ON THE MINIMUM OF HARMONIC FUNCTIONS
ALEXANDER BORICHEV

ABSTRACT. Let u be a function harmonic in the unit disc or in
the plane, and let u(z) < M (|z|) for a majorant M. We formulate
conditions on M that guarantee that u(z) > —(14 o(1))M(|z]|) for
|z] = 1 in the disc and for |z| — oo in the plane.

1. Introduction.

Let M be a non-decreasing function on (0, 1), let u be harmonic in
the unit disc, u(0) = 0, and

B(r,u) d:efmaxu(z) < M(r), 0<r<l.

|z[=r

The question we are interested in is how to estimate the function

A(r,u) o r|n|ax[—u(z)].

The Carathéodory inequality yields that if M = 1, then A(r,u) <
2/(1 —r). A theorem of M. Cartwright [3] claims that if M(r) =
(1 —r) % for some a > 1, then A(r,u) < C(a)(l —r) %, for some
C(a) > 1 independent of u. N. Nikolskii proved in [13, Section 1.3,
Theorem 2] that for sufficiently regular M such that

im log M (r) o
r—1 log[l/(l — 7“)] ’

(1.1)

we have
A(r,u) < Cy +CM(r), 0<r<l, (1.2)

with C} independent of u and a large absolute constant C'. For other
results in this direction see [13, Section 1.3], [10].

Replacing u by —u we obtain that the estimate (1.2) cannot hold
with C' < 1 for unbounded M. The aim of this paper is to improve
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2 ALEXANDER BORICHEV
the above mentioned result by Nikolskii: we prove that for sufficiently
regular M satisfying (1.1) we have

A(r,u) < (1+o0(1))M(r), r— 1 (1.3)
Thus, the maximum and the minimum values of harmonic functions of

rapid growth are quite close. One immediate application of this result
is that if f is a function analytic in the unit disc without zeros,

: log | f(2)]
limsup ———=— =1,
iz M(|2])
where M is sufficiently regular and satisfies (1.1), then
timinf BN _
lsl-1 M(|z])

In particular, this shows that the functions in the weighted Bergman
spaces constructed in [2] do have extremal growth and decay; to estab-
lish this fact was the initial motivation for writing this paper.

Also, we consider the majorants M of moderate growth,

I < lim —28 M)
r=1log[1/(1—1)]
In this case, the best possible analog of (1.3) is

=A < 0.

T
A+1
This result improves the estimates by M. Cartwright mentioned above.

A(r,u) < [(COS >_(A+1) + 0(1)] M(r), r— 1

For results on the analogous problems for functions harmonic in the
plane see, for instance, [7]. We mention here a result by A. Wiman
[15]: if a non-constant u is harmonic in the plane, then

A(r,u) = (1 +0(1))B(r, u),

as r — oo outside an exceptional set of finite logarithmic measure.
Furthermore, it follows from the results of S. Apresyan [1] that for
sufficiently regular M we have

A(r,u) < Cy+CM(r), 0 <7< oo,

with (' independent of u and large absolute constant C'.
We prove, as in the case of the disc, that for sufficiently regular M,
if  is harmonic in the plane, u(0) = 0, and
B(r,u) < M(r),  0<r<oo,

then
A(ryu) < (1+0(1))M(r), r — 00.
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Our method is close to that used in [13]. The main difference consists
in using the following result that seems to be of independent interest:
If v is a function harmonic in the closed upper half-plane,

v(z) < |2]?, (1.4)
then
v(iy) > —y* + y(v(i) + 1), y > 1. (1.5)

The plan of the paper is as follows. We give two (quite different)
proofs of the estimate (1.5) for harmonic functions satisfying (1.4) in
Section 2. The first one uses the Ahlfors—Carleman estimates of the har-
monic measure; the second one, due to M. Sodin, uses the Nevanlinna—
Poisson representation for harmonic functions of finite order in the
half-plane. In Section 3, we obtain the main results on the minimum
of functions harmonic in the disc and in the plane. Finally, in Sec-
tion 4, we produce an elementary example showing that the estimate
(1.3) may fail if M is just supposed to be log-convex (that is the func-
tion z — M (exp(—z)) is convex).

The author is grateful to Misha Sodin for helpful discussions.

