ON THE BEKOLLE-BONAMI CONDITION

ALEXANDER BORICHEV

Consider the system 2 of the Carleson “squares”
Q={re’ cD:1-1Q| <r <1, |00 <|Q|/2}
in the unit disc D. Given a non-negative function w on D, and a subset
E of D, we denote
1
W), = w(z) dmo(z),
()5 = s [ w2 dma)

where dmy is Lebesgue area measure. The classes B, ,, 0 < p,q < oo,
consist of w such that

sup(w”>gp<w7q>gq < oo. (1)
Qe
The classes B, = By 1/(p-1), 1 < p < 0o, were introduced by D. Bekol-
16 and A. Bonami in [2]. They proved that for locally integrable non-
negative weights w on D, and for 1 < p < oo, the Bergman projection
operator T : f +— Tf,

Tf(z) = %/ﬂ)%dw((),

acts continuously on LP(D,w dmsy) if and only if w € B,. This re-

sult is similar to the Hunt-Muckenhoupt-Wheeden theorem (see [11],

[7, Chapter 6]) that claims that the Hilbert transform is bounded on

LP(R, w dm) if and only if w satisfies the condition (A,). The class A4,

consisting of functions w satisfying (A4,) is analogous to the class B,,

with squares @@ C D in the definition (1) replaced by intervals of R.
By the Holder inequality, we have

Ap, C Ay, Bpg C Bpras PSP, g1 <4q.
It is known (see [13]) that
4,4

e>0
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On the other hand,
Bpa U Bpte,gte

e>0

The aim of this article is to study what additional conditions on the
weight w € B, , imply that w € Ug50Bpic gt.. In other words, we ask
when the fact that T acts continuously on L?(w dms) implies that T
acts continuously on LP~¢(w'*® dm,), for small ¢ = £(w).

Note that in applications of the Bekollé-Bonami theorem [1, 3, 10]
the weight w is frequently equal to |¢'|* for a univalent function ¢ and
for real a.

Denote by A the class of functions |f|* « € R, for f analytic in
D, by M the class of functions |f| for f meromorphic in D, by €S the
class of functions exp u for v subharmonic in D, and by 8 the class of
functions non-negative and subharmonic in . Note that MNB,, C A,
p=>2.

Theorem. For 0 < p,q < oo we have

() AN By, C Ua>0 Bptegres
(II) esn By C Ua>0 Bpteqres
(III) SN Bp,q ¢ U5>0 B;D+a,q+6'

For 0 < p,q <2 we have

(IV) M0 Bpg & U.sg Bpregre-

Proof. (I) follows from (II).
(IT) Let f = expu, for u subharmonic in D, and let f € B, ,, that is

sup(7)" (/)" < oo. (2)
Qex

Since the function f? is subharmonic, by the mean value inequality, for

every @ € 2,

dist (z, 0Q)\ 2

Yo > cl ————=) f(2)?, 2 € Q. 3

(Mo e(=—g7) (3)

For every Carleson square ) denote by T'Q) the set @\ (@1 UQ2), where

Q1,Q2 €A, |Q1] = Q2] =1Q|/2, (Q1UQ:) NT =@ NT. Put

F(TQ) = sup f(z). (4)

2€TQ

Fix v > 0. If a square ) € 2 contains two subsets F; and Ey with

ma(E1) > yma(Q), ma(E2) > yma(Q), (fF)p, > Asupg, f, then (2)
implies that A is bounded uniformly in ) € 2. Therefore, the following

claim is proved:
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Claim. If two squares QQ1,Q2 € A are of comparable sidelength, and if
the distance between them is bounded by a constant times the sidelength
of Q1, then F(TQ1) is comparable to F(TQs).

Fix a dyadic system of Carleson squares Q;x, say
Qir=1{re’eD:1-2r-27"<r <1, |0 -2 -27%j| <m-277},

with trivial modification for £ = 1. Put

g(Z) = F(TQj,k), A TQj,k- (5)
Then f < g, and
(9°)1q,, < () )rq, . 0 <s < oo,
(970 < cls)(f) o Qe 0<s<oo. (6)

Next we verify that for some positive ¢, ¢ independent of j, k,

m/TQ‘ f(2) 7 dma(2) < cF(TQjk) 7. (7)

For every T'();, we consider a rectangle €;, containing T'Q);, with
dist (2,TQjx UT) < |Qjkl, 2 € 09, and the conformal map wjy :
D — €, such that wj”,i(TQj,k) C 72D for a constant r < 1. We write

UOWjk = Ujk + IOg F(TQJ,k)

Then u;; are subharmonic in D, u;;(2) < ¢, with ¢ independent of j, k.
Relations (2), (4), and (6) show that

