _ e a a
S o) sto(to) CM(e)(s) (5)
t2
< e

M(e)’
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Now we deal with elements of the spaces G and H in case (IT). By the Cauchy—Schwarz
inequality and by (4) and (5), we obtain

1/2
- 19(:)] < lglle (Za (m))z] )

< cllgllgM*(log ), |2|>1, g€g.

IfheH, h(z) =3 ,50anz", and h vanishes with all its derivatives at a point ¢ € T,
then, by the Taylor formula,

—(I* _
|h(2)] < min [%Znﬂaﬂ], z €D,

T kely n>1

and the Cauchy—Schwarz inequality together with (5), (6) yields
. |Z i C|k n2k 1/2
h <|lh
N )] < e pin |55 P

<elhlla M V(2 =), 2 €D

Next, we pass to case (I). We get
) 9 < elllle g 1<l <2 g€ G
9(2)] < ellglle 70— 2 <2, g€G.
(Iz2l=1)

Furthermore, # is continuously embedded in a Lipschitz class on . Therefore, for some
a > 0 and for every h € H vanishing at a point { € T, we get

(10) h(2)] <cllhllx|z = ¢7, 2 €D

Now we suppose that g € G, h1, ha € H \ {0}, ho vanishes on a closed subset F of T,
and h; extends to g across T\ F'. Without loss of generality, we assume that |hy(2)| < 1
and |ha(2)| <1 for z € T.

In case (I), we cover F by a sequence of disjoint arcs J,,, J, N F # @&, for every arc
Jn = {e'® 1|0 — 0,] < 6.} we introduce the “square” @, = {re? : |0 —0,| < §,,0 <
r—1<4,}, and consider the domain Q = @\ (DUUQn). The boundary of Q is a subset

of TUYIQR,. Fix z € @\@ If max |.J,| is sufficiently small, say, less than (|]z] — 1)/2,
then, by the theorem on two constants and by (9),

toslg(a)l < [ toglatullue,du.® =3 [ logly(w)lu (e, du,2)
HONT — JoQ.\T
1
SC(Z)ZUTL“Ogm,

where w(z, dw, Q) is harmonic measure on 9§ with respect to the point z in the domain

Q, and |J| is the length of the arc J. Furthermore, by (10),

1
S altog 5 < —ex [ los(elha(z)) dim(2).
n |Jn| UJ

n
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Since the integral
[ tos(lha(e)l) dm(:)

converges, we can find a covering {J,} of F' such that
= [ toslelna(z)y dm(2)
UJn

is arbitrarily small. Hence, |g(z)| < 1 for z € C \ D, and the proof is complete (g — hy
is an L%(T)-function vanishing outside a set of zero measure, hence both g and h; are
equal to 0).

In case (IT), first we assume that

(11) /Olog M(t) dt < oo.

The set F' consists of a countable set of points z; and a perfect set Fjy of zero measure;
hs has zeros of infinite order at the points of Fjy. As before, we cover Fjy by a sequence of
disjoint arcs J,. Estimates (7) and (8) together with an argument similar to that used
in case (I) show that J, can be chosen in such a way that the expression

EA
Zn:/aQn\Tlog lg(w)|w(z, dw, Q) < c(z)zn:/o log M (t) dt
<) [ Toglelhafz)) dm:)

n

is arbitrarily small. Furthermore, we can cover the (countable) set {zx} \ UJn by a
sequence of disjoint small arcs J/, such that the sum

[
> / oy Bl 0 ) < o) 3 [ o ey

is arbitrarily small. After that, the proof is completed as in case (T).
Finally, if (11) fails, then inequality (8) shows that # is a quasianalytic class. O

B2. By using an argument similar to that in [21], if an analog of Proposition can be
obtained in the case where # is a quasianalytic class (with F' = {1}).

Note that functions h; € H may extend analytically across T\ {1} to @\ﬁ with
growth there slightly more rapid than that permitted in G (see [7, Example 7.1]). On the

other hand, if we consider spaces G somewhat smaller than G (and H still quasianalytic),
then the Levinson—Cartwright theorem and a result by the author [3, Theorem 1] imply

that hy € H cannot extend to g € G even across a set of positive measure (extension via
nontangential boundary values); see also a related result of Beurling [2, Corollary 4.2,

p. 407] for G = H*(C\ D).

Under some regularity and growth conditions on M (essentially, if

log M (6)

8
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our Proposition follows from a result by Hruséév (see [17, Theorem 9.1], where no smooth-
ness conditions were imposed on hy).

The relationship between the space of smooth functions H, the space G, and the class
of zero sets F' C T of functions in H such that the claim of our Proposition is fulfilled
deserves additional study. In particular, we may need results similar to that proposition
when solving equation (3) for weighted ¢? spaces of sequences with asymmetric weights.

Note that for nonquasianalytic (in the closed unit disk) Gevrey classes, the boundary
zero sets are described in a rather complicated fashion [16]. Our elementary estimate
(8) should be replaced by a much better estimate from [4, Theorem 2.6]. For even more
precise estimates of the decay near a zero of infinite order for elements of nonquasianalytic
classes on T, see [18].

In the proof of Theorem B1 (case (IT)) we could use an argument from Subsection A2
and reduce our problem to an analog of Proposition with G replaced by G N N, where N
is the Nevanlinna class in C \ D. A related problem was considered in [8].
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