2. An auxiliary lemma.

Lemma 2.1. Let u be a function harmonic in the upper half-plane C,,
and continuous in the closed upper half-plane C,, such that

u(z) < 22, r €R,
u(z) < o(|z]), z€C, |z] = 0. (2.1)
: 2
Then the function y — w does not decrease on [0, +00).
)

As a matter of fact, the assertion of Lemma 2.1 is somewhat stronger
than that used later on, in Section 3, where (2.1) is replaced by (1.4).

The first proof of Lemma 2.1. Put
u(x + 1y) + u(—x + 1y)

v(z) = 5 — Re 2%,
Then
(x—i—zy)—v( T +1y), z+iy € Cy,
v(z) < reR (2.2)
v(z) < (|Z| ), 2€Cy, 2] = oo, (2.3)

and we need to verify that v(iy) > yv(i), y > 1.
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Otherwise, if v(iy) < yv(i) for some y > 1, then, changing, if neces-
sary, v(z) by v(z) + cy, we get v(i) > 0 and

inf wv(iy) < 0. (2.4)

1<y<oo

Fix a connected component €2 of the set {z € C; : v(z) > 0} containing
the point 7. Clearly, () is unbounded and symmetric with respect to
1Ry, U‘GQ = 0. If Q NiR, were unbounded, then by the maximum
principle we would get that i[1, 4+00) C © which is impossible because
of (2.4). Hence, for some 75 > 0 we have
Q\{z€C; :|z|<rp} =Q U,
Q. c {ze€Cy:Rez20}.

Next, we fix a (symmetric) connected component €2 of the set {z €
C; :v(z) < 0} such that Qy N1, 4+00) # 0. If 0 NR # O, then by
the maximum principle, we would get v(i) < 0, which is impossible.
Hence, 2y is unbounded, u‘@QO = 0. Denote

m(r) = max{v(z) : z € Qu, |z| =r},
mo(r) = max{—v(z) : z € Qy, |z| =7}.
Applying an argument essentially due to A. Beurling (see [4, Lem-

ma 4]) that uses the Ahlfors—Carleman estimate of the harmonic mea-
sure, we obtain for some C and sufficiently large r that

2 1 1
< .
log m(r) * logmg(r) — logr — C
Together with (2.3) this yields

lim mggr)
r—00 T

= +00.

For sufficiently large » > 0 denote Q, = {z € Q:v(z) < —my (r)}
Then, by the maximum principle, for every ¢ > r we have

{z€Q :|z] =t} #0.

Applying the theorem on two constants to v in the domains O, = {z €
C; :r < |z] < 3r}, and using the fact that by the Hall lemma (see, for
instance, [5, p.367]),

w(2rv,Q2,N0,,0,) > ¢c>0, vyel = {e”:7r/4§t§37r/4},
for an absolute constant ¢, we conclude that for sufficiently large r,

v(2ry) < sup v(z) — emgo(r) < —r, vyel.
ZEOT
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One way to complete the proof is now to use Theorem 2 of [9, Lecture
26] to get a contradiction.

Otherwise, we apply once again the theorem on two constants to v
in the domains U, = {z € C; : |2| < 2r}, together with the standard
estimate

w(i, 2rl, U,) >

S0

r>1,
to get finally for some ¢ > 0,
v(i) < —er?,
which is impossible for large r. O

The second proof of Lemma 2.1. We start with v harmonic in C, and
continuous in C,, satisfying conditions (2.2) and (2.3). Then we use
the Nevanlinna—Poisson representation for harmonic functions of order
3 in the half-plane (see [6, Part I, Theorems 1.1 and 3.3]) to get

v(z) = Im {az + b2” + c2?
z4/ v(t) 1 / v(t) }
+ = — 7 dt+ = —=dt|, ze€Cyp, (25
T s tHt—2) TSyt —z o 29)

for some real a, b, c. Then,

5 t t
v(iy):ay—cy3+y—/ #dt%—y/ v(t) dt, y>0.
=1t

If
t
/ Kzl)dt = —00,
>1
then )
t
and '
lim M = —00
y—oo 13 ’

which is impossible by the Phragmén—Lindel6f theorem applied to v in
{z€C;:7/6 <argz <m/2} and by (2.3).