<6_qu>Qj,k S CF(TQj’k)_q.
Moreover, by the Claim,
Hence,

/ e 1) dmy(2) < c.
rD

If (7) is false, then for some ¢ and for every n there exists a function
u, subharmonic in D, such that

un(z) <¢,  z€D, (8)
/ e 1 dmy(2) < ¢, 9)
rD
and

/ e_(qJ’%)“”(z)de(z) — 00, n— 0. (10)
r2D
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Consider the measures p,, = Au,. By (8) and (9), there exist £, > 0
such that for every disc D of radius 20 centered at a point of rD, and
for every n,

2
(D) < .
pn(D) < G
We cover 7?DD by a finite union of small discs D, with
2
a 2D,) <
max jin(2Ds) S T
where 2D, C rID are the discs concentric with D, with radii twice those
of D,.
Using the Riesz representation, for every n, s we obtain

n(2) = tns (2) + Vs (2) = tms (2) + / log |z — ¢ din(0), (1)

2D

where ¢ is harmonic in 2D,. Since v, (z) is non-positive in 2Dj,
condition (9) implies that

/ e = Edmy(2) < c.
2D,

By the mean value property,
uns(2) > ¢, 2z € D,. (12)

Denote

waal2) = exp[ (g + ) /DS log |2 — ¢| dyn(C)].

2
By Cartan’s lemma (see [4, Chapitre II], [9, Lemma 6.17]),

maf{z € Dy : wps(2) >t} < Ct~(a+2e)/(a+e) t>1,
with an absolute constant C', and hence,

/ Wn,s(2) dma(2) < ¢(e).

E

By (11) and (12),

/ e 1)@ dimy (2) < e(e),

E

and
/ e @ dimy (2) < oo,
r2D

that contradicts to (10). Thus, (7) is proved.
By (2), (5), (6), (7), we have g € B, ,, and for some ¢, > 0,

<fp+a>g(p+6)<f—q—a>i2/((1+8) < C<gp+a>g(l)+€) <g—q—a>é2/(q-i-€), Qe
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To complete the proof of (II) it remains to verify that for every
positive g € B, , which is constant on each T'Q;; we have g € B,,.,
for some ¢ = (g, p, q); after that, repeating the argument, we obtain
g € Bpicgie, for some e =¢4(g,p,q,€).

First, we choose s such that 0 < 1/s < min(p, ¢), and define h =
g'% € Bpsgs C Bpsi- Then, using the Cauchy-Schwarz inequality, we
get

(Mo < (W)™ < K(h)g, Qe (13)

Next we use a reverse Holder inequality (cf. [8], [5]): for some £,¢ > 0
depending only on K, p, s,

(e P < elhy,, Q€A (14)

Inequalities (13), (14) imply that

(g7 el Qe
sup(g™)g " g g < suple’)g ()¢ < oo,
Qe
and hence, g € B, ,. Thus, (II) is proved modulo (14).

Finally, we verify that (13) implies (14) for A which are constant on
each T'Q; ;. Denote t = ps > 1. Fix a dyadic square ) = @, and,
without loss of generality, assume that (h), = 1. Next, we fix a large
N, and modify h by making it equal to <h>QjN on Q;n C Q. Inequality
(13) still holds, and we need to verify that for small v > 0, (h**7), is
bounded uniformly in N.

We use the standard Calderon—Zygmund decomposition. For every
A > 1 denote by H(A) the set of all z € @ such that h(z) > A, and
consider the set 2(\) of maximal dyadic squares ' C @ such that
(h)qr > A. Denote the union of these squares by H()). Then

(g <5\, Q eAN), (15)

and
H(4)\) C H(X) (16)

(here we use that h is constant on 7'Q), ). By (13), (15) and (16) we
get

/H(M) h(z)tdmy(z) < /H(A) h(z)tdms(z Z / 2)tdmsy (2

Q'eA(N

< Z (5A) th/ h(z) dmy(z), A > 1.

Q'eA(N
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Furthermore, for every Q' € 24(\),
A
[ ) dm) < ma(@),
Q'\H()/2)
and hence,
/ h(z) dma(2) < 2 / h(2) dma(2).

/ QNH(2)

Thus,
/ h(2)dma(2) < 2- (52)'~ K / h(2)dma(z), A>1. (17)
H(4)) (A/2)

Therefore, for every 0 < v < 1/2,

/Q B(2) T dmy(z) < 3 2 / h(2) dms(2)

on<h(z)<2n+, 2€Q

nez
< ema(Q +722m/ z) dmy(z)
n>3 H(2"
(17)
< emo(Q) + ¢ K, t) 22’”“” n/ h(z) dmsy(2)
n>3 H(2"—3)
c(K,t)y
< CmQ(Q) + m 0 h(z)tJF’Yde(Z).

For sufficiently small v, 0 < v < ~o(K, t), we get

/Q h(=)dims(2) < c(K, ma(Q),

and (14) is proved for £ < (K, ps)/s.