Hence,
3
. y v(t) y v(t)
v(zy):ay+dy3——/ 7dt+—/ dt, y >0,
T Juys1 (2 +y?) T Jy<1 2+ Y2
where

1 t
d:—C+—/ iél)dt,
\

™
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and

lim M =d.

y—oo 13

Again by the Phragmén—Lindel6f theorem and by (2.3) we get d = 0.
Therefore,

3 t t
v(iy):ay—y—/ %dt%—g/ u(t) dt, y >0,
[t|>1 It

T 2 + y2) T Jiy<1 2+ y?

v(iy) 1 / v(t) 1 / v(t)
—a—— Y a2 XYy oy
(] T Jiys1 21+ 12/y?) T Juy<1 2+ 42

Since every term in the right-hand side of the last equation does not
decrease in y, we get the assertion of the lemma. O

3. Main results.

We suppose that M is a positive C?-smooth increasing function on
(0,1), denote ¢ (t) = log M (1 — e '), and assume that

tlgg Y'(t) = +o0, (3.1)
and that for some § > 0,
WO = 0(W 1)), ¢ . (3.2)
Theorem 3.1. If u is harmonic in the unit disc, u(0) =0, and
B(r,u) < M(r), 0<r<l,
then for every e > 0 there exists K(e, M) independent of u such that

A(r,u) < K(e, M)+ (1 +¢)M(r), 0<r<l. (3.3)

Proof. We follow the argument in [13, Section 1.2] with minor changes.
It suffices to prove that for arbitrary ¢ > 0,

u(r) < K(e, M)+ (1 4+¢e)M(r), 0<r<l,

where K (e, M) does not depend on u. Applying this to the functions
z = u(ze?), 0 < 0 < 2m, we get (3.3).
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Without loss of generality we assume that ¢'(z) > 2, x > 0. Set

s(@) = ' (max{z,0})’ z ek,

Q={z+iy:z> -0, |yl <s()},
H:{x+iy:ac>—1, |y <7r/2},
where 3 > 0 is so small that Clos P~'(Q) c DU {1}.

Let Z be the conformal map Q — II such that Z(4+o00) = +o0,
Z(0) = 0. Then

d=P'oZ  olog

is a conformal map from exp Il onto P~1(Q2) (see Figure 1), and the
function v = u o ® is harmonic on exp I, v(1) = u(0) = 0. Our next
step is to estimate v from above.

(A °
i T
N o

P (Q)
()] y4
A A
exp
exp I1 11

\
\
Y

Figure 1.
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Let t 4+ iy € Q. Then |y| < s(t) — 0 as t — oo, and we have
|P7Y(t 4 i7)| = |1 — exp(—t —i7)| = /(1 — et cos )2 + (e~tsiny)2

<1- %e‘t cosy <1 —exp[—t — Cy?] < 1—exp[—t — CO(s(t))?,
for an absolute constant C', and
M(|P~H(t +iy)]) < M(1 —exp[—t — C(s(t))?])
= exp p (t + T2C(Y'(t)) %) < exp[tp(t) + o(1)], t—o00. (3.4)
Here we use that if x > ¢, ¢'(z) = 2¢'(t), and ¢'(y) < 2¢/(¢t) for all y €
(t,x), then by (3.2) we have x —t > ¢[¢'(t)]° L. Hence, ¢'(p) < 2¢'(t),
t <p<t+m2C/({'(t))? and the last inequality in (3.4) follows.

Furthermore, the estimates of conformal maps of infinite strips by
S. Warschawski ([14], see also [11, Theorem 8]) show that

t
d
|exp Z(t + i7v)| = exp Re Z(t+7j*y):exp[z/ —x+C'1+o(1)
2 Jy s(x)

= (Cy + o(1)) exp[e(t) /2], t— o0, (3.5)
where C, Cy depend only on 1. We need only to check that by (3.1),
< (@)de T @) _ [P @) dr
| = oy =] v
Now, by (3.4) and (3.5) we get
M (|®(exp Z(t +iv))]) = M(IP~'(t +iv)]) < exp[(t) +o(1)]
= (Cy% 4+ 0(1))|exp Z(t + iv) %, t+iy e, t— oo,
M(|2(w)]) < (C3* +o(1)|w|*,  w€expll, Jw| = co.