(IIT) Just consider the function f, f(z) = |2|%9(log(A/|z]))?/? for
A > 1 to be determined later on. Then [ € B, \ U..q Bpg+e,
0 <p< oo (Infact, f € CD), 1/f € L{(D) NnCD\{0}), 1/f ¢
U.oo L77°(D).) It remains to verify that for sufficiently large A, the
function f is subharmonic in D, or, what is equivalent, the function
fi, fi(z) = (logr)*r—*, r = |z|, with 0 < s < oo, is subharmonic for
sufficiently large r, which is equivalent, in its turn, to the fact that the
function fo, fo(r) = fi(expr) = rfe~ " is convex for large r:

fé(r) — Srsflefrs - Srsefrs,
J(r)=s(s —1)r* 2e ™ — 257 e 5 4 $Prfe TS > 0, r>r(s).
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(IV) We start with the following elementary calculation. Take small
positive x, y such that 0 < 2z < y. Given 0 < p,q < 2, we fix a natural
number N such that 1 < Np < 2, and estimate the integrals

Hp+e) = /‘23—353

I /‘ _x?))N q
o D 23N _ y3N
We have

A
|z|<x/2 x/2<|2|<3z/2 3x/2<|2|<2y |z|>2y

=L+ 1L+ I3+ 14,

p-l-ad 0 2
ma(2), <e<y P

(2).

IH‘E
Il = (g
T

o

Yy p—l—a

o)

Yy :D—I—a
(2)

4 =1

| /\

| /\

Thus, if

2 < yNOH)/BN () 2]

then
3N(p+e)
I(p+e) = (g) 2’
x

Analogously,

:/ +/ +/ :J1+J2—|—J3,
|z|<y/2 y/2<|z|<2y |z|>2y

Ji < ey,
Jy < ey,
J3 < 1.
Hence,
J =< 1.
Choose sequences {xy}, {yx} such that

O<xk:y2N”/(3N”*2), (yk/xk)l/k—>oo, k — o0,
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and define
3
(=2

N 3N
— yk

Then
/D|¢k(z)|”dm2(z) X/D|¢k(z)|qdm2(z) =1,
/D|q)k(z)|p+%dm2(2) — 00, k — oo.

For w € D denore by ¢,, the Mobius function ¢, (z) = (z —w)/(1 —
zw). For wy € [0, 1] sufficiently rapidly tending to 1 we put

<I>:H<I>kog0wk.
k

Then
(o) < (P g =1, Qe
(B[P *F), — o0, b — o0,

for squares @y such that wy € TQyg, dist (wg, 0T QE) =< |Qk|. Thus,
|®] € MN By g, but [®] & .o Bpseq- Hence, MNBy g & ..o Bpieg-
]

Remark 1. We can refine somewhat assertions (III)—(IV) of Theorem:
for 0 < p,q < oo we have

(i) 8N Bp,q C Ue>0 Bp+€,q’

(ii) 8N Bpg € Ueso Bpagses

for 0 < p,q < 2 we have

(iii) Mn Bp,q ¢ Ua>0 [BerE,q U B:D,q+€] )

The proof of (i) is similar to that of the part (IT) of Theorem. Instead
of (3) we use that for 0 < p < oo, and for functions f, non-negative
and subharmonic on the unit disc D, we have fP(0) < ¢(p){(f?)p-

Remark 2. The class By consists of non-negative functions w on D such
that for some K = K(w),

(Wo<K-w(z), 2€Q, Qe

Denote by EH the class of functions exp(f) for f harmonic in D. J. Ru-
bio de Francia [14] (see also [6]) extended the factorization theorem of
P. Jones [12] and obtained that for every w € B, ,, 0 < p, ¢ < oo, there
exist wq, wy € By such that

1/p. —1
w = wiPw, .
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(Tt is clear that wiPwy M e B, for any wi,wy € By). It appears to
be unknown whether such a factorization is possible for w € EHNB, ,
with wy,ws € EH N By (or if an analogous statement holds with EH
replaced by A). If true, this would provide a short proof of the inclusion
EHNByy C UesoBpiegre- Indeed, we would only need to verify that
for any w € 8N B; there exists £ > 0 such that w!'™ € B;. Fix a dyadic
square (@ € 2 and assume that (w), = 1. For every n > 1 we consider
the maximal dyadic subsquares )} of ) such that T'Q’ intersects with
the set {z: w(z) > 2"}. Since w € §N By, for some ¢,d > 0,

2ma(Q) = /? wiEdm(E) < e /{zeQn. (2)>276} R

Then for small £ > 0,

/Qw(z) de(z)gcmg(Q)+6Z2 / w(z) dma(2)

n>0 {z:w(z)>2"}
< ecmay(Q +SZ2”EZ/ z) dmay(2)

n>0

(18)

< ema(Q) + ce Z 2"””/ dma(2)
n>0 {zw(z)>2nd}

<emy(Q) + « / w(z) e dmy(2)

1+4+¢ Q

and we are done.

The author is thankful to Misha Sodin for helpful remarks.
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