Hence, for every ¢ > 0 there exists Ki(¢, M) independent of v such
that

v(w) < Ky(e, M) + (14 2)Cy % |w]?, w € expIl.

Now we diverge from the argument in [13], and apply Lemma 2.1 to
v, (or, rather to the function z — v(—iz 4+ 1/2)) using that v(1) = 0.
As a result, we obtain that for some Kj(¢, M) independent of v,

v(x) > Ko(e, M) — (1 + 2¢)Cy %27, x> 1. (3.6)
Furthermore,
M(P7H(t)]) = expip(t), >0,
and by (3.5), we have

[exp Z(t)] = (C2 + o(1)) exp[y(£)/2], ¢ — o0,
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hence

M(|®(x)]) > Ks(s, M) + (1 — )0y %2, x> 1. (3.7)
Finally, by (3.6) and (3.7) we obtain

u(r) > Ky(e, M) — (1 + 4e) M (r), 0<r<l,
and the theorem is proved. O

A. Atzmon noticed that the assertion of Theorem 3.1 fails for ma-
jorants M of moderate growth (for which (3.1) does not hold), with
u(z) = —Re (1 —2)7

Now we suppose that M is a positive C''-smooth increasing function

on (0, 1), denote ¢ (t) = log M (1 — e™"), and assume that the function
1" has bounded variation and

1< tlif?owl(t) = A < +o0.
Theorem 3.2. (A) If u is harmonic in the unit disc, u(0) =0, and
B(r,u) < M(r), 0<r<l,
then for every e > 0 there exists K(e, M) independent of u such that

A(r,u) < K(g, M) + [(COS )(A+1)

Aj—l +6]M(T), 0<r<l.
(B) If ua(z) = —Re (1 — 2)"2, then

Alr,up) = (1 — 7)™, 0<r<l,

B(r,ua) = [(cos

™

A+1

)A+1 + 0(1)} 1-r)"2, oL

Proof. (A) We argue as in the proof of Theorem 3.1. We assume that
P'(x) > 2A/(A+ 1), > 0, and define P, II, and Q2 as before, with

T A

= . , e R
() ' (max{z,0}) A+1 v
Then we define Z, ®, and v.
Let ¢t + iy € Q. Then as before we have
|P~1(t +iv)| = 1 — exp[—t + logcosy + o(1)], t — oo,

uniformly in v € [—s(¢), s(¢)]. Therefore,
M(|P~(t +iv)]) = exp[tp(t) — Alogcosy + o(1)], t — o0.



10 ALEXANDER BORICHEV

Applying the estimates of conformal maps of infinite strips in [12,
Theorem 3], see also [8] (the regularity conditions on s are much weaker
here because lim;_,, s(t) > 0), we get

A+1
lexp Z(t+iv)| = (Cy +o(D) exp| Sv(0)], 10,
where C'; depends only on .
Hence,
v(w) < M(|®(w)|) < Clw|?2 A+, w € expll, |w| — oo,

o(w) < M((w))) < (o +o(1)) (cos ) JuP/ 40,

s
A+1
w € d(expll), |w| — oo,

with Cy = C’I_ZA/(AH). Next, we apply a version of Lemma 2.1:
If 1 < q <2, uis harmonic in the upper half-plane C, , and contin-
uous in the closed upper half-plane C,, and if
u(z) < 27, z € R,
u(z) <o(l2f),  ze€C |z[ = oo, (3-8)
then the function
u(iy) — y?/ cos(mq/2)
)

Yy —

does not decrease on [0, 400).

(The proof is analogous to that of Lemma 2.1).

As a result, for every € > 0 we find K (e, M) independent of v such
that

P2A/BED) s

T >—(A+1)

v(z) > K(e, M) — (1+5)02(C°SA+1

Furthermore,
M(|®(z)]) > Ki(e, M) 4 (1 — £)Coa® AT g > 1

and we get

u(r) ZKQ(E,M)—(1+3€)<COS M(r), 0<r<1

A+1

(B) The first equality is evident. To prove the second one we fix
e > 0, consider z =1 — se'? € D for small s > 0, and note that

1—|z=1-]1—se|=1—+/1+s2—2scosq,
1—|z] < s(cosp +e), s — 0.
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Furthermore,
ua(z) = —s 2 Re e 2% = s 2 cos(m — Ap) (3.9)
< (1 —|2)) 7 [(cos p)™ cos(m — Ap) + Ce], s — 0.
Since the maximal value of the function (cos )2 cos(m — Ag) on the
interval [0, 7/2] is attained at the point 7/(A 4 1) and equals to

T \A+L
(COS A+ 1) )

we get

ua(z) < [(cos )AH + Ce} (1—|2))72, |1 —2z| — 0.

T
A+1
This gives the upper bound for B(r, ua) we are interested in; the lower
one follows immediately from (3.9) with ¢ = 7/(A +1). O

Suppose now that M is a positive C%-smooth increasing function on
(0,00), denote 1 (t) = log M(expt), and assume that

Jim /(1) = +oo,
and that for some § > 0,
0" ()| = O((w'(t))%‘s), t — o0.
Theorem 3.3. If u is harmonic in the plane, u(0) = 0, and
B(r,u) < M(r), 0 <7< oo,
then for every e > 0 there exists K(e, M) independent of u such that

A(r,u) < K(e, M)+ (1 +¢)M(r), 0<r < oo.

The proof is analogous to that of Theorem 3.1.

Remark 3.4. It ¢'(t) = O(1), t — oo, B(r,u) < M(r), 0 < r < oo,
then wu is the real part of a polynomial, and

A(r,u) = (1+0(1/r))B(r,u), T — 00.
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4. An example.

It is natural to ask whether condition (3.2) is really necessary for
the assertions of Theorems 3.1, 3.3 to hold. The following example
shows that if we relax our conditions on M, and require just that
x — M(1 —e™™) be convex (this holds for B(r,u) with harmonic u),
then the conclusion (3.3) may fail.

Proposition 4.1. Let ¢ be a positive non-decreasing function on R, ,
and 0 =1y <ry < ...1% < Tpe1 < ... — 1. There exists a function u
harmonic in the unit disc such that

A(r,u) > @(B(ry,u)) > o(k), k> 1. (4.1)

Proof. Set v(z) = Re(z/(1 — z)), and note that v(0) = 0, v is real-
valued and increases on (0, 1), v(x) — oo as z — 1, and infpv = —1/2.

In an inductive process we are going to produce auxiliary harmonic
functions u,,, and non-negative numbers a,, and b,, in the following
way. On the step m = my > 1 we start with the inequalities

m—1

max Y wu;(z) > o(ap +1) + 27" 0<k<m-1, (4.2
|z|=rk =1
m—1

min uj(z) > —ap — 1+ 27" 0<k<m-—1 (4.3)
|z|=r% =1

Put
m—1
;= Mmax ui(2)| +m, 4.4
o= 3 () (1.4

b, = max

lz|=rm-1

U(i>‘ + 1.
rm

(For m = 1 we have a,, = b,, = 1.) Choose 1, < R,, < 1 such that

1 T'm
2m+1me<R—m) > p(am +1) + ay, + 1.

The function (2"b,,) *v(z/R,,) is harmonic in a neighborhood of
D, and coincides there with the real part of an analytic function F,,.
Using the Runge theorem, we approximate F},, by a polynomial P,, on
rmD, and obtain for harmonic u,, = Re P,

z

1 e
() @] <2 <
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Thus,
Jmax fum(2)] <277, (4.5)
ﬁfﬁ U (2) > p(am + 1) +am +277, (4.6)
‘zr‘nzlygl Um(2) > =27, (4.7)

Therefore, by (4.2), (4.3), (4.5) we obtain

maXZuJ ) > olar +1)+277, 0<k<m-—1,

minZuj(z)Z—ak—l%—Q’m, 0<k<m-—1,

|n|13x Zu](z) > plam+1)+27,
z|l=rm -
|ZI|n:1£IZu](z) > —ay — 1427

This establishes the inequalities (4.2), (4.3) for m = my + 1.

By (4.5), the sum » > | u,, converges to a harmonic function u,
uniformly on compact subsets of the unit disc. By (4.2), (4.3), (4.4)
we get

max u,(z) > o(ar + 1) > p(k), k>1,

|z|=ry

min u,(z) > —ag — 1, k> 1.

|z|=rg,

and (4.1) is proved with u = —u,. O
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